1
|
Chen Y, Wan G, Li Z, Liu X, Zhao Y, Zou L, Liu W. Endothelial progenitor cells in pregnancy-related diseases. Clin Sci (Lond) 2023; 137:1699-1719. [PMID: 37986615 PMCID: PMC10665129 DOI: 10.1042/cs20230853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Placental neovascularization plays a crucial role in fetomaternal circulation throughout pregnancy and is dysregulated in several pregnancy-related diseases, including preeclampsia, gestational diabetes mellitus, and fetal growth restriction. Endothelial progenitor cells (EPCs) are a heterogeneous population of cells that differentiate into mature endothelial cells, which influence vascular homeostasis, neovascularization, and endothelial repair. Since their discovery in 1997 by Asahara et al., the role of EPCs in vascular biology has garnered a lot of interest. However, although pregnancy-related conditions are associated with changes in the number and function of EPCs, the reported findings are conflicting. This review discusses the discovery, isolation, and classification of EPCs and highlights discrepancies between current studies. Overviews of how various diseases affect the numbers and functions of EPCs, the role of EPCs as biomarkers of pregnancy disorders, and the potential therapeutic applications involving EPCs are also provided.
Collapse
Affiliation(s)
- Yangyang Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gui Wan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zeyun Li
- The First Clinical School of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
2
|
Association of Plasma Irisin Levels with Circulating Endothelial Microparticles (EMPs) and Endothelial Progenitor Cells (EPCs) in Children Born Prematurely. Metabolites 2023; 13:metabo13010120. [PMID: 36677045 PMCID: PMC9861173 DOI: 10.3390/metabo13010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Prematurity has been linked with endothelial dysfunction in later life. The purpose of this study was to evaluate the association between plasma irisin, an adipomyokine reported to protect the functional integrity of vascular endothelium, and circulating endothelial microparticles (EMPs) and endothelial progenitor cells (EPCs), consisting early biomarkers of endothelial dysfunction, in preterm-born children. We studied 131 prepubertal children; 61 preterm and 70 born at term (controls). Plasma irisin was determined by ELISA. Circulating CD62E(+), CD144(+) and CD31(+)/CD42b(-) EMPs, and CD34(+)/VEGFR-2(+)/CD45(-) and CD34(+)/VEGFR-2(+)/CD45dim EPCs, were determined by flow cytometry. Body mass index, waist-to-hip ratio, neck circumference, systolic and diastolic blood pressure, and biochemical parameters (glucose, lipids, insulin, HOMA-IR) were also evaluated. Plasma irisin was significantly lower (p = 0.001), whereas circulating EMPs and EPCs were higher, in children born prematurely compared to controls. Irisin was recognized as independent predictor for CD144(+) and CD31(+)/CD42b(-) EMPs, CD34(+)/VEGFR-2(+)/CD45(-) and CD34(+)/VEGFR-2(+)/CD45dim EPCs in the total study population, and for CD31(+)/CD42b(-) EMPs in the preterm group. In conclusion, plasma irisin correlates independently with circulating EMP and EPC subpopulations in prepubertal children and in preterm-born ones. Further studies in children will potentially elucidate the link between irisin and the primary stages of prematurity-related endothelial dysfunction.
