1
|
Ghosh S, Roy R, Mukherjee N, Ghosh S, Jash M, Jana A, Ghosh S. EphA4 Targeting Peptide-Conjugated Extracellular Vesicles Rejuvenates Adult Neural Stem Cells and Exerts Therapeutic Benefits in Aging Rats. ACS Chem Neurosci 2024; 15:3482-3495. [PMID: 39288278 DOI: 10.1021/acschemneuro.4c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Aging and various neurodegenerative diseases cause significant reduction in adult neurogenesis and simultaneous increase in quiescent neural stem cells (NSCs), which impact the brain's regenerative capabilities. To deal with this challenging issue, current treatments involve stem cell transplants or prevention of neurodegeneration; however, the efficacy or success of this process remains limited. Therefore, extensive and focused investigation is highly demanding to overcome this challenging task. Here, we have designed an efficient peptide-based EphA4 receptor-targeted ligand through an in silico approach. Further, this strategy involves chemical conjugation of the peptide with adipose tissue stem cell-derived EV (Exo-pep-11). Interestingly, our newly designed engineered EV, Exo-pep-11, targets NSC through EphA4 receptors, which offers promising therapeutic advantages by stimulating NSC proliferation and subsequent differentiation. Our result demonstrates that NSC successfully internalized Exo-pep-11 in both in vitro culture conditions as well as in the in vivo aging rats. We found that the uptake of Exo-pep-11 decreased by ∼2.3-fold when NSC was treated with EphA4 antibody before Exo-pep-11 incubation, which confirms the receptor-specific uptake of Exo-pep-11. Exo-pep-11 treatment also increases NSC proliferation by ∼1.9-fold and also shows ∼1.6- and ∼2.4-fold increase in expressions of Nestin and ID1, respectively. Exo-pep-11 also has the potential to increase neurogenesis in aging rats, which is confirmed by ∼1.6- and ∼1.5-fold increases in expressions of TH and Tuj1, respectively, in rat olfactory bulb. Overall, our findings highlight the potential role of Exo-pep-11 for prospective applications in combating age-related declines in NSC activity and neurogenesis.
Collapse
Affiliation(s)
- Satyajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Nabanita Mukherjee
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Surojit Ghosh
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Moumita Jash
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Aniket Jana
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
- Smart Healthcare, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| |
Collapse
|
2
|
Moreira R, Nóbrega C, de Almeida LP, Mendonça L. Brain-targeted drug delivery - nanovesicles directed to specific brain cells by brain-targeting ligands. J Nanobiotechnology 2024; 22:260. [PMID: 38760847 PMCID: PMC11100082 DOI: 10.1186/s12951-024-02511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
Neurodegenerative diseases are characterized by extensive loss of function or death of brain cells, hampering the life quality of patients. Brain-targeted drug delivery is challenging, with a low success rate this far. Therefore, the application of targeting ligands in drug vehicles, such as lipid-based and polymeric nanoparticles, holds the promise to overcome the blood-brain barrier (BBB) and direct therapies to the brain, in addition to protect their cargo from degradation and metabolization. In this review, we discuss the barriers to brain delivery and the different types of brain-targeting ligands currently in use in brain-targeted nanoparticles, such as peptides, proteins, aptamers, small molecules, and antibodies. Moreover, we present a detailed review of the different targeting ligands used to direct nanoparticles to specific brain cells, like neurons (C4-3 aptamer, neurotensin, Tet-1, RVG, and IKRG peptides), astrocytes (Aquaporin-4, D4, and Bradykinin B2 antibodies), oligodendrocytes (NG-2 antibody and the biotinylated DNA aptamer conjugated to a streptavidin core Myaptavin-3064), microglia (CD11b antibody), neural stem cells (QTRFLLH, VPTQSSG, and NFL-TBS.40-63 peptides), and to endothelial cells of the BBB (transferrin and insulin proteins, and choline). Reports demonstrated enhanced brain-targeted delivery with improved transport to the specific cell type targeted with the conjugation of these ligands to nanoparticles. Hence, this strategy allows the implementation of high-precision medicine, with reduced side effects or unwanted therapy clearance from the body. Nevertheless, the accumulation of some of these nanoparticles in peripheral organs has been reported indicating that there are still factors to be improved to achieve higher levels of brain targeting. This review is a collection of studies exploring targeting ligands for the delivery of nanoparticles to the brain and we highlight the advantages and limitations of this type of approach in precision therapies.
