1
|
Lee SS, Al Halawani A, Teo JD, Weiss AS, Yeo GC. The Matrix Protein Tropoelastin Prolongs Mesenchymal Stromal Cell Vitality and Delays Senescence During Replicative Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402168. [PMID: 39120048 PMCID: PMC11497112 DOI: 10.1002/advs.202402168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Indexed: 08/10/2024]
Abstract
Cellular senescence leads to the functional decline of regenerative cells such as mesenchymal stromal/stem cells (MSCs), which gives rise to chronic conditions and contributes to poor cell therapy outcomes. Aging tissues are associated with extracellular matrix (ECM) dysregulation, including loss of elastin. However, the role of the ECM in modulating senescence is underexplored. In this work, it is shown that tropoelastin, the soluble elastin precursor, is not only a marker of young MSCs but also actively preserves cell fitness and delays senescence during replicative aging. MSCs briefly exposed to tropoelastin exhibit upregulation of proliferative genes and concurrent downregulation of senescence genes. The seno-protective benefits of tropoelastin persist during continuous, long-term MSC culture, and significantly extend the MSC replicative lifespan. Tropoelastin-expanded MSCs further maintain youth-associated phenotype and function compared to age-matched controls, including preserved clonogenic potential, minimal senescence-associated beta-galactosidase activity, maintained cell sizes, reduced expression of senescence markers, suppressed secretion of senescence-associated factors, and increased production of youth-associated proteins. This work points to the utility of exogenously-supplemented tropoelastin for manufacturing MSCs that robustly maintain regenerative potential with age. It further reveals the active role of classical structural ECM proteins in driving cellular age-associated fitness, potentially leading to future interventions for aging-related pathologies.
Collapse
Affiliation(s)
- Sunny Shinchen Lee
- School of Life & Environmental Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSW2006Australia
| | - Aleen Al Halawani
- School of Life & Environmental Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSW2006Australia
| | - Jonathan D. Teo
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSW2006Australia
| | - Anthony S. Weiss
- School of Life & Environmental Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSW2006Australia
- Sydney Nano InstituteThe University of SydneyCamperdownNSW2006Australia
| | - Giselle C. Yeo
- School of Life & Environmental Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSW2006Australia
- Sydney Nano InstituteThe University of SydneyCamperdownNSW2006Australia
| |
Collapse
|
2
|
Stone AP, Rand E, Thornes G, Kay AG, Barnes AL, Hitchcock IS, Genever PG. Extracellular matrices of stromal cell subtypes regulate phenotype and contribute to the stromal microenvironment in vivo. Stem Cell Res Ther 2024; 15:178. [PMID: 38886845 PMCID: PMC11184721 DOI: 10.1186/s13287-024-03786-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/09/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Bone marrow stromal cells (BMSCs) are highly heterogeneous, which may reflect their diverse biological functions, including tissue maintenance, haematopoietic support and immune control. The current understanding of the mechanisms that drive the onset and resolution of heterogeneity, and how BMSCs influence other cells in their environment is limited. Here, we determined how the secretome and importantly the extracellular matrix of BMSCs can influence cellular phenotype. METHODS We used two immortalised clonal BMSC lines isolated from the same heterogeneous culture as model stromal subtypes with distinct phenotypic traits; a multipotent stem-cell-like stromal line (Y201) and a nullipotent non-stem cell stromal line (Y202), isolated from the same donor BMSC pool. Label-free quantitative phase imaging was used to track cell morphology and migration of the BMSC lines over 96 h in colony-forming assays. We quantified the secreted factors of each cell line by mass spectrometry and confirmed presence of proteins in human bone marrow by immunofluorescence. RESULTS Transfer of secreted signals from a stem cell to a non-stem cell resulted in a change in morphology and enhanced migration to more closely match stem cell-like features. Mass spectrometry analysis revealed a significant enrichment of extracellular matrix (ECM) proteins in the Y201 stem cell secretome compared to Y202 stromal cells. We confirmed that Y201 produced a more robust ECM in culture compared to Y202. Growth of Y202 on ECM produced by Y201 or Y202 restored migration and fibroblastic morphology, suggesting that it is the deficiency of ECM production that contributes to its phenotype. The proteins periostin and aggrecan, were detected at 71- and 104-fold higher levels in the Y201 versus Y202 secretome and were subsequently identified by immunofluorescence at rare sites on the endosteal surfaces of mouse and human bone, underlying CD271-positive stromal cells. These proteins may represent key non-cellular components of the microenvironment for bona-fide stem cells important for cell maintenance and phenotype in vivo. CONCLUSIONS We identified plasticity in BMSC morphology and migratory characteristics that can be modified through secreted proteins, particularly from multipotent stem cells. Overall, we demonstrate the importance of specific ECM proteins in co-ordination of cellular phenotype and highlight how non-cellular components of the BMSC microenvironment may provide insights into cell population heterogeneity and the role of BMSCs in health and disease.
Collapse
Affiliation(s)
- Andrew P Stone
- Department of Biology, York Biomedical Research Institute, University of York, York, UK.
