1
|
Choi Y, Park JH, Jo A, Lim CW, Park JM, Hwang JW, Lee KS, Kim YS, Lee H, Moon J. Blood-derived APLP1 + extracellular vesicles are potential biomarkers for the early diagnosis of brain diseases. SCIENCE ADVANCES 2025; 11:eado6894. [PMID: 39742488 DOI: 10.1126/sciadv.ado6894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
The early detection of neurodegenerative diseases necessitates the identification of specific brain-derived biomolecules in peripheral blood. In this context, our investigation delineates the role of amyloid precursor-like protein 1 (APLP1)-a protein predominantly localized in oligodendrocytes and neurons-as a previously unidentified biomarker in extracellular vesicles (EVs). Through rigorous analysis, APLP1+ EVs from human sera were unequivocally determined to be of cerebral origin. This assertion was corroborated by distinctive small RNA expression patterns of APLP1+ EVs. The miRNAs' putative targets within these EVs manifested pronounced expression in the brain, fortifying their neurospecific provenance. We subjected our findings to stringent validation using Thy-1 GFP M line mice, transgenic models wherein GFP expression is confined to hippocampal neurons. An amalgamation of these results with an exhaustive data analysis accentuates the potential of APLP1+ EVs as cerebrally originated biomarkers. Synthesizing our findings, APLP1+ EVs are postulated not merely as diagnostic markers but as seminal entities shaping the future trajectory of neurodegenerative disease diagnostics.
Collapse
Affiliation(s)
- Yuri Choi
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Jae Hyun Park
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Ala Jo
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Chul-Woo Lim
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Ji-Min Park
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Jin Woo Hwang
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Kang Soo Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University College of Medicine, Gyeonggi-do 13496, Republic of Korea
| | - Young-Sang Kim
- Department of Family Medicine, CHA Bundang Medical Center, CHA University College of Medicine, Gyeonggi-do 13496, Republic of Korea
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jisook Moon
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
2
|
Hong SJ, Bock M, Zhang S, An SB, Han I. Therapeutic Transplantation of Human Central Nervous System Organoids for Neural Reconstruction. Int J Mol Sci 2024; 25:8540. [PMID: 39126108 PMCID: PMC11313261 DOI: 10.3390/ijms25158540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/03/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Damage to the central nervous system (CNS) often leads to irreversible neurological deficits, and there are currently few effective treatments available. However, recent advancements in regenerative medicine have identified CNS organoids as promising therapeutic options for addressing CNS injuries. These organoids, composed of various neurons and supporting cells, have shown potential for direct repair at injury sites. CNS organoids resemble the structure and function of actual brain tissue, which allows them to adapt and function well within the physiological environment when transplanted into injury sites. Research findings suggest that CNS organoids can replace damaged neurons, form new neural connections, and promote neural recovery. This review highlights the emerging benefits, evaluates preclinical transplantation outcomes, and explores future strategies for optimizing neuroregeneration using CNS organoids. With continued research and technological advancements, these organoids could provide new hope for patients suffering from neurological deficits.
Collapse
Affiliation(s)
- Sung Jun Hong
- Research Competency Milestones Program (RECOMP), School of Medicine, CHA University, Seongnam-si 13488, Republic of Korea;
- Department of Medicine, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea
| | - Minsung Bock
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (S.B.A.)
| | - Songzi Zhang
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (S.B.A.)
| | - Seong Bae An
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (S.B.A.)
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (S.B.A.)