Collapse
Grants
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
Collapse
Affiliation(s)
- Ricardo Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, 8005-139, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Liliana Mendonça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal.
| |
Collapse
|
3
|
Zhang L, Gai Y, Liu Y, Meng D, Zeng Y, Luo Y, Zhang H, Wang Z, Yang M, Li Y, Liu Y, Lai Y, Yang J, Wu G, Chen Y, Zhu J, Liu S, Yu T, Zeng J, Wang J, Zhu D, Wang X, Lan X, Liu R. Tau induces inflammasome activation and microgliosis through acetylating NLRP3. Clin Transl Med 2024; 14:e1623. [PMID: 38488468 PMCID: PMC10941548 DOI: 10.1002/ctm2.1623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and related Tauopathies are characterised by the pathologically hyperphosphorylated and aggregated microtubule-associated protein Tau, which is accompanied by neuroinflammation mediated by activated microglia. However, the role of Tau pathology in microglia activation or their causal relationship remains largely elusive. METHODS The levels of nucleotide-binding oligomerisation domain (NOD)-like receptor pyrin domain containing 3 (NLRP3) acetylation and inflammasome activation in multiple cell models with Tau proteins treatment, transgenic mice with Tauopathy, and AD patients were measured by Western blotting and enzyme-linked immunosorbent assay. In addition, the acetyltransferase activity of Tau and NLRP3 acetylation sites were confirmed using the test-tube acetylation assay, co-immunoprecipitation, immunofluorescence (IF) staining, mass spectrometry and molecular docking. The Tau-overexpressing mouse model was established by overexpression of human Tau proteins in mouse hippocampal CA1 neurons through the adeno-associated virus injection. The cognitive functions of Tau-overexpressing mice were assessed in various behavioural tests, and microglia activation was analysed by Iba-1 IF staining and [18F]-DPA-714 positron emission tomography/computed tomography imaging. A peptide that blocks the interaction between Tau and NLRP3 was synthesised to determine the in vitro and in vivo effects of Tau-NLRP3 interaction blockade on NLRP3 acetylation, inflammasome activation, microglia activation and cognitive function. RESULTS Excessively elevated NLRP3 acetylation and inflammasome activation were observed in 3xTg-AD mice, microtubule-associated protein Tau P301S (PS19) mice and AD patients. It was further confirmed that mimics of 'early' phosphorylated-Tau proteins which increase at the initial stage of diseases with Tauopathy, including TauT181E, TauS199E, TauT217E and TauS262E, significantly promoted Tau-K18 domain acetyltransferase activity-dependent NLRP3 acetylation and inflammasome activation in HEK293T and BV-2 microglial cells. In addition, Tau protein could directly acetylate NLRP3 at the K21, K22 and K24 sites at its PYD domain and thereby induce inflammasome activation in vitro. Overexpression of human Tau proteins in mouse hippocampal CA1 neurons resulted in impaired cognitive function, Tau transmission to microglia and microgliosis with NLRP3 acetylation and inflammasome activation. As a targeted intervention, competitive binding of a designed Tau-NLRP3-binding blocking (TNB) peptide to block the interaction of Tau protein with NLRP3 inhibited the NLRP3 acetylation and downstream inflammasome activation in microglia, thereby alleviating microglia activation and cognitive impairment in mice. CONCLUSIONS In conclusion, our findings provide evidence for a novel role of Tau in the regulation of microglia activation through acetylating NLRP3, which has potential implications for early intervention and personalised treatment of AD and related Tauopathies.