- Brandeis University, Waltham, MA, USA.
| | - Emma Rand
- Department of Biology, York Biomedical Research Institute, University of York, York, UK
| | - Gabriel Thornes
- Department of Biology, York Biomedical Research Institute, University of York, York, UK
| | - Alasdair G Kay
- Department of Biology, York Biomedical Research Institute, University of York, York, UK
| | - Amanda L Barnes
- Department of Biology, York Biomedical Research Institute, University of York, York, UK
| | - Ian S Hitchcock
- Department of Biology, York Biomedical Research Institute, University of York, York, UK
| | - Paul G Genever
- Department of Biology, York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
3
|
Teale MA, Schneider S, Eibl D, van den Bos C, Neubauer P, Eibl R. Mesenchymal and induced pluripotent stem cell-based therapeutics: a comparison. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12583-4. [PMID: 37246986 DOI: 10.1007/s00253-023-12583-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Stem cell-based cell therapeutics and especially those based on human mesenchymal stem cells (hMSCs) and induced pluripotent stem cells (hiPSCs) are said to have enormous developmental potential in the coming years. Their applications range from the treatment of orthopedic disorders and cardiovascular diseases to autoimmune diseases and even cancer. However, while more than 27 hMSC-derived therapeutics are currently commercially available, hiPSC-based therapeutics have yet to complete the regulatory approval process. Based on a review of the current commercially available hMSC-derived therapeutic products and upcoming hiPSC-derived products in phase 2 and 3, this paper compares the cell therapy manufacturing process between these two cell types. Moreover, the similarities as well as differences are highlighted and the resulting impact on the production process discussed. Here, emphasis is placed on (i) hMSC and hiPSC characteristics, safety, and ethical aspects, (ii) their morphology and process requirements, as well as (iii) their 2- and 3-dimensional cultivations in dependence of the applied culture medium and process mode. In doing so, also downstream processing aspects are covered and the role of single-use technology is discussed. KEY POINTS: • Mesenchymal and induced pluripotent stem cells exhibit distinct behaviors during cultivation • Single-use stirred bioreactor systems are preferred for the cultivation of both cell types • Future research should adapt and modify downstream processes to available single-use devices.
Collapse
Affiliation(s)
- Misha A Teale
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland.
| | - Samuel Schneider
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | - Dieter Eibl
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| | | | - Peter Neubauer
- Institute of Biotechnology, Chair of Bioprocess Engineering, Technical University of Berlin, ACK24, Ackerstraße 76, 13355, Berlin, Germany
| | - Regine Eibl
- Centre for Biochemical Engineering and Cell Cultivation Techniques, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820, Wädenswil, Switzerland
| |
Collapse
|
4
|
Basu A, Paul MK, Weiss S. The actin cytoskeleton: Morphological changes in pre- and fully developed lung cancer. BIOPHYSICS REVIEWS 2022; 3:041304. [PMID: 38505516 PMCID: PMC10903407 DOI: 10.1063/5.0096188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/09/2022] [Indexed: 03/21/2024]
Abstract
Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK, and Wnt pathways. Recently, with the advent of "field cancerization," pre-malignant cells have also been demonstrated to possess stress fibers and related cytoskeletal features. Analytical methods ranging from western blot and RNA-sequencing to cryo-EM and fluorescent imaging have been employed to understand the structure and dynamics of actin and related proteins including polymerization/depolymerization. More recent methods involve quantifying properties of the actin cytoskeleton from fluorescent images and utilizing them to study biological processes, such as EMT. These image analysis approaches exploit the fact that filaments have a unique structure (curvilinear) compared to the noise or other artifacts to separate them. Line segments are extracted from these filament images that have assigned lengths and orientations. Coupling such methods with statistical analysis has resulted in development of a new reporter for EMT in lung cancer cells as well as their drug responses.
Collapse
Affiliation(s)
| | | | - Shimon Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
5
|
High throughput screening of mesenchymal stem cell lines using deep learning. Sci Rep 2022; 12:17507. [PMID: 36266301 PMCID: PMC9584889 DOI: 10.1038/s41598-022-21653-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are increasingly used as regenerative therapies for patients in the preclinical and clinical phases of various diseases. However, the main limitations of such therapies include functional heterogeneity and the lack of appropriate quality control (QC) methods for functional screening of MSC lines; thus, clinical outcomes are inconsistent. Recently, machine learning (ML)-based methods, in conjunction with single-cell morphological profiling, have been proposed as alternatives to conventional in vitro/vivo assays that evaluate MSC functions. Such methods perform in silico analyses of MSC functions by training ML algorithms to find highly nonlinear connections between MSC functions and morphology. Although such approaches are promising, they are limited in that extensive, high-content single-cell imaging is required; moreover, manually identified morphological features cannot be generalized to other experimental settings. To address these limitations, we propose an end-to-end deep learning (DL) framework for functional screening of MSC lines using live-cell microscopic images of MSC populations. We quantitatively evaluate various convolutional neural network (CNN) models and demonstrate that our method accurately classifies in vitro MSC lines to high/low multilineage differentiating stress-enduring (MUSE) cells markers from multiple donors. A total of 6,120 cell images were obtained from 8 MSC lines, and they were classified into two groups according to MUSE cell markers analyzed by immunofluorescence staining and FACS. The optimized DenseNet121 model showed area under the curve (AUC) 0.975, accuracy 0.922, F1 0.922, sensitivity 0.905, specificity 0.942, positive predictive value 0.940, and negative predictive value 0.908. Therefore, our DL-based framework is a convenient high-throughput method that could serve as an effective QC strategy in future clinical biomanufacturing processes.