Collapse
|
3
|
Tan CMJ, Lewandowski AJ, Williamson W, Huckstep OJ, Yu GZ, Fischer R, Simon JN, Alsharqi M, Mohamed A, Leeson P, Bertagnolli M. Proteomic Signature of Dysfunctional Circulating Endothelial Colony-Forming Cells of Young Adults. J Am Heart Assoc 2021; 10:e021119. [PMID: 34275329 PMCID: PMC8475699 DOI: 10.1161/jaha.121.021119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Background A subpopulation of endothelial progenitor cells called endothelial colony-forming cells (ECFCs) may offer a platform for cellular assessment in clinical studies because of their remarkable angiogenic and expansion potentials in vitro. Despite endothelial cell function being influenced by cardiovascular risk factors, no studies have yet provided a comprehensive proteomic profile to distinguish functional (ie, more angiogenic and expansive cells) versus dysfunctional circulating ECFCs of young adults. The aim of this study was to provide a detailed proteomic comparison between functional and dysfunctional ECFCs. Methods and Results Peripheral blood ECFCs were isolated from 11 subjects (45% men, aged 27±5 years) using Ficoll density gradient centrifugation. ECFCs expressed endothelial and progenitor surface markers and displayed cobblestone-patterned morphology with clonal and angiogenic capacities in vitro. ECFCs were deemed dysfunctional if <1 closed tube formed during the in vitro tube formation assay and proliferation rate was <20%. Hierarchical functional clustering revealed distinct ECFC proteomic signatures between functional and dysfunctional ECFCs with changes in cellular mechanisms involved in exocytosis, vesicle transport, extracellular matrix organization, cell metabolism, and apoptosis. Targeted antiangiogenic proteins in dysfunctional ECFCs included SPARC (secreted protein acidic and rich in cysteine), CD36 (cluster of differentiation 36), LUM (lumican), and PTX3 (pentraxin-related protein PYX3). Conclusions Circulating ECFCs with impaired angiogenesis and expansion capacities have a distinct proteomic profile and significant phenotype changes compared with highly angiogenic endothelial cells. Impaired angiogenesis in dysfunctional ECFCs may underlie the link between endothelial dysfunction and cardiovascular disease risks in young adults.
Collapse
Affiliation(s)
- Cheryl M. J. Tan
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Adam J. Lewandowski
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Wilby Williamson
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Odaro J. Huckstep
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Department of BiologyUnited States Air Force AcademyColorado SpringsCOUSA
| | - Grace Z. Yu
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Roman Fischer
- Target Discovery Institute (TDI) Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Jillian N. Simon
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Maryam Alsharqi
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Department of Cardiac TechnologyImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
| | - Afifah Mohamed
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Department of Diagnostic Imaging & Applied Health Sciences, Faculty of Health SciencesUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Paul Leeson
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Mariane Bertagnolli
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Montreal Hospital Sacré‐Cœur Research CentreCentre Intégré Universitaire de Santé et de Services Sociaux du Nord‐de‐l'Île‐de‐MontréalMontréalQCCanada
- School of Physical and Occupational Therapy, Faculty of MedicineMcGill UniversityMontréalQCCanada
| |
Collapse
|
4
|
Markopoulou P, Papanikolaou E, Loukopoulou S, Galina P, Mantzou A, Siahanidou T. Increased circulating endothelial progenitor cells (EPCs) in prepubertal children born prematurely: a possible link between prematurity and cardiovascular risk. Pediatr Res 2021; 90:156-165. [PMID: 33038874 DOI: 10.1038/s41390-020-01190-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/17/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) ensure vascular integrity and neovascularization. No studies have investigated EPCs in preterm-born children beyond infancy. METHODS One hundred and thirty-six prepubertal children were enrolled: 63 preterm and 73 born at term (controls). Circulating CD34(+)/VEGFR-2(+)/CD45(-) and CD34(+)/VEGFR-2(+)/CD45dim EPCs were measured in preterm-born children compared to controls. Body mass index (BMI), waist-to-hip ratio (WHR), neck circumference, systolic and diastolic blood pressure (SBP and DBP, respectively), fasting glucose, insulin, lipid profile, common carotid and abdominal aortic intima-media thickness (cIMT and aIMT, respectively), endothelium-dependent brachial artery flow-mediated dilation (FMD), and echocardiographic parameters were also assessed. RESULTS Circulating CD34(+)/VEGFR-2(+)/CD45(-) and CD34(+)/VEGFR-2(+)/CD45dim EPCs were significantly higher in preterm-born children compared to controls (p < 0.001 and p < 0.001, respectively). In total study population and in the preterm-born group, EPCs were significantly lower in children born to mothers with gestational diabetes compared to non-diabetic mothers. Prematurity was associated with higher WHR, neck circumference, SBP, DBP, cIMT, aIMT, mean pressure, and velocity of pulmonary artery; the peak velocity of the brachial artery was significantly lower in children born prematurely. In multiple regression analysis, preterm birth and maternal gestational diabetes were recognized as independent predictors of EPCs. CONCLUSIONS Circulating EPCs were increased in prepubertal preterm-born children in comparison with peers born full-term. Maternal gestational diabetes was associated with a decrease in EPCs. IMPACT Mounting evidence supports the adverse effect of prematurity on cardiovascular health. However, the underlying mechanisms that could lead to endothelial dysfunction in preterm-born individuals are not fully understood. Endothelial progenitor cells (EPCs) ensure vascular integrity, normal endothelial function and neovascularization. No studies have investigated the EPCs counts in peripheral blood beyond infancy in children born prematurely. Circulating EPCs were significantly higher in preterm-born prepubertal children compared to controls, thus indicating that prematurity is possibly associated with endothelial damage. In total study population and in the preterm-born group, maternal gestational diabetes was associated with decreased EPCs concentrations.
