1
|
Matsuda M, Itoh K, Sugai T, Hoshiyama Y, Kikuchi T, Terai S. Improving diagnostic performance of coronavirus disease 2019 rapid antigen testing through computer-based feedback training using open-source experimental psychology software. J Infect Chemother 2024; 30:292-299. [PMID: 37890527 DOI: 10.1016/j.jiac.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
INTRODUCTION Rapid antigen testing (RAT) results are visually read as whether colored line is present or absent. The subjective interpretation potentially misses detecting weak lines due to lower analyte concentration in samples tested, requiring training. Although routine test experience has improved the result readout skills, it consumes time and resources. Therefore, we created a computer-based feedback training method using open-source experimental psychology software, wherein participants accumulate RAT result readout experience by repeatedly responding positive/negative to randomly presented pictures showing RAT results; then, they receive feedback on their answers as correct or incorrect and are asked to stare at the pictures again with the knowledge of correct answer. This study aimed to examine the training effects in improving the skills, using coronavirus disease 2019 (COVID-19) RAT. METHODS Twenty-two medical technologists were randomly divided into two groups: the feedback-training and test-experience groups. Using several pictures showing positive and negative results of COVID-19 RAT, after examination of their initial result readout skills, feedback-training group received the feedback training, whereas test-experience group performed an equal number of tests without feedback to accumulate test experience, and their skills were examined again. The ratio of "positive" answers to the pictures showing positive results (i.e., hit rate) was statistically analyzed. RESULTS The feedback-training group showed a significantly higher hit rate after their training, whereas the test-experience group did not. The feedback training effects were manifested in weak line detection. CONCLUSIONS This computer-based feedback training method can be an effective tool for improving RAT result readout skills.
Collapse
Affiliation(s)
- Masato Matsuda
- Medical Laboratory Division, Niigata University Medical and Dental Hospital, 1-754, Asahimachi-dori, Chuo-ku, Niigata, 951-8520, Japan.
| | - Kosuke Itoh
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8585, Japan
| | - Takahiro Sugai
- Medical Laboratory Division, Niigata University Medical and Dental Hospital, 1-754, Asahimachi-dori, Chuo-ku, Niigata, 951-8520, Japan
| | - Yoshiki Hoshiyama
- Medical Laboratory Division, Niigata University Medical and Dental Hospital, 1-754, Asahimachi-dori, Chuo-ku, Niigata, 951-8520, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Shuji Terai
- Medical Laboratory Division, Niigata University Medical and Dental Hospital, 1-754, Asahimachi-dori, Chuo-ku, Niigata, 951-8520, Japan; Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
2
|
Widyasari K, Kim S. Rapid Antigen Tests during the COVID-19 Era in Korea and Their Implementation as a Detection Tool for Other Infectious Diseases. Bioengineering (Basel) 2023; 10:322. [PMID: 36978713 PMCID: PMC10045740 DOI: 10.3390/bioengineering10030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Rapid antigen tests (RATs) are diagnostic tools developed to specifically detect a certain protein of infectious agents (viruses, bacteria, or parasites). RATs are easily accessible due to their rapidity and simplicity. During the COVID-19 pandemic, RATs have been widely used in detecting the presence of the specific SARS-CoV-2 antigen in respiratory samples from suspected individuals. Here, the authors review the application of RATs as detection tools for COVID-19, particularly in Korea, as well as for several other infectious diseases. To address these issues, we present general knowledge on the design of RATs that adopt the lateral flow immunoassay for the detection of the analyte (antigen). The authors then discuss the clinical utilization of the authorized RATs amidst the battle against the COVID-19 pandemic in Korea and their role in comparison with other detection methods. We also discuss the implementation of RATs for other, non-COVID-19 infectious diseases, the challenges that may arise during the application, the limitations of RATs as clinical detection tools, as well as the possible problem solving for those challenges to maximize the performance of RATs and avoiding any misinterpretation of the test result.
