1
|
Naumovska E, Aalderink G, Wong Valencia C, Kosim K, Nicolas A, Brown S, Vulto P, Erdmann KS, Kurek D. Direct On-Chip Differentiation of Intestinal Tubules from Induced Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21144964. [PMID: 32674311 PMCID: PMC7404294 DOI: 10.3390/ijms21144964] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Intestinal organoids have emerged as the new paradigm for modelling the healthy and diseased intestine with patient-relevant properties. In this study, we show directed differentiation of induced pluripotent stem cells towards intestinal-like phenotype within a microfluidic device. iPSCs are cultured against a gel in microfluidic chips of the OrganoPlate, in which they undergo stepwise differentiation. Cells form a tubular structure, lose their stem cell markers and start expressing mature intestinal markers, including markers for Paneth cells, enterocytes and neuroendocrine cells. Tubes develop barrier properties as confirmed by transepithelial electrical resistance (TEER). Lastly, we show that tubules respond to pro-inflammatory cytokine triggers. The whole procedure for differentiation lasts 14 days, making it an efficient process to make patient-specific organoid tubules. We anticipate the usage of the platform for disease modelling and drug candidate screening.
Collapse
Affiliation(s)
- Elena Naumovska
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
| | - Germaine Aalderink
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
| | - Christian Wong Valencia
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
| | - Kinga Kosim
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
| | - Arnaud Nicolas
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
| | - Stephen Brown
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
| | - Paul Vulto
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
| | - Kai S. Erdmann
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; (C.W.V.); (S.B.)
- Correspondence: (K.S.E.); (D.K.)
| | - Dorota Kurek
- Mimetas BV, Model Development, J.H. Oortweg 16, 2333 CH Leiden, The Netherlands; (E.N.); (G.A.); (K.K.); (A.N.); (P.V.)
- Correspondence: (K.S.E.); (D.K.)
| |
Collapse
|
2
|
Sun J, Ma X, Chu HT, Feng B, Tuan RS, Jiang Y. Biomaterials and Advanced Biofabrication Techniques in hiPSCs Based Neuromyopathic Disease Modeling. Front Bioeng Biotechnol 2019; 7:373. [PMID: 31850331 PMCID: PMC6895005 DOI: 10.3389/fbioe.2019.00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are reprogrammed somatic cells by defined factors, and have great application potentials in tissue regeneration and disease modeling. Biomaterials have been widely used in stem cell-based studies, and are involved in human iPSCs based studies, but they were not enough emphasized and recognized. Biomaterials can mimic the extracellular matrix and microenvironment, and act as powerful tools to promote iPSCs proliferation, differentiation, maturation, and migration. Many classic and advanced biofabrication technologies, such as cell-sheet approach, electrospinning, and 3D-bioprinting, are used to provide physical cues in macro-/micro-patterning, and in combination with other biological factors to support iPSCs applications. In this review, we highlight the biomaterials and fabrication technologies used in human iPSC-based tissue engineering to model neuromyopathic diseases, particularly those with genetic mutations, such as Duchenne Muscular Dystrophy (DMD), Congenital Heart Diseases (CHD) and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Jing Sun
- Faculty of Medicine, School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xun Ma
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Ting Chu
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bo Feng
- Faculty of Medicine, School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Rocky S Tuan
- Faculty of Medicine, School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yangzi Jiang
- Faculty of Medicine, School of Biomedical Sciences, Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Coelho de Oliveira VC, Silva dos Santos D, Vairo L, Kasai Brunswick TH, Pimentel LAS, Carvalho AB, Campos de Carvalho AC, Goldenberg RCDS. Hair follicle-derived mesenchymal cells support undifferentiated growth of embryonic stem cells. Exp Ther Med 2017; 13:1779-1788. [PMID: 28565767 PMCID: PMC5443186 DOI: 10.3892/etm.2017.4195] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/13/2017] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to investigate whether feeder layers composed of human hair follicle-derived mesenchymal stem cells (hHFDCs) are able to support human embryonic stem cells (hESCs). hHFDCs and mouse embryonic fibroblasts (MEFs) were isolated and cultured in Dulbecco's modified Eagle's medium (DMEM)/F-12 and low-glucose DMEM, respectively. hHFDCs were