Collapse
Affiliation(s)
- Panagiota Markopoulou
- Neonatal Unit, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Papanikolaou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofia Loukopoulou
- Department of Cardiology, "Agia Sofia" Children's Hospital, Athens, Greece
| | - Paraskevi Galina
- Radiology Department, "Agia Sofia" Children's Hospital, Athens, Greece
| | - Aimilia Mantzou
- Unit of Clinical and Translational Research in Endocrinology, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Tania Siahanidou
- Neonatal Unit, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
5
|
Desjarlais M, Ruknudin P, Wirth M, Lahaie I, Dabouz R, Rivera JC, Habelrih T, Omri S, Hardy P, Rivard A, Chemtob S. Tyrosine-Protein Phosphatase Non-receptor Type 9 (PTPN9) Negatively Regulates the Paracrine Vasoprotective Activity of Bone-Marrow Derived Pro-angiogenic Cells: Impact on Vascular Degeneration in Oxygen-Induced Retinopathy. Front Cell Dev Biol 2021; 9:679906. [PMID: 34124069 PMCID: PMC8194284 DOI: 10.3389/fcell.2021.679906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Aim Insufficient post-ischemic neovascularization is an initial key step in the pathogenesis of Oxygen-Induced Retinopathy (OIR). During neovascularization, pro-angiogenic cells (PACs) are mobilized from the bone marrow and integrate into ischemic tissues to promote angiogenesis. However, the modulation of PAC paracrine activity during OIR and the specific mechanisms involved remain to be explored. Because Tyrosine-protein phosphatase non-receptor type 9 (PTPN9) is reported to be a negative regulator of stem cell differentiation and angiogenesis signaling, we investigated its effect on PAC activity in the context of OIR. Methods and Results In a rat model of OIR, higher levels of PTPN9 in the retina and in bone marrow derived PACs are associated with retinal avascular areas, lower levels of the mobilization factor SDF-1 and decreased number of CD34+/CD117+/CD133+ PACs. PACs exposed ex vivo to hyperoxia display increased PTPN9 expression, which is associated with impaired ability of PAC secretome to promote angiogenesis ex vivo (choroidal vascular sprouting) and in vitro (endothelial cell tubule formation) compared to the secretome of PACs maintained in normoxia. Suppression of PTPN9 (using siRNA) increases VEGF and SDF-1 expression to normalize PAC secretome during hyperoxia, leading to restored angiogenic ability of PAC secretome. Moreover, endothelial cells exposed to the secretome of siPTPN9-treated PACs expressed increased levels of activated form of VEGF receptor 2 (VEGFR2). In the rat model of OIR, intravitreal injection of secretome from siPTPN9-treated PACs significantly reduced retinal vaso-obliteration; this was associated with higher retinal levels of VEGF/SDF-1, and increased recruitment of PACs (CD34+ cells) to the retinal and choroidal vessels. Conclusion Our results suggest that hyperoxia alters the paracrine proangiogenic activity of BM-PACs by inducing PTPN9, which can contribute to impair post-ischemic revascularization in the context of OIR. Targeting PTPN9 restores PAC angiogenic properties, and provide a new target for vessel integrity in ischemic retinopathies.
