1
|
Alsabbagh Y, Erben Y, Vandenberg J, Farres H. New Trends of Personalized Medicine in the Management of Abdominal Aortic Aneurysm: A Review. J Pers Med 2024; 14:1148. [PMID: 39728062 DOI: 10.3390/jpm14121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a significant vascular condition characterized by the dilation of the abdominal aorta, presenting a substantial risk of rupture and associated high mortality rates. Current management strategies primarily rely on aneurysm diameter and growth rates to predict rupture risk and determine the timing of surgical intervention. However, this approach has limitations, as ruptures can occur in smaller AAAs below surgical thresholds, and many large AAAs remain stable without intervention. This review highlights the need for more precise and individualized assessment tools that integrate biomechanical parameters such as wall stress, wall strength, and hemodynamic factors. Advancements in imaging modalities like ultrasound elastography, computed tomography (CT) angiography, and magnetic resonance imaging (MRI), combined with artificial intelligence, offer enhanced capabilities to assess biomechanical indices and predict rupture risk more accurately. Incorporating these technologies can lead to personalized medicine approaches, improving decision-making regarding the timing of interventions. Additionally, emerging treatments focusing on targeted delivery of therapeutics to weakened areas of the aortic wall, such as nanoparticle-based drug delivery, stem cell therapy, and gene editing techniques like CRISPR-Cas9, show promise in strengthening the aortic wall and halting aneurysm progression. By validating advanced screening modalities and developing targeted treatments, the future management of AAA aims to reduce unnecessary surgeries, prevent ruptures, and significantly improve patient outcomes.
Collapse
Affiliation(s)
- Yaman Alsabbagh
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Young Erben
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jonathan Vandenberg
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Houssam Farres
- Division of Vascular and Endovascular Surgery, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
2
|
Baldwin CS, Iyer S, Rao RR. The challenges and prospects of smooth muscle tissue engineering. Regen Med 2024; 19:135-143. [PMID: 38440898 PMCID: PMC10941056 DOI: 10.2217/rme-2023-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
Many vascular disorders arise as a result of dysfunctional smooth muscle cells. Tissue engineering strategies have evolved as key approaches to generate functional vascular smooth muscle cells for use in cell-based precision and personalized regenerative medicine approaches. This article highlights some of the challenges that exist in the field and presents some of the prospects for translating research advancements into therapeutic modalities. The article emphasizes the need for better developing synergetic intracellular and extracellular cues in the processes to generate functional vascular smooth muscle cells from different stem cell sources for use in tissue engineering strategies.
Collapse
Affiliation(s)
- Christofer S Baldwin
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Shilpa Iyer
- Department of Biological Sciences, Fulbright College of Arts & Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Raj R Rao
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
3
|
Dayal S, Broekelmann T, Mecham RP, Ramamurthi A. Targeting Epidermal Growth Factor Receptor to Stimulate Elastic Matrix Regenerative Repair. Tissue Eng Part A 2023; 29:187-199. [PMID: 36641641 PMCID: PMC10122231 DOI: 10.1089/ten.tea.2022.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/15/2022] [Indexed: 01/16/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) represent a multifactorial, proteolytic disorder involving disintegration of the matrix structure within the AAA wall. Intrinsic deficiency of adult vascular cells to regenerate and repair the wall elastic matrix, which contributes to vessel stretch and recoil, is a major clinical challenge to therapeutic reversal of AAA growth. In this study, we investigate the involvement of epidermal growth factor receptor-mitogen activated protein kinase (EGFR-MAPK) pathway in the activation of aneurysmal smooth muscle cells (SMCs) by neutrophil elastase, and how EGFR can be targeted for elastic matrix regeneration. We have demonstrated that neutrophil elastase activates EGFR and downregulates expression level of key elastin homeostasis genes (elastin, crosslinking enzyme-lysyl oxidase, and fibulin4) between a dose range of 1-10 μg/mL (p < 0.05). It also incites downstream proteolytic outcomes by upregulating p-extracellular signal-regulated kinase (ERK)1/2 (p < 0.0001) and matrix metalloprotease 2 (MMP2) at a protein level, which is significantly downregulated upon EGFR-specific inhibition by tyrosine kinase inhibitor AG1478 (p-ERK1/2 and MMP2 [p < 0.05]). Moreover, we have shown that EGFR inhibition suppresses collagen amounts in aneurysmal SMCs (p < 0.05) and promotes robust formation of elastic fibers by enhancing its deposition in the extracellular space. Hence, the EGFR-MAPK pathway in aneurysmal cells can be targeted to provide therapeutic effects toward stimulating vascular matrix regeneration. Impact statement Proteolytic disorders such as aortal expansions, called abdominal aortic aneurysms (AAAs), are characterized by naturally irreversible enzymatic breakdown and loss of elastic fibers, a problem that has not yet been surmounted by existing tissue engineering approaches. In this work, we show, for the first time, how epidermal growth factor receptor (EGFR) inhibition provides downstream benefits in elastic fiber assembly and deposition in aneurysmal smooth muscle cell cultures. This work can open future possibilities for development of EGFR-targeted drug-based therapies not only for vessel wall repair in AAAs but also other proteolytically compromised elastic tissues.