Collapse
|
6
|
Hinkelmann S, Springwald AH, Starke A, Kalwa H, Wölk C, Hacker MC, Schulz-Siegmund M. Microtissues from mesenchymal stem cells and siRNA-loaded cross-linked gelatin microparticles for bone regeneration. Mater Today Bio 2022; 13:100190. [PMID: 34988418 PMCID: PMC8693629 DOI: 10.1016/j.mtbio.2021.100190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/20/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was the evaluation of cross-linked gelatin microparticles (cGM) as substrates for osteogenic cell culture to assemble 3D microtissues and their use as delivery system for siRNA to cells in these assemblies. In a 2D transwell cultivation system, we found that cGM are capable to accumulate calcium ions from the surrounding medium. Such a separation of cGM and SaOS-2 cells consequently led to a suppressed matrix mineral formation in the SaOS-2 culture on the well bottom of the transwell system. Thus, we decided to use cGM as component in 3D microtissues and get a close contact between calcium ion accumulating microparticles and cells to improve matrix mineralization. Gelatin microparticles were cross-linked with a N,N-diethylethylenediamine-derivatized (DEED) maleic anhydride (MA) containing oligo (pentaerythritol diacrylate monostearate-co-N-isopropylacrylamide-co-MA) (oPNMA) and aggregated with SaOS-2 or human mesenchymal stem cells (hMSC) to microtissue spheroids. We systematically varied the content of cGM in microtissues and observed cell differentiation and tissue formation. Microtissues were characterized by gene expression, ALP activity and matrix mineralization. Mineralization was detectable in microtissues with SaOS-2 cells after 7 days and with hMSC after 24–28 days in osteogenic culture. When we transfected hMSC via cGM loaded with Lipofectamine complexed chordin siRNA, we found increased ALP activity and accelerated mineral formation in microtissues in presence of BMP-2. As a model for positive paracrine effects that indicate promising in vivo effects of these microtissues, we incubated pre-differentiated microtissues with freshly seeded hMSC monolayers and found improved mineral formation all over the well in the co-culture model. These findings may support the concept of microtissues from hMSC and siRNA-loaded cGM for bone regeneration.
Collapse
Affiliation(s)
- Sandra Hinkelmann
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University of Leipzig, Germany
| | - Alexandra H Springwald
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University of Leipzig, Germany
| | - Annett Starke
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University of Leipzig, Germany
| | - Hermann Kalwa
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Christian Wölk
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University of Leipzig, Germany
| | - Michael C Hacker
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University of Leipzig, Germany.,Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Düsseldorf, Germany
| | - Michaela Schulz-Siegmund
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University of Leipzig, Germany
| |
Collapse
|
7
|
LEMOS VANESSAP, PORTO MICHELE, CEZAR RAFAELDAS, SANTOS BRUNOPDOS, SOUZA MELISSARDE, SILVA JULIANADA, NARDI NANCEB, CAMASSOLA MELISSA. Comparison of senescence phenotype of short- and long- term cultured rat mesenchymal stem cells in vitro. AN ACAD BRAS CIENC 2022; 94:e20211246. [DOI: 10.1590/0001-3765202220211246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022] Open
|
8
|
Choi HJ, Wang C, Pan X, Jang J, Cao M, Brazzo JA, Bae Y, Lee K. Emerging machine learning approaches to phenotyping cellular motility and morphodynamics. Phys Biol 2021; 18:10.1088/1478-3975/abffbe. [PMID: 33971636 PMCID: PMC9131244 DOI: 10.1088/1478-3975/abffbe] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
Cells respond heterogeneously to molecular and environmental perturbations. Phenotypic heterogeneity, wherein multiple phenotypes coexist in the same conditions, presents challenges when interpreting the observed heterogeneity. Advances in live cell microscopy allow researchers to acquire an unprecedented amount of live cell image data at high spatiotemporal resolutions. Phenotyping cellular dynamics, however, is a nontrivial task and requires machine learning (ML) approaches to discern phenotypic heterogeneity from live cell images. In recent years, ML has proven instrumental in biomedical research, allowing scientists to implement sophisticated computation in which computers learn and effectively perform specific analyses with minimal human instruction or intervention. In this review, we discuss how ML has been recently employed in the study of cell motility and morphodynamics to identify phenotypes from computer vision analysis. We focus on new approaches to extract and learn meaningful spatiotemporal features from complex live cell images for cellular and subcellular phenotyping.
Collapse
Affiliation(s)
- Hee June Choi
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Chuangqi Wang
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
- Present address. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiang Pan
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Junbong Jang
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Mengzhi Cao
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
| | - Joseph A Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, United States of America
| | - Kwonmoo Lee
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
9
|
Guide Cells Support Muscle Regeneration and Affect Neuro-Muscular Junction Organization. Int J Mol Sci 2021; 22:ijms22041939. [PMID: 33669272 PMCID: PMC7920023 DOI: 10.3390/ijms22041939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Muscular regeneration is a complex biological process that occurs during acute injury and chronic degeneration, implicating several cell types. One of the earliest events of muscle regeneration is the inflammatory response, followed by the activation and differentiation of muscle progenitor cells. However, the process of novel neuromuscular junction formation during muscle regeneration is still largely unexplored. Here, we identify by single-cell RNA sequencing and isolate a subset of vessel-associated cells able to improve myogenic differentiation. We termed them 'guide' cells because of their remarkable ability to improve myogenesis without fusing with the newly formed fibers. In vitro, these cells showed a marked mobility and ability to contact the forming myotubes. We found that these cells are characterized by CD44 and CD34 surface markers and the expression of Ng2 and Ncam2. In addition, in a murine model of acute muscle injury and regeneration, injection of guide cells correlated with increased numbers of newly formed neuromuscular junctions. Thus, we propose that guide cells modulate de novo generation of neuromuscular junctions in regenerating myofibers. Further studies are necessary to investigate the origin of those cells and the extent to which they are required for terminal specification of regenerating myofibers.