Collapse
Affiliation(s)
- Michel Desjarlais
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Pakiza Ruknudin
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Maëlle Wirth
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Rabah Dabouz
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - José Carlos Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Tiffany Habelrih
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Samy Omri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Pierre Hardy
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alain Rivard
- Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| |
Collapse
|
6
|
Zhong XQ, Yan Q, Chen ZG, Jia CH, Li XH, Liang ZY, Gu J, Wei HL, Lian CY, Zheng J, Cui QL. Umbilical Cord Blood-Derived Exosomes From Very Preterm Infants With Bronchopulmonary Dysplasia Impaired Endothelial Angiogenesis: Roles of Exosomal MicroRNAs. Front Cell Dev Biol 2021; 9:637248. [PMID: 33842462 PMCID: PMC8027316 DOI: 10.3389/fcell.2021.637248] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Premature infants have a high risk of bronchopulmonary dysplasia (BPD), which is characterized by abnormal development of alveoli and pulmonary vessels. Exosomes and exosomal miRNAs (EXO-miRNAs) from bronchoalveolar lavage fluid are involved in the development of BPD and might serve as predictive biomarkers for BPD. However, the roles of exosomes and EXO-miRNAs from umbilical cord blood of BPD infants in regulating angiogenesis are yet to be elucidated. In this study, we showed that umbilical cord blood-derived exosomes from BPD infants impaired angiogenesis in vitro. Next-generation sequencing of EXO-miRNAs from preterm infants without (NBPD group) or with BPD (BPD group) uncovered a total of 418 differentially expressed (DE) EXO-miRNAs. These DE EXO-miRNAs were primarily enriched in cellular function-associated pathways including the PI3K/Akt and angiogenesis-related signaling pathways. Among those EXO-miRNAs which are associated with PI3K/Akt and angiogenesis-related signaling pathways, BPD reduced the expression of hsa-miR-103a-3p and hsa-miR-185-5p exhibiting the most significant reduction (14.3% and 23.1% of NBPD group, respectively); BPD increased hsa-miR-200a-3p expression by 2.64 folds of the NBPD group. Furthermore, overexpression of hsa-miR-103a-3p and hsa-miR-185-5p in normal human umbilical vein endothelial cells (HUVECs) significantly enhanced endothelial cell proliferation, tube formation, and cell migration, whereas overexpressing hsa-miR-200a-3p inhibited these cellular responses. This study demonstrates that exosomes derived from umbilical cord blood of BPD infants impair angiogenesis, possibly via DE EXO-miRNAs, which might contribute to the development of BPD.
Collapse
Affiliation(s)
- Xin-Qi Zhong
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Qin Yan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhuang-Gui Chen
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chun-Hong Jia
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiu-Hong Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zi-Yan Liang
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Gu
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui-Ling Wei
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chang-Yu Lian
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Qi-Liang Cui
- Department of Neonatology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| |
Collapse
|
7
|
Crisafulli A, Bassareo PP, Kelleher S, Calcaterra G, Mercuro G. Factors Predisposing to Hypertension in Subjects Formerly Born Preterm: Renal Impairment, Arterial Stiffness, Endothelial Dysfunction or Something Else? Curr Hypertens Rev 2020; 16:82-90. [PMID: 31244440 PMCID: PMC7499358 DOI: 10.2174/1573402115666190627140523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 12/23/2022]
Abstract
Subjects formerly born preterm subsequently develop arterial - particularly isolated systolic- hypertension more frequently than their peers born at term. Numerous factors may influence this predisposition, including an incomplete nephrogenesis, implying the presence of kidneys with a reduced number of nephrons and consequent reduction in haematic filtration, increased sodium absorption and activation of renin-angiotensin-aldosterone system, increased arterial rigidity produced by an elastin deficiency previously observed in anatomic specimens of human immature aorta, and reduced endothelial nitric oxide excretion, due to high blood levels of ADMA, a strong direct inhibitor of nitric oxide that exerts a vasoconstrictor effect. Other possible factors (i.e. excretion of neuroendocrine compounds) may also be implicated. The aim of this paper was to review all possible mechanisms involved in the observed increase in blood pressure in individuals who had been born preterm and/or with intrauterine growth restriction. The outlook for new and promising laboratory techniques capable of identifying alterations in the metabolic pathways regulating blood pressure levels, such as metabolomics, is also provided.
