1
|
Yamada S, Bartunek J, Povsic TJ, Cotter G, Davison BA, Edwards C, Behfar A, Metra M, Filippatos GS, Vanderheyden M, Wijns W, Terzic A. Cell Therapy Improves Quality-of-Life in Heart Failure: Outcomes From a Phase III Clinical Trial. Stem Cells Transl Med 2024; 13:116-124. [PMID: 38006196 PMCID: PMC10872684 DOI: 10.1093/stcltm/szad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023] Open
Abstract
Patients with heart failure experience limitations in daily activity and poor quality-of-life. Prospective surveillance of health-related quality-of-life supplemented traditional death and hospitalization outcomes in the multinational, randomized, double-blinded CHART-1 clinical trial that assessed cardiopoiesis-guided cell therapy in ischemic heart failure patients with reduced left ventricular ejection fraction. The Minnesota Living with Heart Failure Questionnaire (MLHFQ), a Food and Drug Administration qualified instrument for evaluating therapeutic effectiveness, was applied through the 1-year follow-up. Cell treated (n = 109) and sham procedure (n = 140) cohorts reported improved MLHFQ scores comparable between the 2 study arms (mean treatment difference with baseline adjustment -3.2 points, P = .107). Superiority of cell treatment over sham in betterment of the MLHFQ score was demonstrated in patients with pre-existing advanced left ventricular enlargement (baseline-adjusted mean treatment difference -6.4 points, P = .009). In this highly responsive subpopulation, benefit on the MLHFQ score paralleled reduction in death and hospitalization post-cell therapy (adjusted Mann-Whitney odds 1.43, 95% CI, 1.01-2.01; P = .039). The potential of cell therapy in addressing the quality-of-life dimension of heart failure requires further evaluation for disease relief.
Collapse
Affiliation(s)
- Satsuki Yamada
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, USA
| | | | - Thomas J Povsic
- Program for Advanced Coronary Disease, Duke Clinical Research Institute and Duke University Medical Center, Durham, NC, USA
| | - Gad Cotter
- Momentum Research, Inc., Durham, NC, USA
- Université Paris Cité; Inserm UMR-S 942, MASCOT, Paris, France
| | - Beth A Davison
- Momentum Research, Inc., Durham, NC, USA
- Université Paris Cité; Inserm UMR-S 942, MASCOT, Paris, France
| | | | - Atta Behfar
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University and Spedali Civili, Brescia, Italy
| | - Gerasimos S Filippatos
- Department of Cardiology, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | | | - William Wijns
- The Lambe Institute for Translational Medicine, the Smart Sensors Laboratory and CURAM, University of Galway, Galway, Ireland
| | - Andre Terzic
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Cardiac Progenitors Induced from Human Induced Pluripotent Stem Cells with Cardiogenic Small Molecule Effectively Regenerate Infarcted Hearts and Attenuate Fibrosis. Shock 2019; 50:627-639. [PMID: 29485473 DOI: 10.1097/shk.0000000000001133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cardiac progenitor cells (CPCs) being multipotent offer a promising source for cardiac repair due to their ability to proliferate and multiply into cardiac lineage cells. Here, we explored a novel strategy for human CPCs generation from human induced pluripotent stem cells (hiPSCs) using a cardiogenic small molecule, isoxazole (ISX-9) and their ability to grow in the scar tissue for functional improvement in the infarcted myocardium. CPCs were induced from hiPSCs with ISX-9. CPCs were characterized by immunocytochemistry and RT-PCR. The CPC survival and differentiation in the infarcted hearts were determined by in vivo transplantation in immunodeficient mice following left anterior descending artery ligation and their effects were determined on fibrosis and functional improvement. ISX-9 simultaneously induced expression of cardiac transcription factors, NK2 homeobox 5, islet-1, GATA binding protein 4, myocyte enhancer factor-2 in hiPSCs within 3 days of treatment and successfully differentiated into three cardiac lineages in vitro. Messenger RNA and microRNA-sequencing results showed that ISX-9 targeted multiple cardiac differentiation, proliferation signaling pathways and upregulated myogenesis and cardiac hypertrophy related-microRNA. ISX-9 activated multiple pathways including transforming growth factor β induced epithelial-mesenchymal transition signaling, canonical, and non-canonical Wnt signaling at different stages of cardiac differentiation. CPCs transplantation promoted myoangiogenesis, attenuated fibrosis, and led to functional improvement in treated mice.