Collapse
|
10
|
Li H, Masieri FF, Schneider M, Kottek T, Hahnel S, Yamauchi K, Obradović D, Seon JK, Yun SJ, Ferrer RA, Franz S, Simon JC, Lethaus B, Savković V. Autologous, Non-Invasively Available Mesenchymal Stem Cells from the Outer Root Sheath of Hair Follicle Are Obtainable by Migration from Plucked Hair Follicles and Expandable in Scalable Amounts. Cells 2020; 9:E2069. [PMID: 32927740 PMCID: PMC7564264 DOI: 10.3390/cells9092069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Regenerative therapies based on autologous mesenchymal stem cells (MSC) as well as stem cells in general are still facing an unmet need for non-invasive sampling, availability, and scalability. The only known adult source of autologous MSCs permanently available with no pain, discomfort, or infection risk is the outer root sheath of the hair follicle (ORS). METHODS This study presents a non-invasively-based method for isolating and expanding MSCs from the ORS (MSCORS) by means of cell migration and expansion in air-liquid culture. RESULTS The method yielded 5 million cells of pure MSCORS cultured in 35 days, thereby superseding prior art methods of culturing MSCs from hair follicles. MSCORS features corresponded to the International Society for Cell Therapy characterization panel for MSCs: adherence to plastic, proliferation, colony forming, expression of MSC-markers, and adipo-, osteo-, and chondro-differentiation capacity. Additionally, MSCORS displayed facilitated random-oriented migration and high proliferation, pronounced marker expression, extended endothelial and smooth muscle differentiation capacity, as well as a paracrine immunomodulatory effect on monocytes. MSCORS matched or even exceeded control adipose-derived MSCs in most of the assessed qualities. CONCLUSIONS MSCORS qualify for a variety of autologous regenerative treatments of chronic disorders and prophylactic cryopreservation for purposes of acute treatments in personalized medicine.
Collapse
Affiliation(s)
- Hanluo Li
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103 Leipzig, Germany; (H.L.); (T.K.); (B.L.)
| | - Federica Francesca Masieri
- School of (EAST) Engineering, Arts, Science & Technology, University of Suffolk, Ipswich, Suffolk IP41QJ, UK;
| | - Marie Schneider
- Clinic for Hematology, Cell Therapy and Hemostaseology, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Tina Kottek
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103 Leipzig, Germany; (H.L.); (T.K.); (B.L.)
| | - Sebastian Hahnel
- Polyclinic for Dental Prosthetics and Material Sciences, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Kensuke Yamauchi
- Kensuke Yamauchi, Department of Oral & Maxillofacial Surgery, Tohoku University, Sendai 980-8577, Japan;
| | | | - Jong-Keun Seon
- Chonnam National University Hwasun Hospital, Hwasun-gun 58128, Korea; (J.-K.S.); (S.J.Y.)
| | - Sook Jung Yun
- Chonnam National University Hwasun Hospital, Hwasun-gun 58128, Korea; (J.-K.S.); (S.J.Y.)
| | - Rubén A. Ferrer
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103 Leipzig, Germany; (R.A.F.); (S.F.); (J.-C.S.)
| | - Sandra Franz
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103 Leipzig, Germany; (R.A.F.); (S.F.); (J.-C.S.)
| | - Jan-Christoph Simon
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103 Leipzig, Germany; (R.A.F.); (S.F.); (J.-C.S.)
| | - Bernd Lethaus
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103 Leipzig, Germany; (H.L.); (T.K.); (B.L.)
| | - Vuk Savković
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103 Leipzig, Germany; (H.L.); (T.K.); (B.L.)
| |
Collapse
|
11
|
Replicative senescence in MSCWJ-1 human umbilical cord mesenchymal stem cells is marked by characteristic changes in motility, cytoskeletal organization, and RhoA localization. Mol Biol Rep 2020; 47:3867-3883. [PMID: 32372170 DOI: 10.1007/s11033-020-05476-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Here, we document changes in cell motility and organization of the contractile apparatus of human umbilical cord Wharton's jelly mesenchymal stem cells (MSCWJ-1) in the process of replicative senescence. Colocalization dynamics of F-actin and actin-binding proteins (myosin-9, α-actinin-4, RhoA) were examined in the MSCWJ-1 cell line. The results show that nuclear-cytoplasmic redistribution of RhoA occurs during replicative senescence, with maximal RhoA/nucleus colocalization evident at passage 15. At that time point, decreases in colocalization, namely myosin-9/F-actin and α-actinin-4/F-actin, were seen and myosin-9 was found in cytosolic extracts in the assembly-incompetent form. Using an automated intravital confocal cytometry system and quantitative analysis of MSCWJ-1 movements, we found that changes in cytoskeletal organization correlate with cell motility characteristics over a time period from passages 9 to 38. The factors examined (cytoskeleton structure, cell motility) indicate that the process by which cells transition to replicative senescence is best represented as three stages. The first stage lasts from cell culture isolation to passage 15 and is characterized by: accumulation of actin-binding proteins in assembly-incompetent forms; nuclear RhoA accumulation; and an increase in movement tortuosity. The second stage extends from passages 15 to 28 and is characterized by: an increase in the structural integrity of the actin cytoskeleton; exit of RhoA and alpha-actinin-4 from the nucleus; and a decrease in path tortuosity. The third stage extends from passage 28 to 38 and is marked by: a plateau in actin cytoskeleton structural integrity; significant decreases in nuclear RhoA levels; and decreases in cell speed.
Collapse
|
12
|
Klos A, Sedao X, Itina TE, Helfenstein-Didier C, Donnet C, Peyroche S, Vico L, Guignandon A, Dumas V. Ultrafast Laser Processing of Nanostructured Patterns for the Control of Cell Adhesion and Migration on Titanium Alloy. NANOMATERIALS 2020; 10:nano10050864. [PMID: 32365835 PMCID: PMC7712038 DOI: 10.3390/nano10050864] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/28/2022]
Abstract
Femtosecond laser texturing is a promising surface functionalization technology to improve the integration and durability of dental and orthopedic implants. Four different surface topographies were obtained on titanium-6aluminum-4vanadium plates by varying laser processing parameters and strategies: surfaces presenting nanostructures such as laser-induced periodic surface structures (LIPSS) and ‘spikes’, associated or not with more complex multiscale geometries combining micro-pits, nanostructures and stretches of polished areas. After sterilization by heat treatment, LIPSS and spikes were characterized to be highly hydrophobic, whereas the original polished surfaces remained hydrophilic. Human mesenchymal stem cells (hMSCs) grown on simple nanostructured surfaces were found to spread less with an increased motility (velocity, acceleration, tortuosity), while on the complex surfaces, hMSCs decreased their migration when approaching the micro-pits and preferentially positioned their nucleus inside them. Moreover, focal adhesions of hMSCs were notably located on polished zones rather than on neighboring nanostructured areas where the protein adsorption was lower. All these observations indicated that hMSCs were spatially controlled and mechanically strained by the laser-induced topographies. The nanoscale structures influence surface wettability and protein adsorption and thus influence focal adhesions formation and finally induce shape-based mechanical constraints on cells, known to promote osteogenic differentiation.