Collapse
Affiliation(s)
- Antonio Crisafulli
- Department of Medical Sciences and Public Health, Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | | | - Sean Kelleher
- Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | | | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
8
|
Differential Secretion of Angiopoietic Factors and Expression of MicroRNA in Umbilical Cord Blood from Healthy Appropriate-For-Gestational-Age Preterm and Term Newborns- in Search of Biomarkers of Angiogenesis-Related Processes in Preterm Birth. Int J Mol Sci 2020; 21:ijms21041305. [PMID: 32075190 PMCID: PMC7072966 DOI: 10.3390/ijms21041305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Objectives: Premature birth, defined as less than 37 weeks gestation, affects approximately 12% of all live births around the world. Advances in neonatal care have resulted in the increased survival of infants born prematurely. Although prematurity is a known risk factor for different cardiovascular diseases, little is known about the pathophysiology of vasculature during premature gestation and angiopoietic factors network during premature birth. Aims: The objective of this study was to determine whether the profile of several pro-angiogenic and anti-angiogenic factors in umbilical cord blood (UCB) is different in healthy appropriate-for-gestational-age preterm newborns and normal term babies. The second aim of this study was to investigate the microRNA (miRNAs) expression profile in UCB from preterm labor and to detect miRNAs potentially taking part in control of angogenesis-related processes (Angio-MiRs). Methods: Using an immunobead Luminex assay, we simultaneously measured the concentration of Angiogenin, Angiopoietin-1, FGF-acidic, FGF-basic, PDGF-aa, PlGF, VEGF, VEGF-D, Endostatin, Thrombospondin-2, NGF, BDNF, GDNF, and NT-4 in UCB samples collected from the preterm (n = 27) and term (n = 52) delivery. In addition, the global microRNA expression in peripheral blood mononuclear cells (PBMCs) circulating in such UCB samples was examined in this study using microarray MiRNA technique. Results: The concentrations of five from eight measured pro-angiogenic factors (VEGF, Angiopoietin-1, PDGF-AA, FGF-a, and FGF-b) were significantly lower in UCB from preterm newborns. On the contrary, two angiostatic factors (Endostatin and Thrombospondin-2) were significantly up-regulated in preterm UCB. Among analyzed neurotrophins in preterm newborns, the elevated UCB concentration was found only in the case of GDNF, whereas BDNF was significantly reduced. Moreover, two angiopoietic factors, VEGF-D and PlGF, and two neurotrophins, NT4 and NGF, did not differ in concentration in preterm and term babies. We also discovered that among the significantly down-regulated miRNAs, there were several classical Angio-MiRs (inter alia MiR-125, MiR-126, MiR-145, MiR-150, or MiR155), which are involved in angiogenesis regulation in newborn after preterm delivery. Conclusions: This is the first report of simultaneous measurements of several angiopoietic factors in UCB collected from infants during preterm and term labor. Here, we observed that several pro-angiogenic factors were at lower concentration in UCB collected from preterm newborns than term babies. In contrast, the two measured angiostatic factors, Endostatin and Thrombospondin-2, were significantly higher in UCB from preterm babies. This can suggest that distinct pathophysiological contributions from differentially expressed various angiopoietic factors may determine the clinical outcomes after preterm birth. Especially, our angiogenesis-related molecules analysis indicates that preterm birth of healthy, appropriate-for-gestational-age newborns is an “anti-angiogenic state” that may provide an increased risk for improper development and function of cardiovascular system in the adulthood. This work also contributes to a better understanding of the role of miRNAs potentially involved in angiogenesis control in preterm newborns.