Collapse
Affiliation(s)
- Lun Zhang
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Clinical LaboratoryWuhan Fourth HospitalWuhanChina
| | - Yongkang Gai
- Department of Nuclear MedicineHubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yushuang Liu
- Department of Biochemistry and Molecular BiologySchool of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Dongli Meng
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yi Zeng
- Department of Clinical LaboratoryThe Central Hospital of WuhanWuhanChina
| | - Yong Luo
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Huiliang Zhang
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zhuoqun Wang
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Mengzhe Yang
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yunfan Li
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yi Liu
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yiwen Lai
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jiayu Yang
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Gang Wu
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yu Chen
- Department of PediatricsTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics‐MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhanChina
| | - Shaojun Liu
- Britton Chance Center for Biomedical Photonics‐MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhanChina
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics‐MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhanChina
| | - Ji Zeng
- Department of Clinical LaboratoryWuhan Fourth HospitalWuhanChina
| | - Jianzhi Wang
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics‐MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhanChina
| | - Xiaochuan Wang
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhenChina
| | - Xiaoli Lan
- Department of Nuclear MedicineHubei Province Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Rong Liu
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of PediatricsTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Shenzhen Huazhong University of Science and Technology Research InstituteShenzhenChina
| |
Collapse
|
4
|
Arib C, Griveau A, Eyer J, Spadavecchia J. Cell penetrating peptide (CPP) gold(iii) - complex - bioconjugates: from chemical design to interaction with cancer cells for nanomedicine applications. NANOSCALE ADVANCES 2022; 4:3010-3022. [PMID: 36133522 PMCID: PMC9417459 DOI: 10.1039/d2na00096b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/11/2022] [Indexed: 05/14/2023]
Abstract
This study promotes an innovative synthesis of a nanotheragnostic scaffold capable of targeting and destroying pancreatic cancer cells (PDAC) using the Biotinylated NFL-TBS.40-63 peptide (BIOT-NFL), known to enter various glioblastoma cancer cells (GBM) where it specifically destroys their microtubule network. This recently proposed methodology (P7391FR00-50481 LIV) applied to other peptides VIM (Vimentin) and TAT (Twin-Arginine Translocation) (CPP peptides) has many advantages, such as targeted selective internalization and high stability under experimental conditions, modulated by steric and chemical configurations of peptides. The successful interaction of peptides on gold surfaces has been confirmed by UV-visible, dynamic light scattering (DLS), Zeta potential (ZP) and Raman spectroscopy analyses. The cellular internalization in pancreatic ductal adenocarcinoma (PDAC; MIA PACA-2) and GBM (F98) cells was monitored by transmission electron microscopy (TEM) and showed a better cellular internalization in the presence of peptides with gold nanoparticles. In this work, we also evaluated the power of these hybrid peptide-nanoparticles as photothermal agents after cancer cell internalization. These findings envisage novel perspectives for the development of high peptide-nanotheragnostics.
