1
|
Bolla AM, Montefusco L, Pastore I, Lunati ME, Ben Nasr M, Fiorina P. Benefits and Hurdles of Pancreatic β-Cell Replacement. Stem Cells Transl Med 2022; 11:1029-1039. [PMID: 36073717 PMCID: PMC9585952 DOI: 10.1093/stcltm/szac058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/02/2022] [Indexed: 11/13/2022] Open
Abstract
Insulin represents a life-saving treatment in patients with type 1 diabetes, and technological advancements have improved glucose control in an increasing number of patients. Despite this, adequate control is often still difficult to achieve and insulin remains a therapy and not a cure for the disease. β-cell replacement strategies can potentially restore pancreas endocrine function and aim to maintain normoglycemia; both pancreas and islet transplantation have greatly progressed over the last decades and, in subjects with extreme glycemic variability and diabetes complications, represent a concrete and effective treatment option. Some issues still limit the adoption of this approach on a larger scale. One is represented by the strict selection criteria for the recipient who can benefit from a transplant and maintain the lifelong immunosuppression necessary to avoid organ rejection. Second, with regard to islet transplantation, up to 40% of islets can be lost during hepatic engraftment. Recent studies showed very preliminarily but promising results to overcome these hurdles: the ability to induce β-cell maturation from stem cells may represent a solution to the organ shortage, and the creation of semi-permeable membranes that envelope or package cells in either micro- or macro- encapsulation strategies, together with engineering cells to be hypo-immunogenic, pave the way for developing strategies without immunosuppression. The aim of this review is to describe the state of the art in β-cell replacement with a focus on its efficacy and clinical benefits, on the actual limitations and still unmet needs, and on the latest findings and future directions.
Collapse
Affiliation(s)
| | - Laura Montefusco
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Ida Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | | | - Moufida Ben Nasr
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paolo Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.,International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, DIBIC, Università di Milano, Milan, Italy.,Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Nikoonezhad M, Lasemi MV, Alamdari S, Mohammadian M, Tabarraee M, Ghadyani M, Hamidpour M, Roshandel E. Treatment of insulin-dependent diabetes by hematopoietic stem cell transplantation. Transpl Immunol 2022; 75:101682. [PMID: 35926800 DOI: 10.1016/j.trim.2022.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease resulting from the demolition of β-cells that are responsible for producing insulin in the pancreas. Treatment with insulin (lifelong applying) and islet transplantation (in rare cases and severe diseases), are standards of care for T1D. Pancreas or islet transplantation have some limitations, such as lack of sufficient donors and longtime immune suppression for preventing allograft rejection. Recent studies demonstrate that autologous hematopoietic stem cells (HSC) can regenerate immune tolerance against auto-antigens. Taking advantage of this feature, autologous HSC transplantation (auto-HSCT) is likely the only treatment for T1D that is associated with lasting and complete remission. None of the other evaluated immunotherapies worldwide had the clinical efficacy of auto-HSCT. Therapy with auto-HSCT is insulin-independent rather than reducing insulin needs or delaying loss of insulin production. This review provided the latest findings in auto-HSCT for treatment of T1D.