| |
Collapse
|
3
|
Wang F, Cheng XY, Zhang YT, Bai QR, Zhang XQ, Sun XC, Ma QH, Zhao XF, Liu CF. Transplantation of human neural stem cell prevents symptomatic motor behavior disability in a rat model of Parkinson's disease. Open Life Sci 2024; 19:20220834. [PMID: 38465343 PMCID: PMC10921471 DOI: 10.1515/biol-2022-0834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 03/12/2024] Open
Abstract
Parkinson's disease (PD) is a ubiquitous brain cell degeneration disease and presents a significant therapeutic challenge. By injecting 6-hydroxydopamine (6-OHDA) into the left medial forebrain bundle, rats were made to exhibit PD-like symptoms and treated by intranasal administration of a low-dose (2 × 105) or high-dose (1 × 106) human neural stem cells (hNSCs). Apomorphine-induced rotation test, stepping test, and open field test were implemented to evaluate the motor behavior and high-performance liquid chromatography was carried out to detect dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin, and 5-hydroxyindole-3-acetic acid in the striatum of rats. Animals injected with 6-OHDA showed significant motor function deficits and damaged dopaminergic system compared to the control group, which can be restored by hNSCs treatment. Treatment with hNSCs significantly increased the tyrosine hydroxylase-immunoreactive cell count in the substantia nigra of PD animals. Moreover, the levels of neurotransmitters exhibited a significant decline in the striatum tissue of animals injected with 6-OHDA when compared to that of the control group. However, transplantation of hNSCs significantly elevated the concentration of DA and DOPAC in the injured side of the striatum. Our study offered experimental evidence to support prospects of hNSCs for clinical application as a cell-based therapy for PD.
Collapse
Affiliation(s)
- Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
| | - Yu-Ting Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qing-Ran Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200333, China
| | - Xiao-Qi Zhang
- Shanghai Angecon Biotechnology Co., Ltd, Shanghai, 201318, China
| | - Xi-Cai Sun
- Shanghai Angecon Biotechnology Co., Ltd, Shanghai, 201318, China
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiong-Fei Zhao
- Shanghai Angecon Biotechnology Co., Ltd, Shanghai, 201318, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou215004, China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| |
Collapse
|
4
|
Kim J, Inbo H, Kim HS, Kim W, Jang SJ, Min K, Kim SH, Bae SH, Jeong YH, Kim B, Kim C, Schwarz SC, Schwarz J, Cho KG, Chung SS, Moon J. First Clinical Report on the Treatment of Parkinson's Disease with Fetal Midbrain Precursor Cells. Mov Disord 2023; 38:589-603. [PMID: 36692025 DOI: 10.1002/mds.29316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Because human fetal ventral mesencephalic tissue grafts provide promising results in ameliorating Parkinson's disease-implicated motor dysfunctions, human fetal midbrain-derived dopamine neuronal precursor cells are considered good candidates for cell-based therapy for Parkinson's disease in that large quantities of cells can be supplied through a good manufacturing practice-compliant system. OBJECTIVE We conducted a prospective, phase I/IIa, dose-escalation, open-label "first-in-human" clinical trial with fetal neural precursor cells to assess their safety and therapeutic efficacy in patients with idiopathic Parkinson's disease. METHODS Fifteen patients were assigned to receive three different doses of cells (4 × 106 , 12 × 106 , and 40 × 106 cells) and completed a 12-month follow-up. The primary outcome was safety, by measuring the presence of grade 3 or higher cells according to National Cancer Institute guidelines and any contaminated cells. Secondary outcomes assessed motor and neurocognitive function, as well as the level of dopamine transporters, by positron emission tomography-computed tomography. RESULTS Although a pronation-supination and hand/arm movement performance was remarkably enhanced in all three groups (all P < 0.05), the medium- and high-dose-treated groups exhibited significant improvement in Unified Parkinson's Disease Rating Scale Part III only up to 26.16% and 40%, respectively, at 12 months after transplantation without any serious clinical complications or graft-induced dyskinesia in all patients. However, the motor improvements did not correlate with increase in the dopamine transporter on positron emission tomography images. CONCLUSIONS Our results primarily demonstrate the safety and plausible dose-dependent efficacy of human fetal midbrain-derived dopamine neuronal precursor cells for idiopathic Parkinson's disease. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Joopyoung Kim
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Han Inbo
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Hyun Sook Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - WonChan Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Su Jin Jang
- Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Kyunghoon Min