Collapse
|
3
|
Fernández-Avilés F, Sanz-Ruiz R, Bogaert J, Casado Plasencia A, Gilaberte I, Belmans A, Fernández-Santos ME, Charron D, Mulet M, Yotti R, Palacios I, Luque M, Sádaba R, San Román JA, Larman M, Sánchez PL, Sanchís J, Jiménez MF, Claus P, Al-Daccak R, Lombardo E, Abad JL, DelaRosa O, Corcóstegui L, Bermejo J, Janssens S. Safety and Efficacy of Intracoronary Infusion of Allogeneic Human Cardiac Stem Cells in Patients With ST-Segment Elevation Myocardial Infarction and Left Ventricular Dysfunction. Circ Res 2019; 123:579-589. [PMID: 29921651 DOI: 10.1161/circresaha.118.312823] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RATIONALE Allogeneic cardiac stem cells (AlloCSC-01) have shown protective, immunoregulatory, and regenerative properties with a robust safety profile in large animal models of heart disease. OBJECTIVE To investigate the safety and feasibility of early administration of AlloCSC-01 in patients with ST-segment-elevation myocardial infarction. METHODS AND RESULTS CAREMI (Safety and Efficacy of Intracoronary Infusion of Allogeneic Human Cardiac Stem Cells in Patients With STEMI and Left Ventricular Dysfunction) was a phase I/II multicenter, randomized, double-blind, placebo-controlled trial in patients with ST-segment-elevation myocardial infarction, left ventricular ejection fraction ≤45%, and infarct size ≥25% of left ventricular mass by cardiac magnetic resonance, who were randomized (2:1) to receive AlloCSC-01 or placebo through the intracoronary route at days 5 to 7. The primary end point was safety and included all-cause death and major adverse cardiac events at 30 days (all-cause death, reinfarction, hospitalization because of heart failure, sustained ventricular tachycardia, ventricular fibrillation, and stroke). Secondary safety end points included major adverse cardiac events at 6 and 12 months, adverse events, and immunologic surveillance. Secondary exploratory efficacy end points were changes in infarct size (percentage of left ventricular mass) and indices of ventricular remodeling by magnetic resonance at 12 months. Forty-nine patients were included (92% male, 55±11 years), 33 randomized to AlloCSC-01 and 16 to placebo. No deaths or major adverse cardiac events were reported at 12 months. One severe adverse events in each group was considered possibly related to study treatment (allergic dermatitis and rash). AlloCSC-01 elicited low levels of donor-specific antibodies in 2 patients. No immune-related adverse events were found, and no differences between groups were observed in magnetic resonance-based efficacy parameters at 12 months. The estimated treatment effect of AlloCSC-01 on the absolute change from baseline in infarct size was -2.3% (95% confidence interval, -6.5% to 1.9%). CONCLUSIONS AlloCSC-01 can be safely administered in ST-segment-elevation myocardial infarction patients with left ventricular dysfunction early after revascularization. Low immunogenicity and absence of immune-mediated events will facilitate adequately powered studies to demonstrate their clinical efficacy in this setting. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov . Unique identifier: NCT02439398.
Collapse
Affiliation(s)
- Francisco Fernández-Avilés
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.)
| | - Ricardo Sanz-Ruiz
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, and Facultad de Medicina, Universidad Complutense, Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J.B.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.)
| | | | - Ana Casado Plasencia
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, and Facultad de Medicina, Universidad Complutense, Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J.B.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.)
| | - Inmaculada Gilaberte
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Ann Belmans
- Department of Cardiovascular Medicine, University Hospitals and KU Leuven, Belgium (J.B., A.B., P.C., S.J.)
| | - Maria Eugenia Fernández-Santos
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, and Facultad de Medicina, Universidad Complutense, Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J.B.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.)
| | - Dominique Charron
- HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (D.C., R.A.-D.)
| | - Miguel Mulet
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Raquel Yotti
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, and Facultad de Medicina, Universidad Complutense, Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J.B.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.)
| | - Itziar Palacios
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Manuel Luque
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Rafael Sádaba
- Department of Cardiac Surgery, Complejo Hospitalario de Navarra, Pamplona, Spain (R.S.)
| | - J Alberto San Román
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.).,Department of Cardiology, Instituto de Ciencias del Corazón (ICICOR), Valladolid, Spain (J.A.S.R.)