Collapse
Affiliation(s)
- Celia Arib
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13 Sorbonne Paris Cité Bobigny France
| | - Audrey Griveau
- Laboratoire Micro et Nanomedecines Translationnelles, Inserm 1066, CNRS 6021, Institut de Recherche en Ingénierie de la Sante, Bâtiment IBS Institut de Biologie de la Sante, Université, Angers, Centre Hospitalier Universitaire Angers France
| | - Joel Eyer
- Laboratoire Micro et Nanomedecines Translationnelles, Inserm 1066, CNRS 6021, Institut de Recherche en Ingénierie de la Sante, Bâtiment IBS Institut de Biologie de la Sante, Université, Angers, Centre Hospitalier Universitaire Angers France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13 Sorbonne Paris Cité Bobigny France
| |
Collapse
|
5
|
Hamdi H, Graiet I, Abid-Essefi S, Eyer J. Epoxiconazole profoundly alters rat brain and properties of neural stem cells. CHEMOSPHERE 2022; 288:132640. [PMID: 34695486 DOI: 10.1016/j.chemosphere.2021.132640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Epoxiconazole (EPX), a widely used fungicide for domestic, medical, and industrial applications, could cause neurodegenerative diseases. However, the underling mechanism of neurotoxicity is not well understood. This study aimed to investigate the possible toxic outcomes of Epoxiconzole, a triazole fungicide, on the brain of adult rats in vivo, and in vitro on neural stem cells derived from the subventricular zone of newborn Wistar rats. Our results revealed that oral exposure to EPX at these concentrations (8, 24, 40, 56 mg/kg bw representing respectively NOEL (no observed effect level), NOEL × 3, NOEL × 5, and NOEL × 7) for 28 days caused a considerable generation of oxidative stress in adult rat brain tissue. Furthermore, a significant augmentation in lipid peroxidation and protein oxidation has been found. Moreover, it induced an elevation of DNA fragmentation as assessed by the Comet assay. Indeed, EPX administration impaired activities of antioxidant enzymes and inhibited AChE activity. Concomitantly, this pesticide produced histological alterations in the brain of adult rats. Regarding the embryonic neural stem cells, we demonstrated that the treatment by EPX reduced the viability of cells with an IC50 of 10 μM. It also provoked the reduction of cell proliferation, and EPX triggered arrest in G1/S phase. The neurosphere formation and self-renewal capacity was reduced and associated with decreased differentiation. Moreover, EPX induced cytoskeleton disruption as evidenced by immunocytochemical analysis. Our findings also showed that EPX induced apoptosis as evidenced by a loss of mitochondrial transmembrane potential (ΔΨm) and an activation of caspase-3. In addition, EPX promoted ROS production in neural stem cells. Interestingly, the pretreatment of neural stem cells with the N-acetylcysteine (ROS scavenger) attenuated EPX-induced cell death, disruption of neural stem cells properties, ROS generation and apoptosis. Thus, the use of this hazardous material should be restricted and carefully regulated.
Collapse
Affiliation(s)
- Hiba Hamdi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Imen Graiet
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Joel Eyer
- Laboratoire Micro et Nanomédecines Translationnelles (MINT), Inserm 1066, CNRS 6021, Institut de Biologie de La Santé, Centre Hospitalier Universitaire, 49033, Angers, France.
| |
Collapse
|
6
|
Audrey G, Claire LC, Joel E. Effect of the NFL-TBS.40-63 peptide on canine glioblastoma cells. Int J Pharm 2021; 605:120811. [PMID: 34144141 DOI: 10.1016/j.ijpharm.2021.120811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/17/2021] [Accepted: 06/12/2021] [Indexed: 12/21/2022]
Abstract
Glioblastomas are the most frequent and aggressive cancer of the nervous system. The standard treatment is composed of neurosurgery followed by radiotherapy and chemotherapy, but the median survival remains very low. The NFL-TBS.40-63 peptide, also known as NFL-peptide, is capable to specifically penetrating all glioblastoma cell lines tested so far (rat, mouse and human), where it alters their microtubule network. Consequently, the peptide inhibits selectively the in vitro cell division of glioblastoma cells and their tumor development in vivo. When lipid nanocapsules are functionalized with the NFL-peptide, their uptake is targeted into glioblastoma cells both in vitro and in vivo. Here, we evaluated the impact of the NFL-peptide on J3T cells derived from a canine spontaneous glioblastoma, and its activity when functionalized to nanocapsules. Both flow cytometry and confocal microscopy experiments indicate that the NFL-peptide interacts with these cells and affects their biology, but it cannot enter in cells. By functionalizing lipid nanoparticles with the NFL-peptide, their uptake is also increased, while the peptide stays outside. This investigation reveals similarities and major differences between these canine cells and other glioblastoma cells, which are important aspects to consider when using this type of drug delivery system or performing pre-clinical studies with this animal model.