Collapse
Affiliation(s)
- Simran Dayal
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Thomas Broekelmann
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| | - Robert P. Mecham
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| | - Anand Ramamurthi
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
4
|
Zilberman B, Kooragayala K, Lou J, Ghobrial G, De Leo N, Emery R, Ostrovsky O, Zhang P, Platoff R, Zhu C, Hunter K, Delong D, Hong Y, Brown SA, Carpenter JP. Treatment of Abdominal Aortic Aneurysm Utilizing Adipose-Derived Mesenchymal Stem Cells in a Porcine Model. J Surg Res 2022; 278:247-256. [PMID: 35636200 DOI: 10.1016/j.jss.2022.04.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/11/2022] [Accepted: 04/23/2022] [Indexed: 12/19/2022]
|
5
|
Sivaraman S, Hedrick J, Ismail S, Slavin C, Rao RR. Generation and Characterization of Human Mesenchymal Stem Cell-Derived Smooth Muscle Cells. Int J Mol Sci 2021; 22:ijms221910335. [PMID: 34638675 PMCID: PMC8508589 DOI: 10.3390/ijms221910335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. A completely autologous treatment can be achieved by using elastogenic mesenchymal stem cell (MSC)-derived smooth muscle cells (SMC) at the affected tissue site of vascular diseases such as abdominal aortic aneurysms (AAA). Thus, our work focused on evaluating the efficacy of (a) the combination of various growth factors, (b) different time periods and (c) different MSC lines to determine the treatment combination that generated SMCs that exhibited the greatest elastogenicity among the tested groups using Western blotting and flow cytometry. Additionally, total RNA sequencing was used to confirm that post-differentiation cells were upregulating SMC-specific gene markers. Results indicated that MSCs cultured for four days in PDGF + TGFβ1 (PT)-infused differentiation medium showed significant increases in SMC markers and decreases in MSC markers compared to MSCs cultured without differentiation factors. RNA Seq analysis confirmed the presence of vascular smooth muscle formation in MSCs differentiated in PT medium over a seven-day period. Overall, our results indicated that origin, growth factor treatment and culture period played a major role in influencing MSC differentiation to SMCs.