| | - Mariano Larman
- Department of Cardiology, Policlínia Guipuzcoa, San Sebastián, Spain (M.L.)
| | - Pedro L Sánchez
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.).,Department of Cardiology, Hospital Clínico Universitario, Salamanca, Spain (P.L.S.)
| | - Juan Sanchís
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.).,Department of Cardiology, Hospital Clínico Universitario, Valencia, Spain (J.S.)
| | - Manuel F Jiménez
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.).,Department of Cardiology, IBIMA, UMA, UGC Corazón Hospital Clínico Virgen de la Victoria, Málaga, Spain (M.F.J.)
| | - Piet Claus
- Department of Cardiovascular Medicine, University Hospitals and KU Leuven, Belgium (J.B., A.B., P.C., S.J.)
| | - Reem Al-Daccak
- HLA et Medicine (HLA-MED), Hôpital Saint-Louis, Paris, France (D.C., R.A.-D.)
| | - Eleuterio Lombardo
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - José Luis Abad
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Olga DelaRosa
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Lucia Corcóstegui
- Coretherapix S.L.U./Tigenix Group Madrid, Spain (I.G., M.M., I.P., M.L., E.L., J.L.A., O.D., L.C.)
| | - Javier Bermejo
- From the Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, and Facultad de Medicina, Universidad Complutense, Madrid, Spain (R.S.-R., A.C.P., M.E.F.-S., R.Y., J.B.).,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain (F.F.-A., R.S.-R., A.C.P., M.E.F.-S., R.Y., J.A.S.R., P.L.S., J.S., M.F.J., J.B.).,Department of Cardiovascular Medicine, University Hospitals and KU Leuven, Belgium (J.B., A.B., P.C., S.J.)
| | - Stefan Janssens
- Department of Cardiovascular Medicine, University Hospitals and KU Leuven, Belgium (J.B., A.B., P.C., S.J.)
| |
Collapse
|
4
|
Cell-Based Therapies for Cardiac Regeneration: A Comprehensive Review of Past and Ongoing Strategies. Int J Mol Sci 2018; 19:ijms19103194. [PMID: 30332812 PMCID: PMC6214096 DOI: 10.3390/ijms19103194] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/20/2022] Open
Abstract
Despite considerable improvements in the treatment of cardiovascular diseases, heart failure (HF) still represents one of the leading causes of death worldwide. Poor prognosis is mostly due to the limited regenerative capacity of the adult human heart, which ultimately leads to left ventricular dysfunction. As a consequence, heart transplantation is virtually the only alternative for many patients. Therefore, novel regenerative approaches are extremely needed, and several attempts have been performed to improve HF patients’ clinical conditions by promoting the replacement of the lost cardiomyocytes and by activating cardiac repair. In particular, cell-based therapies have been shown to possess a great potential for cardiac regeneration. Different cell types have been extensively tested in clinical trials, demonstrating consistent safety results. However, heterogeneous efficacy data have been reported, probably because precise end-points still need to be clearly defined. Moreover, the principal mechanism responsible for these beneficial effects seems to be the paracrine release of antiapoptotic and immunomodulatory molecules from the injected cells. This review covers past and state-of-the-art strategies in cell-based heart regeneration, highlighting the advantages, challenges, and limitations of each approach.
Collapse
|
5
|
Nguyen PK, Rhee JW, Wu JC. Adult Stem Cell Therapy and Heart Failure, 2000 to 2016: A Systematic Review. JAMA Cardiol 2018; 1:831-841. [PMID: 27557438 DOI: 10.1001/jamacardio.2016.2225] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Importance Stem cell therapy is a promising treatment strategy for patients with heart failure, which accounts for more than 10% of deaths in the United States annually. Despite more than a decade of research, further investigation is still needed to determine whether stem cell regenerative therapy is an effective treatment strategy and can be routinely implemented in clinical practice. Objective To describe the progress in cardiac stem cell regenerative therapy using adult stem cells and to highlight the merits and limitations of clinical trials performed to date. Evidence Review Information for this review was obtained through a search of PubMed and the Cochrane database for English-language studies published between January 1, 2000, and July 26, 2016. Twenty-nine randomized clinical trials and 7 systematic reviews and meta-analyses were included in this review. Findings Although adult stem cells were once believed to have the ability to create new heart tissue, preclinical studies suggest that these cells release cardioprotective paracrine factors that activate endogenous pathways, leading to myocardial repair. Subsequent randomized clinical trials, most of which used autologous bone marrow mononuclear cells, have found only a modest benefit in patients receiving stem cell therapy. The lack of a significant benefit may result from variations in trial methods, discrepancies in reporting, and an overreliance on surrogate end points. Conclusions and Relevance Although stem cell therapy for cardiovascular disease is not yet ready for routine clinical application, significant progress continues to be made. Physicians should be aware of the current status of this treatment so that they can better inform their patients who may be in search of alternative therapies.