passaged three times and subsequently characterized. hHFDCs and MEFs were mitotically inactivated with mitomycin C for 3 h prior to co-culture with H9-hESCs. hESCs were initially established on a mouse feeder layer, subsequently transferred onto a human feeder layer and split every 5 days. Cell morphology, expression of specific 'undifferentiation' markers and growth factors, and the differentiation capacity of hESCs grown on the hHFDC feeder layer were analyzed. hHFDCs are adherent to plastic, possess the classic mesenchymal stem cell phenotype [they express cluster of differentiation (CD)90, CD73 and CD105] and are able to differentiate into adipocytes, chondroblasts and osteocytes, indicating that these cells are multipotent. Population-doubling time analysis revealed that hHFDCs rapidly proliferate over 34.5 h. As a feeder layer, hHFDC behaved similarly to MEF in maintaining the morphology of hESCs. The results of alkaline phosphatase activity, reverse transcription-quantitative polymerase chain reaction analysis of the expression of pluripotency transcription factors [octamer-binding transcription factor 4 (Oct4), Nanog and sex determining region Y-box 2], and immunofluorescence assays of markers (stage-specific embryonic antigen-4 and Oct4) in hESCs co-cultured over hHFDC, indicated that the undifferentiated state of hESCs was preserved. No change in the level of growth factor transcripts (bone morphogenetic protein 4, fibroblast growth factor-2, vascular endothelial growth factor, Pigment epithelium-derived factor and transforming growth factor-β1) was detected for either feeder layer prior to or following inactivation. Similar phenotypes of embryoid body formation, size and morphology were observed in the hHFDC and MEF feeders. In conclusion, hHFDC maintained hESCs in an undifferentiated state comparable to MEF in standard conditions, which may be an important finding regarding the establishment of stem cell-based translational applications.
Collapse
Affiliation(s)
| | - Danúbia Silva dos Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Leandro Vairo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Tais Hanae Kasai Brunswick
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | | | - Adriana Bastos Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | | | | |
Collapse
|
4
|
Xing Q, Qian Z, Jia W, Ghosh A, Tahtinen M, Zhao F. Natural Extracellular Matrix for Cellular and Tissue Biomanufacturing. ACS Biomater Sci Eng 2016; 3:1462-1476. [DOI: 10.1021/acsbiomaterials.6b00235] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qi Xing
- Department of Biomedical
Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Zichen Qian
- Department of Biomedical
Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Wenkai Jia
- Department of Biomedical
Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Avik Ghosh
- Department of Biomedical
Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Mitchell Tahtinen
- Department of Biomedical
Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Feng Zhao
- Department of Biomedical
Engineering, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
5
|
Zhou Y, Mao H, Joddar B, Umeki N, Sako Y, Wada KI, Nishioka C, Takahashi E, Wang Y, Ito Y. The significance of membrane fluidity of feeder cell-derived substrates for maintenance of iPS cell stemness. Sci Rep 2015; 5:11386. [PMID: 26065582 PMCID: PMC4464345 DOI: 10.1038/srep11386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/22/2015] [Indexed: 11/09/2022] Open
Abstract
The biological activity of cell-derived substrates to maintain undifferentiated murine-induced pluripotent stem (iPS) cells was correlated to membrane fluidity as a new parameter of cell culture substrates. Murine embryonic fibroblasts (MEFs) were employed as feeder cells and their membrane fluidity was tuned by chemical fixation using formaldehyde (FA). Membrane fluidity was evaluated by real-time single-molecule observations of green fluorescent protein-labeled epidermal growth factor receptors on chemically fixed MEFs. Biological activity was monitored by colony formation of iPS cells. Treatment with a low concentration of FA sustained the membrane fluidity and biological activity, which were comparable to those of mitomycin C-treated MEFs. The biological activity was further confirmed by sustained expression of alkaline phosphatase, SSEA-1, and other pluripotency markers in iPS cells after 3-5 days of culture on FA-fixed MEFs. Chemical fixation of feeder cells has several advantages such as providing ready-to-use culture substrates without contamination by proliferating feeder cells. Therefore, our results provide an important basis for the development of chemically fixed culture substrates for pluripotent stem cell culture as an alternative to conventional treatment by mitomycin C or x-ray irradiation.