Collapse
|
9
|
Jia J, Ma B, Wang S, Feng L. Therapeutic Potential of Endothelial Colony Forming Cells Derived from Human Umbilical Cord Blood. Curr Stem Cell Res Ther 2020; 14:460-465. [PMID: 30767752 DOI: 10.2174/1574888x14666190214162453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/06/2019] [Accepted: 01/24/2019] [Indexed: 02/08/2023]
Abstract
Endothelial progenitor cells (EPCs) are implicated in multiple biologic processes such as vascular homeostasis, neovascularization and tissue regeneration, and tumor angiogenesis. A subtype of EPCs is referred to as endothelial colony-forming cells (ECFCs), which display robust clonal proliferative potential and can form durable and functional blood vessels in animal models. In this review, we provide a brief overview of EPCs' characteristics, classification and origins, a summary of the progress in preclinical studies with regard to the therapeutic potential of human umbilical cord blood derived ECFCs (CB-ECFCs) for ischemia repair, tissue engineering and tumor, and highlight the necessity to select high proliferative CB-ECFCs and to optimize their recovery and expansion conditions.
Collapse
Affiliation(s)
- Jing Jia
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| | - Baitao Ma
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R., China
| | - Shaoshuai Wang
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| | - Ling Feng
- Department of Obstetrics and Gynaecology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R., China
| |
Collapse
|
10
|
Bui KCT, Kim R, Abbasi A, Nguyen M, Villosis MF, Chen Q. Erythropoietin treatment is associated with a reduction in moderate to severe bronchopulmonary dysplasia in preterm infants. A regional retrospective study. Early Hum Dev 2019; 137:104831. [PMID: 31374455 DOI: 10.1016/j.earlhumdev.2019.104831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/21/2019] [Accepted: 07/24/2019] [Indexed: 11/26/2022]
Abstract
UNLABELLED Erythropoietin treatment is associated with a reduction in moderate to severe bronchopulmonary dysplasia in preterm infants. A regional retrospective study. OBJECTIVE To determine whether premature infants treated with erythropoietin (Epo) in the neonatal period for anemia had a lower incidence of bronchopulmonary dysplasia (BPD), defined as oxygen need at 36 weeks postmenstrual age, and lower rehospitalization rates in the first year of life than infants not exposed. METHODS Retrospective study of a population of infants born at 23 to 32 weeks gestational age, between January 2009 and December 2014, with birthweight ≤1500 g. Patient characteristics, and risk factors for BPD were compared between patients who received erythropoietin, and those not exposed. To examine the association between the outcomes of BPD at 36 weeks PMA, rehospitalization, and erythropoietin treatment, we performed a propensity score (PS) analysis using inverse probability of treatment weighted (IPTW) approach. For comparison, we conducted a logistic regression adjusting for the same covariates used to generate PS using the original population. RESULTS The study population included 1821 preterm infants: 928 received Epo and 893 did not. Epo treatment was associated with a reduction in BPD (18.8% versus 25.9%, p < 0.01) at 36 weeks PMA and reduced median length of stay with lowest BPD rate with Epo initiation before 2 weeks of age. There was no difference in rehospitalization rates in the first year of life. CONCLUSION Erythropoietin treatment was associated with a reduction in BPD but not in rehospitalization rate in the first year of life.