Collapse
Affiliation(s)
- Patricia K Nguyen
- Stanford Cardiovascular Institute, Stanford University, Stanford, California2Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California3Veterans Affairs Palo Alto Health Care System, Stanford University, Stanford, California
| | - June-Wha Rhee
- Stanford Cardiovascular Institute, Stanford University, Stanford, California2Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, California2Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California4Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
6
|
Abstract
After a myocardial infarction, heart tissue becomes irreversibly damaged, leading to scar formation and inevitably ischemic heart failure. Of the many available interventions after a myocardial infarction, such as percutaneous intervention or pharmacological optimization, none can reverse the ischemic insult on the heart and restore cardiac function. Thus, the only available cure for patients with scarred myocardium is allogeneic heart transplantation, which comes with extensive costs, risks, and complications. However, multiple studies have shown that the heart is, in fact, not an end-stage organ and that there are endogenous mechanisms in place that have the potential to spark regeneration. Stem cell therapy has emerged as a potential tool to tap into and activate this endogenous framework. Particularly promising are stem cells derived from cardiac tissue itself, referred to as cardiosphere-derived cells (CDCs). CDCs can be extracted and isolated from the patient's myocardium and then administered by intramyocardial injection or intracoronary infusion. After early success in the animal model, multiple clinical trials have demonstrated the safety and efficacy of autologous CDC therapy in humans. Clinical trials with allogeneic CDCs showed early promising results and pose a potential "off-the-shelf" therapy for patients in the acute setting after a myocardial infarction. The mechanism responsible for CDC-induced cardiac regeneration seems to be a combination of triggering native cardiomyocyte proliferation and recruitment of endogenous progenitor cells, which most prominently occurs via paracrine effects. A further understanding of the mediators involved in paracrine signaling can help with the development of a stem cell-free therapy, with all the benefits and none of the associated complications.
Collapse
|
7
|
Gomes-Alves P, Serra M, Brito C, Ricardo CP, Cunha R, Sousa MF, Sanchez B, Bernad A, Carrondo MJT, Rodriguez-Borlado L, Alves PM. In vitro expansion of human cardiac progenitor cells: exploring 'omics tools for characterization of cell-based allogeneic products. Transl Res 2016; 171:96-110.e1-3. [PMID: 26924043 DOI: 10.1016/j.trsl.2016.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 01/15/2023]
Abstract
Human cardiac stem/progenitor cells (hCPCs) have been shown to be capable to regenerate contractile myocardium. However, because of their relative low abundance in the heart, in vitro expansion of hCPC is mandatory to achieve necessary quantities for allogeneic or autologous cardiac regeneration therapy applications (10(6)-10(9) cells/patient). Up to now, cell number requirements of ongoing phase I/IIa trials have been fulfilled with production in static monolayer cultures. However, this manufacturing process poses critical limitations when moving to the following clinical phases where hundreds of patients will be enrolled. For this, increased process yield is required, while guaranteeing the quality of the cell-based products. In this work, we developed and validated a robust, scalable, and good manufacturing practice (GMP)-compatible bioprocess for the expansion of high-quality hCPC. We applied platforms extensively used by the biopharmaceutical industry, such as microcarrier technology and stirred systems, and assessed culture conditions' impact on hCPC's quality and potency, as required by regulatory agencies. Complementary analytical assays including gene expression microarrays and mass spectrometry-based approaches were explored to compare transcriptome, proteome, surface markers, and secretion profiles of hCPC cultured in static monolayers and in stirred microcarrier-based systems. Our results show that stirred microcarrier-based culture systems enabled achieving more than 3-fold increase in hCPC expansion, when compared with traditional static monolayers, while retaining cell's phenotype and similar "omics" profiles. These findings demonstrate that this change in the production process does not affect cell's identity and quality, with potential to be translated into a transversal production platform for clinical development of stem-cell therapies.