Collapse
Affiliation(s)
- Maryam Nikoonezhad
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Vahdat Lasemi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Alamdari
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhdeh Mohammadian
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Tabarraee
- Department of Hematology and Medical Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Ghadyani
- Department of Hematology and Medical Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Hamidpour
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Madani S, Amanzadi M, Aghayan HR, Setudeh A, Rezaei N, Rouhifard M, Larijani B. Investigating the safety and efficacy of hematopoietic and mesenchymal stem cell transplantation for treatment of T1DM: a systematic review and meta-analysis. Syst Rev 2022; 11:82. [PMID: 35501872 PMCID: PMC9059401 DOI: 10.1186/s13643-022-01950-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stem cell transplantation (SCT) has paved the way for treatment of autoimmune diseases. SCT has been investigated in type 1 diabetes mellitus (T1DM) as an autoimmune-based disorder, but previous studies have not presented a comprehensive view of its effect on treatment of T1DM. METHODOLOGY After registration of the present systematic review and meta-analysis in the PROSPERO, a search was done according to the Cochrane guidelines for evaluation of clinical trials to find eligible clinical trials that investigated the effect of SCT on T1DM (based on ADA® diagnostic criteria) from PubMed, Web of science, Scopus, etc, as well as registries of clinical trials from January 1, 2000, to September 31, 2019. A search strategy was designed using MeSH and EM-tree terms. Primary outcome included the changes in the insulin total daily dose (TDD) (U/kg) level, and secondary outcomes included the changes in the HbA1c, c-peptide, and adjusted HbA1c levels. The Q Cochrane test and I2 statistic were performed to assess the heterogeneity and its severity in primary clinical trials. The Cochrane ROB was used to determine risk of bias, and Cochrane Handbook for Systematic Reviews of Interventions was used in the full text papers. The meta-analysis was accomplished in the STATA software, and the results were shown on their forest plots. Confounders were evaluated by the meta-regression test. RESULTS A total of 9452 studies were electronically screened, and 35 papers were included for data extraction. The results of this review study showed that 173 (26.5%) diabetic patients experienced insulin-free period (from 1 to 80 months), and 445 (68%) showed reduction in TDD of insulin after the SCT. Combination of hematopoietic stem cell (HSC) with mesenchymal stem cell (MSC) transplantation were significantly associated with improvement of the TDD (SMD: - 0.586, 95% CI: - 1.204/- 0.509, I2: 0%), HbA1c (SMD: - 0.736, 95% CI: - 1.107/- 0.365, I2: 0%), adjusted HbA1c (SMD: - 2.041, 95% CI: - 2.648/- 1.434, I2: 38.4%), and c-peptide (SMD: 1.917, 95% CI: 0.192/3.641, I2: 92.5%) on month 3 of follow-up, while its association had a growing trend from 3 to 12 months after the transplantation. Considering severe adverse events, HSC transplantation accompanied with conditioning could not be suggested as a safe treatment. CONCLUSION Most of the clinical trials of SCT in T1DM were single arm. Although meta-analysis illustrated the SCT is associated with T1DM improvement, well-designed randomized clinical trials are needed to clarify its efficacy. RECOMMENDATION Based on the results of this meta-analysis, the MSC and its combination with HSC could be considered as "Safe Cell" for SCT in T1DM. Furthermore, to evaluate the SCT efficacy, calculation of insulin TDD (U/kg/day), AUC of c-peptide, and adjusted HbA1c are highly recommended.
Collapse
Affiliation(s)
- Sedigheh Madani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mahdiyeh Amanzadi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Aria Setudeh
- Children's Medical Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Negar Rezaei
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mahtab Rouhifard
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
4
|
Akil AAS, Yassin E, Al-Maraghi A, Aliyev E, Al-Malki K, Fakhro KA. Diagnosis and treatment of type 1 diabetes at the dawn of the personalized medicine era. J Transl Med 2021; 19:137. [PMID: 33794915 PMCID: PMC8017850 DOI: 10.1186/s12967-021-02778-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes affects millions of people globally and requires careful management to avoid serious long-term complications, including heart and kidney disease, stroke, and loss of sight. The type 1 diabetes patient cohort is highly heterogeneous, with individuals presenting with disease at different stages and severities, arising from distinct etiologies, and overlaying varied genetic backgrounds. At present, the “one-size-fits-all” treatment for type 1 diabetes is exogenic insulin substitution therapy, but this approach fails to achieve optimal blood glucose control in many individuals. With advances in our understanding of early-stage diabetes development, diabetes stratification, and the role of genetics, type 1 diabetes is a promising candidate for a personalized medicine approach, which aims to apply “the right therapy at the right time, to the right patient”. In the case of type 1 diabetes, great efforts are now being focused on risk stratification for diabetes development to enable pre-clinical detection, and the application of treatments such as gene therapy, to prevent pancreatic destruction in a sub-set of patients. Alongside this, breakthroughs in stem cell therapies hold great promise for the regeneration of pancreatic tissues in some individuals. Here we review the recent initiatives in the field of personalized medicine for type 1 diabetes, including the latest discoveries in stem cell and gene therapy for the disease, and current obstacles that must be overcome before the dream of personalized medicine for all type 1 diabetes patients can be realized.