Collapse
Affiliation(s)
- Kim Chi T Bui
- Department of Pediatrics, Kaiser Permanente Los Angeles, United States of America.
| | - Romina Kim
- Department of Pediatrics, Kaiser Permanente Los Angeles, United States of America
| | | | | | | | - Qiaoling Chen
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, United States of America
| |
Collapse
|
11
|
Moutzouri S, Mataftsi A, Koutsimpogeorgos D, Soubasi V. Endothelial progenitor cells in preterm infants with retinopathy of prematurity. J Cell Biochem 2019; 120:12192-12193. [PMID: 31033010 DOI: 10.1002/jcb.28718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/06/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Stella Moutzouri
- Department of Ophthalmology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Asimina Mataftsi
- Department of Ophthalmology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Vasiliki Soubasi
- Department of Neonatology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Rafat N, Patry C, Sabet U, Viergutz T, Weiss C, Tönshoff B, Beck G, Schaible T. Endothelial Progenitor and Mesenchymal Stromal Cells in Newborns With Congenital Diaphragmatic Hernia Undergoing Extracorporeal Membrane Oxygenation. Front Pediatr 2019; 7:490. [PMID: 31824902 PMCID: PMC6882772 DOI: 10.3389/fped.2019.00490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/07/2019] [Indexed: 02/03/2023] Open
Abstract
Background: Endothelial progenitor (EPC) and mesenchymal stromal cells (MSC) can regenerate damaged endothelium and thereby improve pulmonary endothelial dysfunction. We do not know, how extracorporeal membrane oxygenation (ECMO) might affect EPC- and MSC-mediated regenerative pathways in patients with congenital diaphragmatic hernia (CDH). Therefore, we investigated, if ECMO support impacts EPC and MSC numbers in CDH patients. Methods: Peripheral blood mononuclear cells from newborns with ECMO-dependent (n = 18) and ECMO-independent CDH (n = 12) and from healthy controls (n = 12) were isolated. The numbers of EPC and MSC were identified by flowcytometry. Serum levels of vascular endothelial growth factor (VEGF) and angiopoietin (Ang)-2 were determined. Results: EPC and MSC were elevated in newborns with CDH. ECMO-dependent infants had higher EPC subpopulation counts (2,1-7,6-fold) before treatment compared to ECMO-independent infants. In the disease course, EPC and MSC subpopulation counts in ECMO-dependent infants were lower than before ECMO initiation. During ECMO, VEGF serum levels were significantly reduced (by 90.5%) and Ang2 levels significantly increased (by 74.8%). Conclusions: Our data suggest that ECMO might be associated with a rather impaired mobilization of EPC and MSC and with a depression of VEGF serum levels in newborns with CDH.
Collapse
Affiliation(s)
- Neysan Rafat
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany.,Department of Pharmaceutical Sciences, Bahá'í Institute of Higher Education (BIHE), Teheran, Iran
| | - Christian Patry
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Ursula Sabet
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Tim Viergutz
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christel Weiss
- Department for Medical Statistics and Biomathematics, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Grietje Beck
- Department of Anesthesiology, Helios Dr. Horst-Schmidt Clinic, Wiesbaden, Germany
| | - Thomas Schaible
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
13
|
Lu W, Li X. PDGFs and their receptors in vascular stem/progenitor cells: Functions and therapeutic potential in retinal vasculopathy. Mol Aspects Med 2018; 62:22-32. [DOI: 10.1016/j.mam.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
|
14
|
Bertagnolli M, Xie LF, Paquette K, He Y, Cloutier A, Fernandes RO, Béland C, Sutherland MR, Delfrate J, Curnier D, Bigras JL, Rivard A, Thébaud B, Luu TM, Nuyt AM. Endothelial Colony-Forming Cells in Young Adults Born Preterm: A Novel Link Between Neonatal Complications and Adult Risks for Cardiovascular Disease. J Am Heart Assoc 2018; 7:JAHA.118.009720. [PMID: 29987124 PMCID: PMC6064846 DOI: 10.1161/jaha.118.009720] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Preterm birth is linked to cardiovascular risks and diseases. Endothelial progenitor cells play a critical role in vascular development and repair. Cord blood endothelial progenitor cells of