Collapse
Affiliation(s)
- P Gomes-Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - M Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - C Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - C P Ricardo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - R Cunha
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - M F Sousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - B Sanchez
- Coretherapix, Tres Cantos, Madrid, Spain
| | - A Bernad
- Centro Nacional de Biotecnología, Madrid, Spain
| | - M J T Carrondo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, Portugal
| | | | - P M Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.
| |
Collapse
|
8
|
Widespread Myocardial Delivery of Heart-Derived Stem Cells by Nonocclusive Triple-Vessel Intracoronary Infusion in Porcine Ischemic Cardiomyopathy: Superior Attenuation of Adverse Remodeling Documented by Magnetic Resonance Imaging and Histology. PLoS One 2016; 11:e0144523. [PMID: 26784932 PMCID: PMC4718597 DOI: 10.1371/journal.pone.0144523] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/19/2015] [Indexed: 12/26/2022] Open
Abstract
Single-vessel, intracoronary infusion of stem cells under stop-flow conditions has proven safe but achieves only limited myocardial coverage. Continuous flow intracoronary delivery to one or more coronary vessels may achieve broader coverage for treating cardiomyopathy, but has not been investigated. Using nonocclusive coronary guiding catheters, we infused allogeneic cardiosphere-derived cells (CDCs) either in a single vessel or sequentially in all three coronary arteries in porcine ischemic cardiomyopathy and used magnetic resonance imaging (MRI) to assess structural and physiological outcomes. Vehicle-infused animals served as controls. Single-vessel stop-flow and continuous-flow intracoronary infusion revealed equivalent effects on scar size and function. Sequential infusion into each of the three major coronary vessels under stop-flow or continuous-flow conditions revealed equal efficacy, but less elevation of necrotic biomarkers with continuous-flow delivery. In addition, multi-vessel delivery resulted in enhanced global and regional tissue function compared to a triple-vessel placebo-treated group. The functional benefits after global cell infusion were accompanied histologically by minimal inflammatory cellular infiltration, attenuated regional fibrosis and enhanced vessel density in the heart. Sequential multi-vessel non-occlusive delivery of CDCs is safe and provides enhanced preservation of left ventricular function and structure. The current findings provide preclinical validation of the delivery method currently undergoing clinical testing in the Dilated cardiomYopathy iNtervention With Allogeneic MyocardIally-regenerative Cells (DYNAMIC) trial of CDCs in heart failure patients.
Collapse
|
9
|
Kapelios CJ, Nanas JN, Malliaras K. Allogeneic cardiosphere-derived cells for myocardial regeneration: current progress and recent results. Future Cardiol 2016; 12:87-100. [DOI: 10.2217/fca.15.72] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Early-phase clinical testing of autologous cardiosphere-derived cells (CDCs) has yielded intriguing results, consistent with therapeutic myocardial regeneration. However, autologous therapy is associated with significant technical, timing, economic and logistic constraints, prompting researchers to explore the potential of allogeneic CDC therapy. CDCs exhibit a favorable immunologic antigenic profile and are hypoimmunogenic in vitro. Preclinical studies in immunologically mismatched animals demonstrate that allogeneic CDC transplantation without immunosuppression is safe and produces sustained functional and structural benefits through stimulation of endogenous regenerative pathways. Currently, allogeneic human CDCs are being tested clinically in the ALLSTAR and DYNAMIC trials. Potential establishment of clinical safety and efficacy of allogeneic CDCs combined with generation of highly standardized, ‘off-the-shelf’ allogeneic cellular products would facilitate broad clinical adoption of cell therapy.
Collapse
Affiliation(s)
- Chris J Kapelios
- 3rd Department of Cardiology, University of Athens School of Medicine, 67 Mikras Asias Street, 11 527, Athens, Greece
| | - John N Nanas
- 3rd Department of Cardiology, University of Athens School of Medicine, 67 Mikras Asias Street, 11 527, Athens, Greece
| | - Konstantinos Malliaras
- 3rd Department of Cardiology, University of Athens School of Medicine, 67 Mikras Asias Street, 11 527, Athens, Greece
| |
Collapse
|
10
|
Abstract
"During the past decade, studies in animals and humans have suggested that cell therapy has positive effects for the treatment of heart failure. This clinical effect may be mediated by angiogenesis and reduction in fibrosis rather than by regeneration of myocytes. Increased microvasculature and decreased scar also likely lead to improved cardiac function in the failing heart. The effects of cell therapy are not limited to one type of cell or delivery technique. Well-designed, large-scale, randomized clinical trials with objective end points will help to fully realize the therapeutic potential of cell-based therapy for treating heart failure."