Collapse
Affiliation(s)
- Griveau Audrey
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Lépinoux-Chambaud Claire
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; GlioCure, F-49000 Angers, France
| | - Eyer Joel
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
7
|
Carradori D, Labrak Y, Miron VE, Saulnier P, Eyer J, Préat V, des Rieux A. Retinoic acid-loaded NFL-lipid nanocapsules promote oligodendrogenesis in focal white matter lesion. Biomaterials 2020; 230:119653. [DOI: 10.1016/j.biomaterials.2019.119653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/15/2019] [Accepted: 11/24/2019] [Indexed: 02/08/2023]
|
8
|
GBA mutation promotes early mitochondrial dysfunction in 3D neurosphere models. Aging (Albany NY) 2019; 11:10338-10355. [PMID: 31751314 PMCID: PMC6914435 DOI: 10.18632/aging.102460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
Abstract
Glucocerebrosidase (GBA) mutations are the most important genetic risk factor for the development of Parkinson disease (PD). GBA encodes the lysosomal enzyme glucocerebrosidase (GCase). Loss-of-GCase activity in cellular models has implicated lysosomal and mitochondrial dysfunction in PD disease pathogenesis, although the exact mechanisms remain unclear. We hypothesize that GBA mutations impair mitochondria quality control in a neurosphere model. We have characterized mitochondrial content, mitochondrial function and macroautophagy flux in 3D-neurosphere-model derived from neural crest stem cells containing heterozygous and homozygous N370SGBA mutations, under carbonyl cyanide-m-chlorophenyl-hydrazine (CCCP)- induced mitophagy. Our findings on mitochondrial markers and ATP levels indicate that mitochondrial accumulation occurs in mutant N370SGBA neurospheres under basal conditions, and clearance of depolarised mitochondria is impaired following CCCP-treatment. A significant increase in TFEB-mRNA levels, the master regulator of lysosomal and autophagy genes, may explain an unchanged macroautophagy flux in N370SGBA neurospheres. PGC1α-mRNA levels were also significantly increased following CCCP-treatment in heterozygote, but not homozygote neurospheres, and might contribute to the increased mitochondrial content seen in cells with this genotype, probably as a compensatory mechanism that is absent in homozygous lines. Mitochondrial impairment occurs early in the development of GCase-deficient neurons. Furthermore, impaired turnover of depolarised mitochondria is associated with early mitochondrial dysfunction. In summary, the presence of GBA mutation may be associated with higher levels of mitochondrial content in homozygous lines and lower clearance of damaged mitochondria in our neurosphere model.
Collapse
|
9
|
Lépinoux-Chambaud C, Eyer J. The NFL-TBS.40–63 peptide targets and kills glioblastoma stem cells derived from human patients and also targets nanocapsules into these cells. Int J Pharm 2019; 566:218-228. [DOI: 10.1016/j.ijpharm.2019.05.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/10/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023]
|
10
|
Carradori D, dos Santos AG, Masquelier J, Paquot A, Saulnier P, Eyer J, Préat V, Muccioli GG, Mingeot-Leclercq MP, des Rieux A. The origin of neural stem cells impacts their interactions with targeted-lipid nanocapsules: Potential role of plasma membrane lipid composition and fluidity. J Control Release 2018; 292:248-255. [DOI: 10.1016/j.jconrel.2018.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/01/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023]
|
11
|
Barreau K, Montero-Menei C, Eyer J. The neurofilament derived-peptide NFL-TBS.40-63 enters in-vitro in human neural stem cells and increases their differentiation. PLoS One 2018; 13:e0201578. [PMID: 30092042 PMCID: PMC6084907 DOI: 10.1371/journal.pone.0201578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/18/2018] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine is a promising approach to treat neurodegenerative diseases by replacing degenerating cells like neurons or oligodendrocytes. Targeting human neural stem cells directly in the brain is a big challenge in such a strategy. The neurofilament derived NFL-TBS.40-63 peptide has recently been introduced as a novel tool to target neural stem cells. Previous studies showed that this peptide can be internalized by rat neural stem cells in vitro and in vivo, which coincided with lower proliferation and self-renewal capacity and increase of differentiation. In this study, we analyzed the uptake and potential effects of the NFL-TBS.40-63 peptide on human neural stem cells isolated from human fetuses. We showed that the peptide inhibits proliferation and the ability to produce neurospheres in vitro, which is consistent with an increase in cell adhesion and differentiation. These results confirm that the peptide could be a promising molecule to target and manipulate human neural stem cells and thus could serve as a strategic tool for regenerative medicine.