Collapse
Affiliation(s)
| | | | | | | | - Raj R. Rao
- Correspondence: ; Tel.: +1-(479)-575-8610
| |
Collapse
|
6
|
Farrell K, Simmers P, Mahajan G, Boytard L, Camardo A, Joshi J, Ramamurthi A, Pinet F, Kothapalli CR. Alterations in phenotype and gene expression of adult human aneurysmal smooth muscle cells by exogenous nitric oxide. Exp Cell Res 2019; 384:111589. [PMID: 31473210 DOI: 10.1016/j.yexcr.2019.111589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022]
Abstract
Abdominal aortic aneurysms (AAA) are characterized by matrix remodeling, elastin degradation, absence of nitric oxide (NO) signaling, and inflammation, influencing smooth muscle cell (SMC) phenotype and gene expression. Little is known about the biomolecular release and intrinsic biomechanics of human AAA-SMCs. NO delivery could be an attractive therapeutic strategy to restore lost functionality of AAA-SMCs by inhibiting inflammation and cell stiffening. We aim to establish the differences in phenotype and gene expression of adult human AAA-SMCs from healthy SMCs. Based on our previous study which showed benefits of optimal NO dosage delivered via S-Nitrosoglutathione (GSNO) to healthy aortic SMCs, we tested whether such benefits would occur in AAA-SMCs. The mRNA expression of three genes involved in matrix degradation (ACE, ADAMTS5 and ADAMTS8) was significantly downregulated in AAA-SMCs. Total protein and glycosaminoglycans synthesis were higher in AAA-SMCs than healthy-SMCs (p < 0.05 for AAA-vs. healthy- SMC cultures) and was enhanced by GSNO and 3D cultures (p < 0.05 for 3D vs. 2D cultures; p < 0.05 for GSNO vs. non-GSNO cases). Elastin gene expression, synthesis and deposition, desmosine crosslinker levels, and lysyl oxidase (LOX) functional activity were lower, while cell proliferation, iNOS, LOX and fibrillin-1 gene expressions were higher in AAA-SMCs (p < 0.05 between respective cases), with differential benefits from GSNO exposure. GSNO and 3D cultures reduced MMPs -2, -9, and increased TIMP-1 release in AAA-SMC cultures (p < 0.05 for GSNO vs. non-GSNO cultures). AAA-SMCs were inherently stiffer and had smoother surface than healthy SMCs (p < 0.01 in both cases), but GSNO reduced stiffness (~25%; p < 0.01) and increased roughness (p < 0.05) of both cell types. In conclusion, exogenously-delivered NO offers an attractive strategy by providing therapeutic benefits to AAA-SMCs.
Collapse
Affiliation(s)
- Kurt Farrell
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44141, USA
| | - Phillip Simmers
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44141, USA
| | - Gautam Mahajan
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44141, USA
| | - Ludovic Boytard
- University of Lille, Inserm U1167, Institut Pasteur de Lille, France
| | - Andrew Camardo
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44141, USA
| | - Jyotsna Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44141, USA
| | - Anand Ramamurthi
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, 44141, USA
| | - Florence Pinet
- University of Lille, Inserm U1167, Institut Pasteur de Lille, France
| | - Chandrasekhar R Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44141, USA.
| |
Collapse
|
7
|
Dahal S, Broekelman T, Mecham RP, Ramamurthi A. Maintaining Elastogenicity of Mesenchymal Stem Cell-Derived Smooth Muscle Cells in Two-Dimensional Culture. Tissue Eng Part A 2018; 24:979-989. [PMID: 29264957 DOI: 10.1089/ten.tea.2017.0237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) are localized expansions of the abdominal aorta that grow slowly to rupture. AAA growth is driven by irreversible elastic matrix breakdown in the aorta wall by chronically upregulated matrix metalloproteases (MMPs). Since adult vascular smooth muscle cells (SMCs) poorly regenerate elastic matrix, we previously explored utility of bone marrow mesenchymal stem cells and SMCs derived therefrom (BM-SMCs) for this purpose. One specific differentiated phenotype (cBM-SMCs) generated on a fibronectin substrate in presence of exogenous transforming growth factor-β and platelet-derived growth factor exhibited superior elastogenicity versus other phenotypes, and usefully provided proelastogenic and antiproteolytic stimuli to aneurysmal SMCs. Since in vivo cell therapy demands large cell inoculates, these derived SMCs must be propagated in vitro while maintaining their superior elastogenic, proelastogenic, and antiproteolytic characteristics. In this work, we thus investigated the culture conditions that must be provided to this propagation phase, which ensure that the differentiated SMCs maintain their phenotype and matrix regenerative benefits. Our results indicate that our BM-SMCs retain their phenotype in long-term culture even in the absence of differentiation growth factors and fibronectin substrate, but these conditions must be continued to be provided during postdifferentiation propagation if they are to maintain their superior elastic matrix deposition, crosslinking, and fiber formation properties. Our study, however, showed that cells propagated under these conditions exhibit higher expression of MMP-2, but favorably, no expression of elastolytic MMP-9. Hence, the study outcomes provide crucial guidelines to maintain phenotypic stability of cBM-SMCs during their propagation in two-dimensional culture before their delivery to the AAA wall for therapy.