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sang Heum Kim
- Department of Neuroradiology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sang-Hun Bae
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Yun-Hwa Jeong
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Borah Kim
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Chul Kim
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Sigrid C Schwarz
- Department of Neurology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.,German Center for Neurodegenerative Diseases, Technical University Munich, Munich, Germany
| | - Johannes Schwarz
- Department of Neurology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany.,Geriatric Hospital Haag, Haag, Germany
| | - Kyung Gi Cho
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sang-Sup Chung
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jisook Moon
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
5
|
Potential Therapeutic Effect of Micrornas in Extracellular Vesicles from Mesenchymal Stem Cells against SARS-CoV-2. Cells 2021; 10:cells10092393. [PMID: 34572043 PMCID: PMC8465096 DOI: 10.3390/cells10092393] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-released, nanometer-scaled, membrane-bound materials and contain diverse contents including proteins, small peptides, and nucleic acids. Once released, EVs can alter the microenvironment and regulate a myriad of cellular physiology components, including cell–cell communication, proliferation, differentiation, and immune responses against viral infection. Among the cargoes in the vesicles, small non-coding micro-RNAs (miRNAs) have received attention in that they can regulate the expression of a variety of human genes as well as external viral genes via binding to the complementary mRNAs. In this study, we tested the potential of EVs as therapeutic agents for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. First, we found that the mesenchymal stem-cell-derived EVs (MSC-EVs) enabled the rescue of the cytopathic effect of SARS-CoV-2 virus and the suppression of proinflammatory responses in the infected cells by inhibiting the viral replication. We found that these anti-viral responses were mediated by 17 miRNAs matching the rarely mutated, conserved 3′-untranslated regions (UTR) of the viral genome. The top five miRNAs highly expressed in the MSC-EVs, miR-92a-3p, miR-26a-5p, miR-23a-3p, miR-103a-3p, and miR-181a-5p, were tested. They were bound to the complemented sequence which led to the recovery of the cytopathic effects. These findings suggest that the MSC-EVs are a potential candidate for multiple variants of anti-SARS-CoV-2.
Collapse
|
6
|
Chen H, Xia W, Hou M. LncRNA-NEAT1 from the competing endogenous RNA network promotes cardioprotective efficacy of mesenchymal stem cell-derived exosomes induced by macrophage migration inhibitory factor via the miR-142-3p/FOXO1 signaling pathway. Stem Cell Res Ther 2020; 11:31. [PMID: 31964409 PMCID: PMC6975066 DOI: 10.1186/s13287-020-1556-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/23/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Aims Extracellular vesicles, especially exosomes, have emerged as key mediators of intercellular communication with the potential to improve cardiac function as part of cell-based therapies. We previously demonstrated that the cardioprotective factor, macrophage migration inhibitory factor (MIF), had an optimizing effect on mesenchymal stem cells (MSCs). The aim of this study was to determine the protective function of exosomes derived from MIF-pretreated MSCs in cardiomyocytes and to explore the underlying mechanisms. Methods and results Exosomes were isolated from control MSCs (exosome) and MIF-pretreated MSCs (exosomeMIF), and delivered to cardiomyocytes subjected to H2O2 in vitro. Regulatory long non-coding RNAs (lncRNAs) activated by MIF pretreatment were explored using genomics approaches. ExosomeMIF protected cardiomyocytes from H2O2-induced apoptosis. Mechanistically, we identified lncRNA-NEAT1 as a mediator of exosomeMIF by regulating the expression of miR-142-3p and activating Forkhead class O1 (FOXO1). The cardioprotective effects of exosomeMIF were consistently abrogated by depletion of lncRNA-NEAT1, by overexpression of miR-142-3p, or by FOXO1 silencing. Furthermore, exosomeMIF inhibited H2O2-induced apoptosis through modulating oxidative stress. Conclusions Exosomes obtained from MIF-pretreated MSCs have a protective effect on cardiomyocytes. The lncRNA-NEAT1 functions as an anti-apoptotic molecule via competitive endogenous RNA activity towards miR-142-3p. LncRNA-NEAT1/miR-142-3p/FOXO1 at least partially mediates the cardioprotective roles of exosomeMIF in protecting cardiomyocytes from apoptosis.
Collapse
Affiliation(s)
- Hanbin Chen
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, People's Republic of China
| | - Wenzheng Xia
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meng Hou
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, People's Republic of China.