Collapse
Affiliation(s)
- Kristell Barreau
- Laboratoire Micro et Nanomédecines Translationnelles, Inserm 1066, CNRS 6021, Institut de Recherche en Ingénierie de la Santé, Bâtiment IBS Institut de Biologie de la Santé, Université Angers, Centre Hospitalier Universitaire, Angers, France
| | - Claudia Montero-Menei
- Centre de Recherche en Cancérologie et Immunologie, INSERM, Université de Nantes, Université Angers, Angers, France
| | - Joël Eyer
- Laboratoire Micro et Nanomédecines Translationnelles, Inserm 1066, CNRS 6021, Institut de Recherche en Ingénierie de la Santé, Bâtiment IBS Institut de Biologie de la Santé, Université Angers, Centre Hospitalier Universitaire, Angers, France
- * E-mail:
| |
Collapse
|
12
|
Karim R, Lepeltier E, Esnault L, Pigeon P, Lemaire L, Lépinoux-Chambaud C, Clere N, Jaouen G, Eyer J, Piel G, Passirani C. Enhanced and preferential internalization of lipid nanocapsules into human glioblastoma cells: effect of a surface-functionalizing NFL peptide. NANOSCALE 2018; 10:13485-13501. [PMID: 29972178 DOI: 10.1039/c8nr02132e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Increasing intracellular drug concentration using nanocarriers can be a potential strategy to improve efficacy against glioblastoma (GBM). Here, the fluorescent-labelled NFL-TBS·40-63 peptide (fluoNFL) concentration on a lipid nanocapsule (LNC) was studied to enhance nanovector internalization into human GBM cells. LNC surface-functionalization with various fluoNFL concentrations was performed by adsorption. LNC size and surface charge altered gradually with increasing peptide concentration, but their complement protein consumption remained low. Desorption of fluoNFL from the LNC surface was found to be slow. Furthermore, it was observed that the rate and extent of LNC internalization in the U87MG human glioblastoma cells were dependent on the surface-functionalizing fluoNFL concentration. In addition, we showed that the uptake of fluoNFL-functionalized LNCs was preferential towards U87MG cells compared to healthy human astrocytes. The fluoNFL-functionalized LNC internalization into the U87MG cells was energy-dependent and occurred possibly by macropinocytosis and clathrin-mediated and caveolin-mediated endocytosis. A new ferrocifen-type molecule (FcTriOH), as a potent anticancer candidate, was then encapsulated in the LNCs and the functionalization improved its in vitro efficacy compared to other tested formulations against U87MG cells. In the preliminary study, on subcutaneous human GBM tumor model in nude mice, a significant reduction of relative tumor volume was observed at one week after the second intravenous injection with FcTriOH-loaded LNCs. These results showed that enhancing NFL peptide concentration on the LNC surface is a promising approach for increased and preferential nanocarrier internalization into human GBM cells, and the FcTriOH-loaded LNCs are a promising therapy approach for GBM.