Collapse
Affiliation(s)
- Amit N Patel
- University of Utah School of Medicine, 30 North 1900 East 3c127 SOM, Salt Lake City, UT 84132, USA.
| | - Francisco Silva
- University of Utah School of Medicine, 30 North 1900 East 3c127 SOM, Salt Lake City, UT 84132, USA
| | - Amalia A Winters
- University of Utah School of Medicine, 30 North 1900 East 3c127 SOM, Salt Lake City, UT 84132, USA
| |
Collapse
|
11
|
Oltolina F, Zamperone A, Colangelo D, Gregoletto L, Reano S, Pietronave S, Merlin S, Talmon M, Novelli E, Diena M, Nicoletti C, Musarò A, Filigheddu N, Follenzi A, Prat M. Human Cardiac Progenitor Spheroids Exhibit Enhanced Engraftment Potential. PLoS One 2015; 10:e0137999. [PMID: 26375957 PMCID: PMC4572703 DOI: 10.1371/journal.pone.0137999] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/24/2015] [Indexed: 01/08/2023] Open
Abstract
A major obstacle to an effective myocardium stem cell therapy has always been the delivery and survival of implanted stem cells in the heart. Better engraftment can be achieved if cells are administered as cell aggregates, which maintain their extra-cellular matrix (ECM). We have generated spheroid aggregates in less than 24 h by seeding human cardiac progenitor cells (hCPCs) onto methylcellulose hydrogel-coated microwells. Cells within spheroids maintained the expression of stemness/mesenchymal and ECM markers, growth factors and their cognate receptors, cardiac commitment factors, and metalloproteases, as detected by immunofluorescence, q-RT-PCR and immunoarray, and expressed a higher, but regulated, telomerase activity. Compared to cells in monolayers, 3D spheroids secreted also bFGF and showed MMP2 activity. When spheroids were seeded on culture plates, the cells quickly migrated, displaying an increased wound healing ability with or without pharmacological modulation, and reached confluence at a higher rate than cells from conventional monolayers. When spheroids were injected in the heart wall of healthy mice, some cells migrated from the spheroids, engrafted, and remained detectable for at least 1 week after transplantation, while, when the same amount of cells was injected as suspension, no cells were detectable three days after injection. Cells from spheroids displayed the same engraftment capability when they were injected in cardiotoxin-injured myocardium. Our study shows that spherical in vivo ready-to-implant scaffold-less aggregates of hCPCs able to engraft also in the hostile environment of an injured myocardium can be produced with an economic, easy and fast protocol.
Collapse
Affiliation(s)
- Francesca Oltolina
- Dept. Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Andrea Zamperone
- Dept. Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Donato Colangelo
- Dept. Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Luca Gregoletto
- Dept. Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Simone Reano
- Dept. Translational Medicine, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Stefano Pietronave
- Dept. Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Simone Merlin
- Dept. Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Maria Talmon
- Dept. Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Eugenio Novelli
- Dept. of Cardiac Surgery, Clinica S. Gaudenzio, Novara, Italy
| | - Marco Diena
- Dept. of Cardiac Surgery, Clinica S. Gaudenzio, Novara, Italy
| | - Carmine Nicoletti
- Institute Pasteur Cenci-Bolognetti, DAHFMO, Roma, Italy
- Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, Rome, Italy
| | - Antonio Musarò
- Institute Pasteur Cenci-Bolognetti, DAHFMO, Roma, Italy
- Unit of Histology and Medical Embryology, IIM, Sapienza University of Rome, Rome, Italy
| | - Nicoletta Filigheddu
- Dept. Translational Medicine, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Antonia Follenzi
- Dept. Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
- Centro di Biotecnologie per la Ricerca Medica Applicata (BRMA), Novara, Italy
| | - Maria Prat
- Dept. Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
- Centro di Biotecnologie per la Ricerca Medica Applicata (BRMA), Novara, Italy
- * E-mail:
| |
Collapse
|
12
|
Hare JM, Sanina C. Bone Marrow Mononuclear Cell Therapy and Granulocyte Colony-Stimulating Factor for Acute Myocardial Infarction: Is it Time to Reconsider? J Am Coll Cardiol 2015; 65:2383-7. [PMID: 26046731 DOI: 10.1016/j.jacc.2015.03.571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida.