Collapse
Affiliation(s)
- Antoine Klos
- SAINBIOSE Laboratory INSERM U1059, University of Lyon, Jean Monnet University, F-42270 Saint Priest en Jarez, France; (A.K.); (S.P.); (L.V.); (A.G.)
| | - Xxx Sedao
- Hubert Curien Laboratory, University of Lyon, Jean Monnet University, UMR 5516 CNRS, F-42000 Saint-Etienne, France; (X.S.); (T.E.I.); (C.D.)
- GIE Manutech-USD, 20 rue Benoit Lauras, F-42000 Saint-Etienne, France
| | - Tatiana E. Itina
- Hubert Curien Laboratory, University of Lyon, Jean Monnet University, UMR 5516 CNRS, F-42000 Saint-Etienne, France; (X.S.); (T.E.I.); (C.D.)
| | - Clémentine Helfenstein-Didier
- Laboratory of Tribology and Systems Dynamics, National School of Engineers of Saint-Etienne, University of Lyon, UMR 5513 CNRS, F-42100 Saint-Etienne, France;
| | - Christophe Donnet
- Hubert Curien Laboratory, University of Lyon, Jean Monnet University, UMR 5516 CNRS, F-42000 Saint-Etienne, France; (X.S.); (T.E.I.); (C.D.)
| | - Sylvie Peyroche
- SAINBIOSE Laboratory INSERM U1059, University of Lyon, Jean Monnet University, F-42270 Saint Priest en Jarez, France; (A.K.); (S.P.); (L.V.); (A.G.)
| | - Laurence Vico
- SAINBIOSE Laboratory INSERM U1059, University of Lyon, Jean Monnet University, F-42270 Saint Priest en Jarez, France; (A.K.); (S.P.); (L.V.); (A.G.)
| | - Alain Guignandon
- SAINBIOSE Laboratory INSERM U1059, University of Lyon, Jean Monnet University, F-42270 Saint Priest en Jarez, France; (A.K.); (S.P.); (L.V.); (A.G.)
| | - Virginie Dumas
- Laboratory of Tribology and Systems Dynamics, National School of Engineers of Saint-Etienne, University of Lyon, UMR 5513 CNRS, F-42100 Saint-Etienne, France;
- Correspondence:
| |
Collapse
|
13
|
A Small-Sized Population of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Shows High Stemness Properties and Therapeutic Benefit. Stem Cells Int 2020; 2020:5924983. [PMID: 32399043 PMCID: PMC7204153 DOI: 10.1155/2020/5924983] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent a promising means to promote tissue regeneration. However, the heterogeneity of MSCs impedes their use for regenerative medicine. Further investigation of this phenotype is required to develop cell therapies with improved clinical efficacy. Here, a small-sized population of human umbilical cord blood-derived MSCs (UCB-MSCs) was isolated using a filter and centrifuge system to analyze its stem cell characteristics. Consequently, this population showed higher cell growth and lower senescence. Additionally, it exhibited diverse stem cell properties including differentiation, stemness, and adhesion, as compared to those of the population before isolation. Using cell surface protein array or sorting analysis, both EGFR and CD49f were identified as markers associated with the small-sized population. Accordingly, suppression of these surface proteins abolished the superior characteristics of this population. Moreover, compared to that with large or nonisolated populations, the small-sized population showed greater therapeutic efficacy by promoting the engraftment potential of infused cells and reducing lung damage in an emphysema mouse model. Therefore, the isolation of this small-sized population of UCB-MSCs could be a simple and effective way to enhance the efficacy of cell therapy.
Collapse
|
14
|
Chen Z, Luo X, Zhao X, Yang M, Wen C. Label-free cell sorting strategies via biophysical and biochemical gradients. J Orthop Translat 2019; 17:55-63. [PMID: 31194093 PMCID: PMC6551360 DOI: 10.1016/j.jot.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 01/08/2023] Open
Abstract
Isolating active mesenchymal stem cells from a heterogeneous population is an essential step that determines the efficacy of stem cell therapy such as for osteoarthritis. Nowadays, the gold standard of cell sorting, fluorescence-activated cell sorting, relies on labelling surface markers via antibody-antigen reaction. However, sorting stem cells with high stemness usually requires the labelling of multiple biomarkers. Moreover, the labelling process is costly, and the high operating pressure is harmful to cell functionality and viability. Although label-free cell sorting, based on physical characteristics, has gained increasing interest in the past decades, it has not shown the ability to eliminate stem cells with low stemness. Cell motility, as a novel sorting marker, is hence proposed for label-free sorting active stem cells. Accumulating evidence has demonstrated the feasibility in manipulating directional cell migration through patterning the biophysical, biochemical or both gradients of the extracellular matrix. However, applying those findings to label-free cell sorting has not been well discussed and studied. This review thus first provides a brief overview about the effect of biophysical and biochemical gradients of the extracellular matrix on cell migration. State-of-the-art fabrication techniques for generating such gradients of hydrogels are then introduced. Among current research, the authors suggest that hydrogels with dual-gradients of biochemistry and biophysics are potential tools for accurate label-free cell sorting with satisfactory selectivity and efficiency. TRANSLATIONAL POTENTIAL OF THIS ARTICLE The reviewed label-free cell sorting approaches enable us to isolate active cell for cytotherapy. The proposed system can be further modified for single-cell analysis and drug screening.