Collapse
Affiliation(s)
- Kristin Widyasari
- Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Sunjoo Kim
- Gyeongsang Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Laboratory Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
- Department of Laboratory Medicine, Gyeongsang National University Changwon Hospital, Changwon 51472, Republic of Korea
| |
Collapse
|
3
|
Salvagno GL, Henry BM, Bongiovanni G, De Nitto S, Pighi L, Lippi G. Positivization time of a COVID-19 rapid antigen self-test predicts SARS-CoV-2 viral load: a proof of concept. Clin Chem Lab Med 2023; 61:316-322. [PMID: 36315978 DOI: 10.1515/cclm-2022-0873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES This proof of concept study was aimed to validate the hypothesis that the time of positivization of SARS-CoV-2 self-performed rapid diagnostic tests (RDTs) may reflect the actual viral load in the specimen. METHODS A SARS-CoV-2 positive sample with high viral load was diluted and concomitantly assayed with molecular assay (Xpert Xpress SARS-CoV-2) and RDT (COVID-VIRO ALL IN RDT). The (mean cycle threshold; Ct) values and RDT positivization times of these dilutions were plotted and interpolated by calculating the best fit. The parameters of this equation were then used for converting the positivization times into RDT-estimated SARS-CoV-2 Ct values in routine patient samples. RESULTS The best fit between measured and RDT-estimated Ct values could be achieved with a 2-degree polynomial curve. The RDT-estimated Ct values exhibited high correlation (r=0.996) and excellent Deming fit (y=1.01 × x - 0.18) with measured Ct values. In 30 consecutive patients with positive RDT test, the correlation between RDT positivization time and measured Ct value was r=0.522 (p=0.003). The correlation of RDT-estimated and measured Ct values slightly improved to 0.577 (Deming fit: y=0.44 × x + 11.08), displaying a negligible bias (1.0; 95% CI, -0.2 to 2.2; p=0.105). Concordance of RDT-estimated and measured Ct values at the <20 cut-off was 80%, with 0.84 sensitivity and 0.73 specificity. CONCLUSIONS This proof of concept study demonstrates the potential feasibility of using RDTs for garnering information on viral load in patients with acute SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Gian Luca Salvagno
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
- Service of Laboratory Medicine, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Brandon M Henry
- Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Simone De Nitto
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
- Service of Laboratory Medicine, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Laura Pighi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
- Service of Laboratory Medicine, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Lippi G, Henry BM, Plebani M. An overview of the most important preanalytical factors influencing the clinical performance of SARS-CoV-2 antigen rapid diagnostic tests (Ag-RDTs). Clin Chem Lab Med 2023; 61:196-204. [PMID: 36343376 DOI: 10.1515/cclm-2022-1058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Due to the many technical limitations of molecular biology, the possibility to sustain enormous volumes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic testing relies strongly on the use of antigen rapid diagnostic tests (Ag-RDTs). Besides a limited analytical sensitivity, the manually intensive test procedures needed for performing these tests, very often performed by unskilled personnel or by the patients themselves, may contribute to considerably impair their diagnostic accuracy. We provide here an updated overview on the leading preanalytical drawbacks that may impair SARS-CoV-2 Ag-RDT accuracy, and which encompass lower diagnostic sensitivity in certain age groups, in asymptomatic subjects and those with a longer time from symptoms onset, in vaccine recipients, in individuals not appropriately trained to their usage, in those recently using oral or nasal virucidal agents, in oropharyngeal swabs and saliva, as well as in circumstances when instructions provided by the manufacturers are unclear, incomplete or scarcely readable and intelligible. Acknowledging these important preanalytical limitations will lead the way to a better, more clinically efficient and even safer use of this important technology, which represents an extremely valuable resource for management of the ongoing pandemic.
Collapse
Affiliation(s)
- Giuseppe Lippi
- IFCC Task Force on COVID-19, Milan, Italy
- IFCC Working Group on SARS-COV-2 Variants, Milan, Italy
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| | - Brandon M Henry
- IFCC Task Force on COVID-19, Milan, Italy
- IFCC Working Group on SARS-COV-2 Variants, Milan, Italy
- Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mario Plebani
- IFCC Working Group on SARS-COV-2 Variants, Milan, Italy
- University of Padova, Padova, Italy
| |
Collapse
|