| |
Collapse
|
7
|
Zhuang L, Xia W, Hou M. Co‑culturing with hypoxia pre‑conditioned mesenchymal stem cells as a new strategy for the prevention of irradiation‑induced fibroblast‑to‑myofibroblast transition. Oncol Rep 2019; 42:1781-1792. [PMID: 31485596 PMCID: PMC6775806 DOI: 10.3892/or.2019.7293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibrosis is a pathological consequence of radiation-induced fibroblast proliferation and fibroblast-to-myofibroblast transition (FMT). Mesenchymal stem cell (MSC) transplantation has been revealed to be an effective treatment strategy to inhibit cardiac fibrosis. We identified a novel MSC-driven mechanism that inhibited cardiac fibrosis, via the regulation of multiple fibrogenic pathways. Hypoxia pre-conditioned MSCs (MSCsHypoxia) were co-cultured with fibroblasts using a Transwell system. Radiation-induced fibroblast proliferation was assessed using an MTT assay, and FMT was confirmed by assessing the mRNA levels of various markers of fibrosis, including type I collagen (Col1) and alpha smooth muscle actin (α-SMA). α-SMA expression was also confirmed via immunocytochemistry. The expression levels of Smad7 and Smad3 were detected by western blotting, and Smad7 was silenced using small interfering RNAs. The levels of oxidative stress following radiation were assessed by the detection of reactive oxygen species (ROS) and the activity of superoxide dismutase (SOD), malondialdehyde (MDA), and 4-hydroxynonenal (HNE). It was revealed that co-culturing with MSCsHypoxia could inhibit fibroblast proliferation and FMT. In addition, the present results indicated that MSCs are necessary and sufficient for the inhibition of fibroblast proliferation and FMT by functionally targeting TGF-β1/Smad7/Smad3 signaling via the release of hepatocyte growth factor (HGF). Furthermore, it was observed that MSCs inhibited fibrosis by modulating oxidative stress. Co-culturing with MSCsHypoxia alleviated fibroblast proliferation and FMT via the TGF-β1/Smad7/Smad3 pathway. MSCs may represent a novel therapeutic approach for the treatment of radiation-related cardiac fibrosis.
Collapse
Affiliation(s)
- Lei Zhuang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenzheng Xia
- Department of Neurosurgery, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Meng Hou
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
8
|
Stanslowsky N, Tharmarasa S, Staege S, Kalmbach N, Klietz M, Schwarz SC, Leffler A, Wegner F. Calcium, Sodium, and Transient Receptor Potential Channel Expression in Human Fetal Midbrain-Derived Neural Progenitor Cells. Stem Cells Dev 2018; 27:976-984. [DOI: 10.1089/scd.2017.0281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
| | | | - Selma Staege
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Norman Kalmbach
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Martin Klietz
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Sigrid C. Schwarz
- Department For Translational Neurodegeneration, German Center for Neurodegenerative Diseases, Technical University Munich, Munich, Germany
| | - Andreas Leffler
- Department of Anaesthesia and Critical Care Medicine, Hannover Medical School, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
9
|
Kim HW, Lee HS, Kang JM, Bae SH, Kim C, Lee SH, Schwarz J, Kim GJ, Kim JS, Cha DH, Kim J, Chang SW, Lee TH, Moon J. Dual Effects of Human Placenta-Derived Neural Cells on Neuroprotection and the Inhibition of Neuroinflammation in a Rodent Model of Parkinson's Disease. Cell Transplant 2018; 27:814-830. [PMID: 29871515 PMCID: PMC6047269 DOI: 10.1177/0963689718766324] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common age-related neurodegenerative disease
in the elderly and the patients suffer from uncontrolled movement disorders due to loss of
dopaminergic (DA) neurons on substantia nigra pars compacta (SNpc). We previously reported
that transplantation of human fetal midbrain-derived neural precursor cells restored the
functional deficits of a 6-hydroxy dopamine (6-OHDA)-treated rodent model of PD but its
low viability and ethical issues still remain to be solved. Albeit immune privilege and
neural differentiation potentials suggest mesenchymal stem cells (MSCs) from various
tissues including human placenta MSCs (hpMSCs) for an alternative source, our
understanding of their therapeutic mechanisms is still limited. To expand our knowledge on
the MSC-mediated PD treatment, we here investigated the therapeutic mechanism of hpMSCs
and hpMSC-derived neural phenotype cells (hpNPCs) using a PD rat model. Whereas both
hpMSCs and hpNPCs protected DA neurons in the SNpc at comparable levels, the hpNPC
transplantation into 6-OHDA treated rats exhibited longer lasting recovery in motor
deficits than either the saline or the hpMSC treated rats. The injected hpNPCs induced
delta-like ligand (DLL)1 and neurotrophic factors, and influenced environments prone to
neuroprotection. Compared with hpMSCs, co-cultured hpNPCs more efficiently protected
primary neural precursor cells from midbrain against 6-OHDA as well as induced their
differentiation into DA neurons. Further experiments with conditioned media from hpNPCs
revealed that the secreted factors from hpNPCs modulated immune responses and neural
protection. Taken together, both DLL1-mediated contact signals and paracrine factors play
critical roles in hpNPC-mediated improvement. First showing here that hpMSCs and their
neural derivative hpNPCs were able to restore the PD-associated deficits via dual
mechanisms, neuroprotection and immunosuppression, this study expanded our knowledge of
therapeutic mechanisms in PD and other age-related diseases.