Collapse
Affiliation(s)
| | | | | | | | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
15
|
Bertolo A, Baur M, Guerrero J, Pötzel T, Stoyanov J. Autofluorescence is a Reliable in vitro Marker of Cellular Senescence in Human Mesenchymal Stromal Cells. Sci Rep 2019; 9:2074. [PMID: 30765770 PMCID: PMC6376004 DOI: 10.1038/s41598-019-38546-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/20/2018] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal stromal cells (MSC) are used in cell therapies, however cellular senescence increases heterogeneity of cell populations and leads to uncertainty in therapies’ outcomes. The determination of cellular senescence is time consuming and logistically intensive. Here, we propose the use of endogenous autofluorescence as real-time quantification of cellular senescence in human MSC, based on label-free flow cytometry analysis. We correlated cell autofluorescence to senescence using senescence-associated beta-galactosidase assay (SA-β-Gal) with chromogenic (X-GAL) and fluorescent (C12FDG) substrates, gene expression of senescence markers (such as p16INK4A, p18INK4C, CCND2 and CDCA7) and telomere length. Autofluorescence was further correlated to MSC differentiation assays (adipogenesis, chondrogenesis and osteogenesis), MSC stemness markers (CD90/CD106) and cytokine secretion (IL-6 and MCP-1). Increased cell autofluorescence significantly correlated with increased SA-β-Gal signal (both X-GAL and C12FDG substrates), cell volume and cell granularity, IL-6/MCP-1 secretion and with increased p16INK4A and CCND2 gene expression. Increased cell autofluorescence was negatively associated with the expression of the CD90/CD106 markers, osteogenic and chondrogenic differentiation potentials and p18INK4C and CDCA7 gene expression. Cell autofluorescence correlated neither with telomere length nor with adipogenic differentiation potential. We conclude that autofluorescence can be used as fast and non-invasive senescence assay for comparing MSC populations under controlled culture conditions.
Collapse
Affiliation(s)
| | - Martin Baur
- Cantonal Hospital of Lucerne, Lucerne, 6000, Switzerland.,Swiss Paraplegic Centre, Nottwil, 6207, Switzerland
| | - Julien Guerrero
- Department of Biomedicine and Tissue Engineering, University of Basel Hospital, Basel, 4031, Switzerland
| | | | - Jivko Stoyanov
- Swiss Paraplegic Research, Nottwil, 6207, Switzerland. .,Institute for Surgical Technology and Biomechanics, University of Bern, Bern, 3014, Switzerland.
| |
Collapse
|
16
|
Burk J, Holland H, Lauermann AF, May T, Siedlaczek P, Charwat V, Kasper C. Generation and characterization of a functional human adipose-derived multipotent mesenchymal stromal cell line. Biotechnol Bioeng 2019; 116:1417-1426. [PMID: 30739319 DOI: 10.1002/bit.26950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/12/2022]
Abstract
Multipotent mesenchymal stromal cells (MSC) and MSC-derived products have emerged as promising therapeutic tools. To fully exploit their potential, further mechanistic studies are still necessary and bioprocessing needs to be optimized, which requires an abundant supply of functional MSC for basic research. To address this need, here we used a novel technology to establish a human adipose-derived MSC line with functional characteristics representative of primary MSC. Primary MSC were isolated and subjected to lentiviral transduction with a library of expansion genes. Clonal cell lines were generated and evaluated on the basis of their morphology, immunophenotype, and proliferation potential. One clone (K5 iMSC) was then selected for further characterization. This clone had integrated a specific transgene combination including genes involved in stemness and maintenance of adult stem cells. Favorably, the K5 iMSC showed cell characteristics resembling juvenile MSC, as they displayed a shorter cell length and enhanced migration and proliferation compared with the non-immortalized original primary MSC (p < 0.05). Still, their immunophenotype and differentiation potential corresponded to the original primary MSC and the MSC definition criteria, and cytogenetic analyses revealed no clonal aberrations. We conclude that the technology used is applicable to generate functional MSC lines for basic research and possible future bioprocessing applications.
Collapse
Affiliation(s)
- Janina Burk
- Institute of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Heidrun Holland
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Leipzig, Germany
| | - Anne F Lauermann
- Institute of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Philipp Siedlaczek
- Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Verena Charwat
- Institute of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cornelia Kasper
- Institute of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
17
|
Herea DD, Labusca L, Radu E, Chiriac H, Grigoras M, Panzaru OD, Lupu N. Human adipose-derived stem cells loaded with drug-coated magnetic nanoparticles for in-vitro tumor cells targeting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:666-676. [PMID: 30423753 DOI: 10.1016/j.msec.2018.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
Abstract
Magnetic nanoparticles (MNPs) functionalized with different therapeutics delivered by mesenchymal stem cells represent a promising approach to improve the typical drug delivery methods. This innovative method, based on the "Trojan horse" principle, faces however important challenges related to the viability of the MNPs-loaded cells and drug stability. In the present study we report about an in vitro model of adipose-derived stem cells (ADSCs) loaded with palmitate-coated MNPs (MNPsPA) as antitumor drug carriers targeting a 3D tissue-like osteosarcoma cells. Cell viability, MNPsPA-drug loading capacity, cell speed, drug release rate, magnetization and zeta potential were determined and analysed. The results revealed that ADSCs loaded with MNPsPA-drug complexes retained their viability at relatively high drug concentrations (up to 1.22 pg antitumor drug/cell for 100% cell viability) and displayed higher speed compared to the targeted tumor cells in vitro. The magnetization of the sterilized MNPsPA complexes was 67 emu/g within a magnetic field corresponding to induction values of clinical MRI devices. ADSCs payload was around 9 pg magnetic material/cell, with an uptake rate of 6.25 fg magnetic material/min/cell. The presented model is a proof-of-concept platform for stem cells-mediated MNPs-drug delivery to solid tumors that could be further correlated with MRI tracking and magnetic hyperthermia for theranostic applications.