Collapse
Affiliation(s)
- Reatul Karim
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Angers, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The therapeutic contribution of nanomedicine to treat neurodegenerative diseases via neural stem cell differentiation. Biomaterials 2017; 123:77-91. [PMID: 28161683 DOI: 10.1016/j.biomaterials.2017.01.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 12/13/2022]
Abstract
The discovery of adult neurogenesis drastically changed the therapeutic approaches of central nervous system regenerative medicine. The stimulation of this physiologic process can increase memory and motor performances in patients affected by neurodegenerative diseases. Neural stem cells contribute to the neurogenesis process through their differentiation into specialized neuronal cells. In this review, we describe the most important methods developed to restore neurological functions via neural stem cell differentiation. In particular, we focused on the role of nanomedicine. The application of nanostructured scaffolds, nanoparticulate drug delivery systems, and nanotechnology-based real-time imaging has significantly improved the safety and the efficacy of neural stem cell-based treatments. This review provides a comprehensive background on the contribution of nanomedicine to the modulation of neurogenesis via neural stem cell differentiation.
Collapse
|
14
|
Ferreira WAS, Pinheiro DDR, Costa Junior CAD, Rodrigues-Antunes S, Araújo MD, Leão Barros MB, Teixeira ACDS, Faro TAS, Burbano RR, Oliveira EHCD, Harada ML, Borges BDN. An update on the epigenetics of glioblastomas. Epigenomics 2016; 8:1289-305. [PMID: 27585647 DOI: 10.2217/epi-2016-0040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glioblastomas, also known as glioblastoma multiforme (GBM), are the most aggressive and malignant type of primary brain tumor in adults, exhibiting notable variability at the histopathological, genetic and epigenetic levels. Recently, epigenetic alterations have emerged as a common hallmark of many tumors, including GBM. Considering that a deeper understanding of the epigenetic modifications that occur in GBM may increase the knowledge regarding the tumorigenesis, progression and recurrence of this disease, in this review we discuss the recent major advances in GBM epigenetics research involving histone modification, glioblastoma stem cells, DNA methylation, noncoding RNAs expression, including their main alterations and the use of epigenetic therapy as a valid option for GBM treatment.
Collapse
Affiliation(s)
- Wallax Augusto Silva Ferreira
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Danilo do Rosário Pinheiro
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Carlos Antonio da Costa Junior
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Symara Rodrigues-Antunes
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Mariana Diniz Araújo
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Mariceli Baia Leão Barros
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Adriana Corrêa de Souza Teixeira
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Thamirys Aline Silva Faro
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | | | | | - Maria Lúcia Harada
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| | - Bárbara do Nascimento Borges
- Molecular Biology Laboratory, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará-UFPA)-Belém, Pará, Brazil
| |
Collapse
|
15
|
NFL-lipid nanocapsules for brain neural stem cell targeting in vitro and in vivo. J Control Release 2016; 238:253-262. [DOI: 10.1016/j.jconrel.2016.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022]
|
16
|
Peterson A. CRISPR: express delivery to any DNA address. Oral Dis 2016; 23:5-11. [PMID: 27040868 DOI: 10.1111/odi.12487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/26/2022]
Abstract
The sudden emergence and worldwide adoption of CRISPR gene-editing technology confronts humanity with unprecedented opportunities and choices. CRISPR's transformative impact on our future understanding of biology, along with its potential to unleash control over the most fundamental of biological processes, is predictable by already achieved applications. Although its origin, composition, and function were revealed only recently, close to 3000 CRISPR-based publications have appeared including insightful and diversely focused reviews referenced here. Adding further to scientific and public awareness, a recent symposium addressed the ethical implications of interfacing CRISPR technology and human biology. However, the magnitude of CRISPR's rapidly emerging power mandates its broadest assessment. Only with the participation of a diverse and informed community can the most effective and humanity-positive CRISPR applications be defined. This brief review is aimed at those with little previous exposure to the CRISPR revolution. The molecules that constitute CRISPR's core components and their functional organization are described along with how the mechanism has been harnessed to edit genome structure and modulate gene function. Additionally, a glimpse into CRISPR's potential to unleash genetic changes with far-reaching consequences is presented.
Collapse
Affiliation(s)
- A Peterson
- Laboratory of Developmental Biology, Departments of Oncology, Human Genetics, Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|