Collapse
Affiliation(s)
- Yue Zhou
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- School of Nursing, Nanjing University of Chinese Medicine, 138 Xianlin Road, Qixia District, Nanjing, Jiangsu Province 210023, China
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, No.1266 Fujin Road, Changchun 130021, China
| | - Hongli Mao
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Binata Joddar
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nobuhisa Umeki
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ken-Ichi Wada
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Chieko Nishioka
- Support Unit for Animal Experiment, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Eiki Takahashi
- Support Unit for Animal Experiment, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, No.1266 Fujin Road, Changchun 130021, China
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Lim ML, Ooi BNS, Jungebluth P, Sjöqvist S, Hultman I, Lemon G, Gustafsson Y, Asmundsson J, Baiguera S, Douagi I, Gilevich I, Popova A, Haag JC, Rodríguez AB, Lim J, Liedén A, Nordenskjöld M, Alici E, Baker D, Unger C, Luedde T, Vassiliev I, Inzunza J, Ährlund-Richter L, Macchiarini P. Characterization of stem-like cells in mucoepidermoid tracheal paediatric tumor. PLoS One 2014; 9:e107712. [PMID: 25229469 PMCID: PMC4167860 DOI: 10.1371/journal.pone.0107712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/14/2014] [Indexed: 02/06/2023] Open
Abstract
Stem cells contribute to regeneration of tissues and organs. Cells with stem cell-like properties have been identified in tumors from a variety of origins, but to our knowledge there are yet no reports on tumor-related stem cells in the human upper respiratory tract. In the present study, we show that a tracheal mucoepidermoid tumor biopsy obtained from a 6 year-old patient contained a subpopulation of cells with morphology, clonogenicity and surface markers that overlapped with bone marrow mesenchymal stromal cells (BM-MSCs). These cells, designated as MEi (mesenchymal stem cell-like mucoepidermoid tumor) cells, could be differentiated towards mesenchymal lineages both with and without induction, and formed spheroids in vitro. The MEi cells shared several multipotent characteristics with BM-MSCs. However, they displayed differences to BM-MSCs in growth kinectics and gene expression profiles relating to cancer pathways and tube development. Despite this, the MEi cells did not possess in vivo tumor-initiating capacity, as proven by the absence of growth in situ after localized injection in immunocompromised mice. Our results provide an initial characterization of benign tracheal cancer-derived niche cells. We believe that this report could be of importance to further understand tracheal cancer initiation and progression as well as therapeutic development.
Collapse
Affiliation(s)
- Mei Ling Lim
- Advanced Center for Translational Regenerative Medicine, Department for Clinical Science, Intervention and Technology, Division of Ear, Nose, Throat, Karolinska Institutet, Stockholm, Sweden
| | | | - Philipp Jungebluth
- Advanced Center for Translational Regenerative Medicine, Department for Clinical Science, Intervention and Technology, Division of Ear, Nose, Throat, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Sjöqvist
- Advanced Center for Translational Regenerative Medicine, Department for Clinical Science, Intervention and Technology, Division of Ear, Nose, Throat, Karolinska Institutet, Stockholm, Sweden
| | - Isabell Hultman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Greg Lemon
- Advanced Center for Translational Regenerative Medicine, Department for Clinical Science, Intervention and Technology, Division of Ear, Nose, Throat, Karolinska Institutet, Stockholm, Sweden
| | - Ylva Gustafsson
- Advanced Center for Translational Regenerative Medicine, Department for Clinical Science, Intervention and Technology, Division of Ear, Nose, Throat, Karolinska Institutet, Stockholm, Sweden
| | - Jurate Asmundsson
- Department of Oncology and Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Silvia Baiguera
- Advanced Center for Translational Regenerative Medicine, Department for Clinical Science, Intervention and Technology, Division of Ear, Nose, Throat, Karolinska Institutet, Stockholm, Sweden
| | - Iyadh Douagi
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Irina Gilevich
- International Scientific-Research Clinical and Educational Center of Regenerative Medicine, Kuban State Medical University, Krasnodar, Russian Federation
| | - Alina Popova
- International Scientific-Research Clinical and Educational Center of Regenerative Medicine, Kuban State Medical University, Krasnodar, Russian Federation
| | - Johannes Cornelius Haag
- Advanced Center for Translational Regenerative Medicine, Department for Clinical Science, Intervention and Technology, Division of Ear, Nose, Throat, Karolinska Institutet, Stockholm, Sweden
| | - Antonio Beltrán Rodríguez
- Advanced Center for Translational Regenerative Medicine, Department for Clinical Science, Intervention and Technology, Division of Ear, Nose, Throat, Karolinska Institutet, Stockholm, Sweden
| | - Jianri Lim
- Advanced Center for Translational Regenerative Medicine, Department for Clinical Science, Intervention and Technology, Division of Ear, Nose, Throat, Karolinska Institutet, Stockholm, Sweden
| | - Agne Liedén
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Evren Alici
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Duncan Baker
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Christian Unger
- Department of Biomedical Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Germany
| | - Ivan Vassiliev
- Robinson Institute, Center for Stem Cell Research, The University of Adelaide, Adelaide, Australia
| | - Jose Inzunza
- Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Lars Ährlund-Richter
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Macchiarini
- Advanced Center for Translational Regenerative Medicine, Department for Clinical Science, Intervention and Technology, Division of Ear, Nose, Throat, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|