Collapse
Affiliation(s)
- Dumitru-Daniel Herea
- National Institute of Research and Development for Technical Physics, 47 Mangeron Avenue, Iasi, RO 700050, Romania
| | - Luminita Labusca
- National Institute of Research and Development for Technical Physics, 47 Mangeron Avenue, Iasi, RO 700050, Romania.
| | - Ecaterina Radu
- National Institute of Research and Development for Technical Physics, 47 Mangeron Avenue, Iasi, RO 700050, Romania
| | - Horia Chiriac
- National Institute of Research and Development for Technical Physics, 47 Mangeron Avenue, Iasi, RO 700050, Romania
| | - Marian Grigoras
- National Institute of Research and Development for Technical Physics, 47 Mangeron Avenue, Iasi, RO 700050, Romania
| | - Oana Dragos Panzaru
- National Institute of Research and Development for Technical Physics, 47 Mangeron Avenue, Iasi, RO 700050, Romania
| | - Nicoleta Lupu
- National Institute of Research and Development for Technical Physics, 47 Mangeron Avenue, Iasi, RO 700050, Romania
| |
Collapse
|
18
|
Marklein RA, Klinker MW, Drake KA, Polikowsky HG, Lessey-Morillon EC, Bauer SR. Morphological profiling using machine learning reveals emergent subpopulations of interferon-γ-stimulated mesenchymal stromal cells that predict immunosuppression. Cytotherapy 2018; 21:17-31. [PMID: 30503100 DOI: 10.1016/j.jcyt.2018.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/27/2018] [Accepted: 10/19/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Although a preponderance of pre-clinical data demonstrates the immunosuppressive potential of mesenchymal stromal cells (MSCs), significant heterogeneity and lack of critical quality attributes (CQAs) based on immunosuppressive capacity likely have contributed to inconsistent clinical outcomes. This heterogeneity exists not only between MSC lots derived from different donors, tissues and manufacturing conditions, but also within a given MSC lot in the form of functional subpopulations. We therefore explored the potential of functionally relevant morphological profiling (FRMP) to identify morphological subpopulations predictive of the immunosuppressive capacity of MSCs derived from multiple donors, manufacturers and passages. METHODS We profiled the single-cell morphological response of MSCs from different donors and passages to the functionally relevant inflammatory cytokine interferon (IFN)-γ. We used the machine learning approach visual stochastic neighbor embedding (viSNE) to identify distinct morphological subpopulations that could predict suppression of activated CD4+ and CD8+ T cells in a multiplexed quantitative assay. RESULTS Multiple IFN-γ-stimulated subpopulations significantly correlated with the ability of MSCs to inhibit CD4+ and CD8+ T-cell activation and served as effective CQAs to predict the immunosuppressive capacity of additional manufactured MSC lots. We further characterized the emergence of morphological heterogeneity following IFN-γ stimulation, which provides a strategy for identifying functional subpopulations for future single-cell characterization and enrichment techniques. DISCUSSION This work provides a generalizable analytical platform for assessing functional heterogeneity based on single-cell morphological responses that could be used to identify novel CQAs and inform cell manufacturing decisions.
Collapse
Affiliation(s)
- Ross A Marklein
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA; School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia, USA.
| | - Matthew W Klinker
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | | | - Elizabeth C Lessey-Morillon
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Steven R Bauer
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
| |
Collapse
|
19
|
Rowland AL, Xu JJ, Joswig AJ, Gregory CA, Antczak DF, Cummings KJ, Watts AE. In vitro MSC function is related to clinical reaction in vivo. Stem Cell Res Ther 2018; 9:295. [PMID: 30409211 PMCID: PMC6225557 DOI: 10.1186/s13287-018-1037-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/03/2018] [Accepted: 10/07/2018] [Indexed: 12/17/2022] Open
Abstract
Background We recently demonstrated that intracellular xenogen-contaminated autologous MSCs (FBS) and non-xenogen-contaminated allogeneic (ALLO) MSCs caused an adverse clinical response after repeated intra-articular injection in horses, whereas autologous (AUTO) MSCs did not. Our current objective was to use clinical data from the previous study to compare MSC stemness against adverse response indicated by synovial total nucleated cell count (TNCC) following intra-articular MSC injection. Methods Stemness, quantified by a trilineage differentiation (TLD) score; immunomodulation, quantified by mixed lymphocyte reactions (MLRs); and degree of MHCI expression, quantified by mean fluorescent intensity (MFI); were correlated to the synovial TNCC 24 h after naïve and primed injection. Results There was a trend of a negative correlation (p = 0.21, r = − 0.44) between TLD score and TNCC after primed injection in the ALLO group. Within the ALLO group only, there was a significant positive correlation (p = 0.05, r = 0.77) between MHCI MFI and TNCC after naïve injection and a trend (p = 0.16, r = 0.49) of a positive association of MHCI MFI to TNCC after primed injection. Within the FBS group only, there was a positive correlation (p = 0.04, r = 1) between TNCC and lymphocyte proliferation after both injections. Conclusions The trend of a negative correlation of TLD score and TNCC in the ALLO, but not the FBS group, together with the association of MHCI expression and TNCC in the ALLO group, indicates that improved stemness is associated with reduced MSC immunogenicity. When inflammation was incited by xenogen, there was a strong correlation of lymphocyte activation in vitro to adverse response in vivo, confirming that MLRs in vitro reflect MSC immunomodulatory activity in vivo. The relationship of stemness in vitro, suppression of lymphocyte activation in vitro, MHCI expression in vitro, and clinical response in vivo should be further investigated.