Collapse
Affiliation(s)
- Han Wool Kim
- 1 General Medical Research Institute, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Hyun-Seob Lee
- 1 General Medical Research Institute, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Jun Mo Kang
- 1 General Medical Research Institute, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Sang-Hun Bae
- 1 General Medical Research Institute, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea.,2 Department of Biotechnology, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Chul Kim
- 1 General Medical Research Institute, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Sang-Hun Lee
- 3 Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea
| | - Johannes Schwarz
- 4 German Center for Neurodegenerative Diseases (DZNE), Technical University Munich, Munich, Germany
| | - Gi Jin Kim
- 5 Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Jin-Su Kim
- 6 Molecular Imaging Research Center, Korea Institute Radiological and Medical Sciences, Seoul, Korea
| | - Dong Hyun Cha
- 7 Deparment of Ob and Gyn, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Joopyung Kim
- 8 Department of Neurosurgery, Bundang CHA Hospital, CHA University School of Medicine, Seongnam-si, Korea
| | - Sung Woon Chang
- 9 Department of Ob and Gyn, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Tae Hee Lee
- 10 Formulae Pharmacology Department, School of Oriental Medicine, Gachon University, Gyeonggi, Korea
| | - Jisook Moon
- 1 General Medical Research Institute, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea.,2 Department of Biotechnology, CHA University, Seongnam-si, Gyeonggi-do, Korea
| |
Collapse
|
10
|
Sonntag KC, Song B, Lee N, Jung JH, Cha Y, Leblanc P, Neff C, Kong SW, Carter BS, Schweitzer J, Kim KS. Pluripotent stem cell-based therapy for Parkinson's disease: Current status and future prospects. Prog Neurobiol 2018; 168:1-20. [PMID: 29653250 DOI: 10.1016/j.pneurobio.2018.04.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 03/13/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders, which affects about 0.3% of the general population. As the population in the developed world ages, this creates an escalating burden on society both in economic terms and in quality of life for these patients and for the families that support them. Although currently available pharmacological or surgical treatments may significantly improve the quality of life of many patients with PD, these are symptomatic treatments that do not slow or stop the progressive course of the disease. Because motor impairments in PD largely result from loss of midbrain dopamine neurons in the substantia nigra pars compacta, PD has long been considered to be one of the most promising target diseases for cell-based therapy. Indeed, numerous clinical and preclinical studies using fetal cell transplantation have provided proof of concept that cell replacement therapy may be a viable therapeutic approach for PD. However, the use of human fetal cells as a standardized therapeutic regimen has been fraught with fundamental ethical, practical, and clinical issues, prompting scientists to explore alternative cell sources. Based on groundbreaking establishments of human embryonic stem cells and induced pluripotent stem cells, these human pluripotent stem cells have been the subject of extensive research, leading to tremendous advancement in our understanding of these novel classes of stem cells and promising great potential for regenerative medicine. In this review, we discuss the prospects and challenges of human pluripotent stem cell-based cell therapy for PD.
Collapse
Affiliation(s)
- Kai-C Sonntag
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Laboratory for Translational Research on Neurodegeneration, 115 Mill Street, Belmont, MA, 02478, United States; Program for Neuropsychiatric Research, 115 Mill Street, Belmont, MA, 02478, United States
| | - Bin Song
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Nayeon Lee
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Jin Hyuk Jung
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Young Cha
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Pierre Leblanc
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Carolyn Neff
- Kaiser Permanente Medical Group, Irvine, CA, 92618, United States
| | - Sek Won Kong
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, United States; Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02115, United States
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, United States
| | - Jeffrey Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, United States.
| | - Kwang-Soo Kim
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States.
| |
Collapse
|