| | - Cristina Sanina
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
13
|
Sirabella D, Cimetta E, Vunjak-Novakovic G. "The state of the heart": Recent advances in engineering human cardiac tissue from pluripotent stem cells. Exp Biol Med (Maywood) 2015; 240:1008-18. [PMID: 26069271 DOI: 10.1177/1535370215589910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The pressing need for effective cell therapy for the heart has led to the investigation of suitable cell sources for tissue replacement. In recent years, human pluripotent stem cell research expanded tremendously, in particular since the derivation of human-induced pluripotent stem cells. In parallel, bioengineering technologies have led to novel approaches for in vitro cell culture. The combination of these two fields holds potential for in vitro generation of high-fidelity heart tissue, both for basic research and for therapeutic applications. However, this new multidisciplinary science is still at an early stage. Many questions need to be answered and improvements need to be made before clinical applications become a reality. Here we discuss the current status of human stem cell differentiation into cardiomyocytes and the combined use of bioengineering approaches for cardiac tissue formation and maturation in developmental studies, disease modeling, drug testing, and regenerative medicine.
Collapse
Affiliation(s)
- Dario Sirabella
- Department of Biomedical Engineering, Columbia University, New York 10032, USA
| | - Elisa Cimetta
- Department of Biomedical Engineering, Columbia University, New York 10032, USA
| | | |
Collapse
|
14
|
Rosen MR, Myerburg RJ, Francis DP, Cole GD, Marbán E. Translating stem cell research to cardiac disease therapies: pitfalls and prospects for improvement. J Am Coll Cardiol 2014; 64:922-37. [PMID: 25169179 PMCID: PMC4209166 DOI: 10.1016/j.jacc.2014.06.1175] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 12/23/2022]
Abstract
Over the past 2 decades, there have been numerous stem cell studies focused on cardiac diseases, ranging from proof-of-concept to phase 2 trials. This series of papers focuses on the legacy of these studies and the outlook for future treatment of cardiac diseases with stem cell therapies. The first section by Drs. Rosen and Myerburg is an independent review that analyzes the basic science and translational strategies supporting the rapid advance of stem cell technology to the clinic, the philosophies behind them, trial designs, and means for going forward that may impact favorably on progress. The second and third sections were collected as responses to the initial section of this review. The commentary by Drs. Francis and Cole discusses the review by Drs. Rosen and Myerburg and details how trial outcomes can be affected by noise, poor trial design (particularly the absence of blinding), and normal human tendencies toward optimism and denial. The final, independent paper by Dr. Marbán takes a different perspective concerning the potential for positive impact of stem cell research applied to heart disease and future prospects for its clinical application. (Compiled by the JACC editors).
Collapse
Affiliation(s)
- Michael R Rosen
- Departments of Pharmacology and Pediatrics, Columbia University Medical Center, New York, New York.
| | - Robert J Myerburg
- Division of Cardiology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Darrel P Francis
- International Centre for Circulatory Health, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Graham D Cole
- International Centre for Circulatory Health, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | |
Collapse
|
15
|
Marbán E. Breakthroughs in cell therapy for heart disease: focus on cardiosphere-derived cells. Mayo Clin Proc 2014; 89:850-8. [PMID: 24943699 PMCID: PMC4122123 DOI: 10.1016/j.mayocp.2014.02.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 12/21/2022]
Abstract
The clinical reality of cell therapy for heart disease dates back to the 1990 s, when autologous skeletal myoblasts were first transplanted into failing hearts during open-chest surgery. Since then, the focus has shifted to bone marrow-derived cells and, more recently, cells extracted from the heart itself. Although progress has been nonlinear and often disheartening, the field has nevertheless made remarkable progress. Six major breakthroughs are notable: (1) the establishment of safety with intracoronary delivery; (2) the finding that therapeutic regeneration is possible; (3) the increase in allogeneic cell therapy; (4) the effect of increasing mechanistic insights; (5) glimmers of clinical efficacy; and (6) the progression to phase 2 and 3 studies. This article individually reviews these landmark developments in detail and concludes that the field has reached a new phase of maturity where the prospect of clinical impact is increasingly imminent.
Collapse
|