Collapse
Affiliation(s)
- Shataakshi Dahal
- 1 Department of Biomedical Engineering, Cleveland Clinic , Cleveland, Ohio
| | - Thomas Broekelman
- 2 Department of Cell Biology and Physiology, Washington University at St. Louis , St. Louis, Missouri
| | - Robert P Mecham
- 2 Department of Cell Biology and Physiology, Washington University at St. Louis , St. Louis, Missouri
| | - Anand Ramamurthi
- 1 Department of Biomedical Engineering, Cleveland Clinic , Cleveland, Ohio.,3 Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
8
|
Blose KJ, Ennis TL, Arif B, Weinbaum JS, Curci JA, Vorp DA. Periadventitial adipose-derived stem cell treatment halts elastase-induced abdominal aortic aneurysm progression. Regen Med 2015; 9:733-41. [PMID: 25431910 DOI: 10.2217/rme.14.61] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM Demonstrate that periadventitial delivery of adipose-derived mesenchymal stem cells (ADMSCs) slows aneurysm progression in an established murine elastase-perfusion model of abdominal aortic aneurysm (AAA). MATERIALS & METHODS AAAs were induced in C57BL/6 mice using porcine elastase. During elastase perfusion, a delivery device consisting of a subcutaneous port, tubing and porous scaffold was implanted. Five days after elastase perfusion, 100,000 ADMSCs were delivered through the port to the aorta. After sacrifice at day 14, analyzed metrics included aortic diameter and structure of aortic elastin. RESULTS ADMSC treated aneurysms had a smaller diameter and less fragmented elastin versus saline controls. CONCLUSION Periadventitial stem cell delivery prevented the expansion of an established aneurysm between days 5 and 14 after elastase perfusion.
Collapse
Affiliation(s)
- Kory J Blose
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
9
|
Parvizi M, Harmsen MC. Therapeutic Prospect of Adipose-Derived Stromal Cells for the Treatment of Abdominal Aortic Aneurysm. Stem Cells Dev 2015; 24:1493-505. [DOI: 10.1089/scd.2014.0517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mojtaba Parvizi
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin C. Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Pei H, Tian C, Sun X, Qian X, Liu P, Liu W, Chang Q. Overexpression of MicroRNA-145 Promotes Ascending Aortic Aneurysm Media Remodeling through TGF-β1. Eur J Vasc Endovasc Surg 2015; 49:52-9. [DOI: 10.1016/j.ejvs.2014.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/22/2014] [Indexed: 12/25/2022]
|
11
|
Komatsu S, Ohara T, Takahashi S, Takewa M, Minamiguchi H, Imai A, Kobayashi Y, Iwa N, Yutani C, Hirayama A, Kodama K. Early Detection of Vulnerable Atherosclerotic Plaque for Risk Reduction of Acute Aortic Rupture and Thromboemboli and Atheroemboli Using Non-Obstructive Angioscopy. Circ J 2015; 79:742-50. [DOI: 10.1253/circj.cj-15-0126] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sei Komatsu
- Cardiovascular Center, Amagasaki Central Hospital
| | - Tomoki Ohara
- Cardiovascular Center, Amagasaki Central Hospital
| | | | | | - Hitoshi Minamiguchi
- Department of Cardiology, Osaka University School of Medicine
- Cardiovascular Center, Amagasaki Central Hospital
| | - Atsuko Imai
- Department of Cardiology, Osaka University School of Medicine
- Cardiovascular Center, Amagasaki Central Hospital
| | | | - Nobuzo Iwa
- Department of Pathology, Amagasaki Central Hospital
| | | | | | | |
Collapse
|