Collapse
Affiliation(s)
- Aileen L Rowland
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Jiajie Jessica Xu
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Amanda Jo Joswig
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Douglas F Antczak
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Kevin J Cummings
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | - Ashlee E Watts
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
20
|
Bertolo A, Pavlicek D, Gemperli A, Baur M, Pötzel T, Stoyanov J. Increased motility of mesenchymal stem cells is correlated with inhibition of stimulated peripheral blood mononuclear cells in vitro. J Stem Cells Regen Med 2017. [PMID: 29391751 PMCID: PMC5786648 DOI: 10.46582/jsrm.1302010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Immunomodulatory properties of mesenchymal stem cells (MSC) are key components of their successful applications in clinical setting. However, treatments based on MSC immunomodulation need understanding of cell characteristics before cell transplantation. We used live-imaging to test the suitability of the MSC motility as a parameter for quick prediction of the immunomodulatory potential of human MSC in regulating the activity of stimulated peripheral blood mononuclear cells (PBMC) in vitro. Bone marrow MSC, from various donors and in vitro passages, were cultured with or without stimulated PBMC. After seven days, immunomodulation was assessed by measuring PBMC proliferation, IgG production and cytokine secretion in MSC and PBMC monocultures and co-cultures, and results were correlated to MSC motility. In co-culture, we observed that MSC successfully inhibited PBMC activity, reducing PBMC proliferation and IgG production compared to PBMC monoculture. MSC modulated PBMC to reduce the secretion of TNFα and IL-10, increase IL-6, G-CSF and MCP-1, while GM-CSF was not affected. By live-imaging tracking of cell trajectories, we observed that fast moving MSC were inhibiting more efficiently stimulated PBMC compared to slow ones. In co-culture, fast MSC were more effective in inhibiting IgG production (˜30% less IgG), and secreted higher levels of IL-10 (˜10% increase) and GM-CSF (˜20% increase) compared to slower cells. Furthermore, fast MSC in monocultures produced 2.3-fold more IL-6, 1.5-fold MCP-1 and 1.2-fold G-CSF in comparison to slower cells. In conclusion, live-imaging cell tracking allowed us to develop an indicative assay of the immune-regulatory potential of MSC prior to in vivo administration. Key Words: Human mesenchymal stem cells, Immunomodulatory potential, In vitro cell motility, Stem cell transplantation.
Collapse
Affiliation(s)
| | | | - Armin Gemperli
- Swiss Paraplegic Research, Nottwil, Switzerland.,Department of Health Sciences and Health Policy, University of Lucerne, Lucerne, Switzerland
| | - Martin Baur
- Cantonal Hospital of Lucerne, Lucerne, Switzerland.,Swiss Paraplegic Centre, Nottwil, Switzerland
| | | | - Jivko Stoyanov
- Swiss Paraplegic Research, Nottwil, Switzerland.,Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland.,Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
|
22
|
SIRT3 Enhances Mesenchymal Stem Cell Longevity and Differentiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5841716. [PMID: 28717408 PMCID: PMC5499245 DOI: 10.1155/2017/5841716] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/28/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that are currently being investigated in a wide variety of clinical trials for their anti-inflammatory and immunomodulatory properties as well as their osteogenic and chondrogenic capabilities. However, there are considerable interdonor variability and heterogeneity of MSC populations, making it challenging to compare different products. Furthermore, proliferation, differentiation, and immunomodulation of MSCs decrease with aging and ex vivo expansion. The sirtuins have emerged as a class of protein deacylases involved in aging, oxidative stress, and metabolism. Sirtuin 3 (SIRT3) is the major mitochondrial deacetylase involved in reducing oxidative stress while preserving oxidative metabolism, and its levels have been shown to decrease with age. This study investigated the role of SIRT3 in MSC differentiation and aging. As MSCs were expanded ex vivo, SIRT3 levels decreased. In addition, SIRT3 depletion reduced MSC differentiation into adipocytes and osteoblasts. Furthermore, overexpression of SIRT3 in later-passage MSCs reduced aging-related senescence, reduced oxidative stress, and enhanced their ability to differentiate. These data suggest that overexpressing SIRT3 might represent a strategy to increase the quality and quantity of MSCs utilized for clinical applications.
Collapse
|
23
|
Horie S, Laffey JG. Recent insights: mesenchymal stromal/stem cell therapy for acute respiratory distress syndrome. F1000Res 2016; 5. [PMID: 27408702 PMCID: PMC4926752 DOI: 10.12688/f1000research.8217.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 12/18/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) causes respiratory failure, which is associated with severe inflammation and lung damage and has a high mortality and for which there is no therapy. Mesenchymal stromal/stem cells (MSCs) are adult multi-progenitor cells that can modulate the immune response and enhance repair of damaged tissue and thus may provide a therapeutic option for ARDS. MSCs demonstrate efficacy in diverse
in vivo models of ARDS, decreasing bacterial pneumonia and ischemia-reperfusion-induced injury while enhancing repair following ventilator-induced lung injury. MSCs reduce the pro-inflammatory response to injury while augmenting the host response to bacterial infection. MSCs appear to exert their effects via multiple mechanisms—some are cell interaction dependent whereas others are paracrine dependent resulting from both soluble secreted products and microvesicles/exosomes derived from the cells. Strategies to further enhance the efficacy of MSCs, such as by overexpressing anti-inflammatory or pro-repair molecules, are also being investigated. Encouragingly, early phase clinical trials of MSCs in patients with ARDS are under way, and experience with these cells in trials for other diseases suggests that the cells are well tolerated. Although considerable translational challenges, such as concerns regarding cell manufacture scale-up and issues regarding cell potency and batch variability, must be overcome, MSCs constitute a highly promising potential therapy for ARDS.
Collapse
Affiliation(s)
- Shahd Horie
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland, Galway, Ireland; Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - John G Laffey
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland; Department of Anesthesia, Critical Illness and Injury Research Centre, Keenan Research Centre for Biomedical Science, St Michael's Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|