Collapse
Affiliation(s)
- Ammira Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| | - Esraa Yassin
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Aljazi Al-Maraghi
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Elbay Aliyev
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Khulod Al-Malki
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Khalid A Fakhro
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, P.O. Box 24144, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| |
Collapse
|
5
|
Udoka Nwosu B. Partial Clinical Remission of Type 1 Diabetes Mellitus in Children: Clinical Applications and Challenges with its Definitions. EUROPEAN MEDICAL JOURNAL 2019. [DOI: 10.33590/emj/10310168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The honeymoon phase, or partial clinical remission (PCR) phase, of Type 1 diabetes mellitus (T1DM) is a transitory period that is marked by endogenous insulin production by surviving β cells following a diabetes diagnosis and the introduction of insulin therapy. It is a critical window in the course of the disease that has short and long-term implications for the patient, such as a significant reduction in the risk of long-term complications of T1DM. To promote long-term cardiovascular health in children with newly diagnosed T1DM, three key steps are necessary: the generation of a predictive model for non-remission, the adoption of a user-friendly monitoring tool for remission and non-remission, and the establishment of the magnitude of the early-phase cardiovascular disease risk in these children in objective terms through changes in lipid profile. However, only about 50% of children diagnosed with T1DM experience the honeymoon phase. Accurate and prompt detection of the honeymoon phase has been hampered by the lack of an objective and easily applicable predictive model for its detection at the time of T1DM diagnosis, the complex formulas needed to confirm and monitor PCR, and the absence of a straightforward, user-friendly tool for monitoring PCR. This literature review discusses the most up-to-date information in this field by describing an objective predictive model for non-remission, an easy tool for monitoring remission or non-remission, and objective evidence for the cardiovascular protective effect of PCR in the early phase of the disease. The goal is to present non-remission as an independent clinical entity with significantly poorer long-term prognosis than partial remission.
Collapse
Affiliation(s)
- Benjamin Udoka Nwosu
- Division of Endocrinology, Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
6
|
Nwosu BU. Partial Clinical Remission of Type 1 Diabetes Mellitus in Children: Clinical Applications and Challenges with its Definitions. EUROPEAN MEDICAL JOURNAL. DIABETES 2019; 4:89-98. [PMID: 31069088 PMCID: PMC6502244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The honeymoon phase, or partial clinical remission (PCR) phase, of Type 1 diabetes mellitus (T1DM) is a transitory period that is marked by endogenous insulin production by surviving 3 cells following a diabetes diagnosis and the introduction of insulin therapy. It is a critical window in the course of the disease that has short and long-term implications for the patient, such as a significant reduction in the risk of long-term complications of T1DM. To promote long-term cardiovascular health in children with newly diagnosed T1DM, three key steps are necessary: the generation of a predictive model for non-remission, the adoption of a user-friendly monitoring tool for remission and non-remission, and the establishment of the magnitude of the early-phase cardiovascular disease risk in these children in objective terms through changes in lipid profile. However, only about 50% of children diagnosed with T1DM experience the honeymoon phase. Accurate and prompt detection of the honeymoon phase has been hampered by the lack of an objective and easily applicable predictive model for its detection at the time of T1DM diagnosis, the complex formulas needed to confirm and monitor PCR, and the absence of a straightforward, user-friendly tool for monitoring PCR. This literature review discusses the most up-to-date information in this field by describing an objective predictive model for non-remission, an easy tool for monitoring remission or non-remission, and objective evidence for the cardiovascular protective effect of PCR in the early phase of the disease. The goal is to present non-remission as an independent clinical entity with significantly poorer long-term prognosis than partial remission.
Collapse
|
7
|
van Megen KM, van ’t Wout EJT, Forman SJ, Roep BO. A Future for Autologous Hematopoietic Stem Cell Transplantation in Type 1 Diabetes. Front Immunol 2018; 9:690. [PMID: 29696017 PMCID: PMC5904498 DOI: 10.3389/fimmu.2018.00690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/20/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Kayleigh M. van Megen
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute at the City of Hope, Duarte, CA, United States
| | - Ernst-Jan T. van ’t Wout
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute at the City of Hope, Duarte, CA, United States
| | - Stephen J. Forman
- Department of Hematology & Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, United States
| | - Bart O. Roep
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute at the City of Hope, Duarte, CA, United States
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
8
|
Xiang H, Zhang X, Yang C, Xu W, Ge X, Zhang R, Qiu Y, Sun W, Li F, Xiang T, Chen H, Wang Z, Zeng Q. Autologous bone marrow stem cell transplantation for the treatment of ulcerative colitis complicated with herpes zoster: a case report. Front Med 2016; 10:522-526. [PMID: 27896624 DOI: 10.1007/s11684-016-0485-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 08/17/2016] [Indexed: 12/27/2022]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease with continuous or recurrent symptoms. A 42-year-old male patient with intermittent diarrhea accompanied by bloody mucopurulent stools was admitted to our hospital. The diagnosis of UC was confirmed by a combination of laboratory examination, colonoscopy, and histological assay. The patient developed herpes zoster in the hospital, which challenged traditional treatments. Therefore, we performed an autologous bone marrow cells to modulate the immune system with his permission. Autologous bone marrow mononuclear cells were collected and injected locally into the bowel mucosa, and subsequently injected systemically through a peripheral vein. After the patient underwent auto bone marrow mononuclear cells transplantations twice, the patient's symptoms were alleviated. Furthermore, he recovered from hematochezia, and his hypersensitive C reactive protein decreased. Colonoscopy results showed reduced lesions and decreased areas with bleeding and edema in the sigmoid colon and rectum. No recurrence occurred in the subsequent two years, but long-time monitoring is still necessary for the prophylaxis of colorectal cancer.
Collapse
Affiliation(s)
- Hang Xiang
- Institute of Health Management, Institute of Geriatrics, Beijing Key Laboratory of Normal Aging and Geriatrics, Department of Gerontal Gastroenterology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaomei Zhang
- Institute of Health Management, Institute of Geriatrics, Beijing Key Laboratory of Normal Aging and Geriatrics, Department of Gerontal Gastroenterology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chao Yang
- Department of Blood Transfusion, Department of Hematology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Wenhuan Xu
- Institute of Health Management, Institute of Geriatrics, Beijing Key Laboratory of Normal Aging and Geriatrics, Department of Gerontal Gastroenterology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xin Ge
- Galactophore Department of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Rong Zhang
- Department of Blood Transfusion, Department of Hematology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Ya Qiu
- Institute of Health Management, Institute of Geriatrics, Beijing Key Laboratory of Normal Aging and Geriatrics, Department of Gerontal Gastroenterology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wanjun Sun
- Department of Blood Transfusion, Department of Hematology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Fan Li
- Institute of Health Management, Institute of Geriatrics, Beijing Key Laboratory of Normal Aging and Geriatrics, Department of Gerontal Gastroenterology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Tianyuan Xiang
- Geriatrics Institute of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Haixu Chen
- Institute of Health Management, Institute of Geriatrics, Beijing Key Laboratory of Normal Aging and Geriatrics, Department of Gerontal Gastroenterology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Zheng Wang
- Department of Biotherapy of PLA 455 Hospital, Shanghai, 200052, China.
| | - Qiang Zeng
- Institute of Health Management, Institute of Geriatrics, Beijing Key Laboratory of Normal Aging and Geriatrics, Department of Gerontal Gastroenterology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|