preterm-born infants, especially endothelial colony-forming cells (ECFC), show enhanced susceptibility to prematurity-related pro-oxidant stress. Whether ECFC dysfunction is present in adulthood following preterm birth is unknown. METHODS AND RESULTS This cross-sectional observational study includes 55 preterm-born (≤29 gestational weeks) young adults (18-29 years old, 38% male) and 55 sex- and age-matched full-term controls. ECFC were isolated from peripheral blood; cell proliferative and vascular cord formation capacities were assessed in vitro. Daytime systolic blood pressure was higher, whereas glucose tolerance and body mass index were lower in preterm-born subjects. ECFC colonies grew in culture for 62% of full-term- and 58% of preterm-born participants. Preterm-born participants have formed ECFC colonies later in culture and have reduced proliferation compared with controls. Only in preterm-born individuals, we observed that the later the ECFC colony grows in culture, the worse was overall ECFC function. In addition, in preterms, elevated systolic blood pressure significantly correlated with reduced ECFC proliferation (rS=-0.463; P=0.030) and numbers of branches formed on matrigel (rS=-0.443; P=0.039). In preterm-born subjects, bronchopulmonary dysplasia was associated with impaired ECFC function, whereas exposure to antenatal steroids related to better ECFC function. CONCLUSIONS This study is the first to examine ECFC in preterm-born adults and to demonstrate ECFC dysfunction compared with full-term controls. In the preterm-born group, ECFC dysfunction was associated with bronchopulmonary dysplasia, the major prematurity-related neonatal morbidity, and with increased systolic blood pressure into adulthood.
Collapse
Affiliation(s)
- Mariane Bertagnolli
- Sainte-Justine University Hospital Research Center, Université de Montréal, Quebec, Canada.,Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Île-de-Montréal, Hôpital du Sacré-Cœur de Montréal Research Center, Université de Montréal, Quebec, Canada.,Department of Kinesiology, Université de Montréal, Quebec, Canada
| | - Li Feng Xie
- Sainte-Justine University Hospital Research Center, Université de Montréal, Quebec, Canada
| | - Katryn Paquette
- Sainte-Justine University Hospital Research Center, Université de Montréal, Quebec, Canada.,Division of Neonatology, Department of Pediatrics, Sainte-Justine University Hospital Université de Montréal, Quebec, Canada
| | - Ying He
- Sainte-Justine University Hospital Research Center, Université de Montréal, Quebec, Canada
| | - Anik Cloutier
- Sainte-Justine University Hospital Research Center, Université de Montréal, Quebec, Canada
| | | | - Chanel Béland
- Sainte-Justine University Hospital Research Center, Université de Montréal, Quebec, Canada
| | - Megan R Sutherland
- Sainte-Justine University Hospital Research Center, Université de Montréal, Quebec, Canada
| | - Jacques Delfrate
- Sainte-Justine University Hospital Research Center, Université de Montréal, Quebec, Canada.,Department of Kinesiology, Université de Montréal, Quebec, Canada
| | - Daniel Curnier
- Sainte-Justine University Hospital Research Center, Université de Montréal, Quebec, Canada.,Department of Kinesiology, Université de Montréal, Quebec, Canada
| | - Jean-Luc Bigras
- Sainte-Justine University Hospital Research Center, Université de Montréal, Quebec, Canada.,Division of Cardiology, Department of Pediatrics, Sainte-Justine University Hospital Université de Montréal, Quebec, Canada
| | - Alain Rivard
- Division of Cardiology, Department of Medicine, CHUM Research Center, Montréal, Canada
| | - Bernard Thébaud
- Department of Pediatrics, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Thuy Mai Luu
- Sainte-Justine University Hospital Research Center, Université de Montréal, Quebec, Canada.,Division of General Pediatrics, Department of Pediatrics, Sainte-Justine University Hospital and Research Center, Université de Montréal, Quebec, Canada
| | - Anne Monique Nuyt
- Sainte-Justine University Hospital Research Center, Université de Montréal, Quebec, Canada .,Division of Neonatology, Department of Pediatrics, Sainte-Justine University Hospital Université de Montréal, Quebec, Canada
| |
Collapse
|
15
|
Stem cell biology and regenerative medicine for neonatal lung diseases. Pediatr Res 2018; 83:291-297. [PMID: 28922348 DOI: 10.1038/pr.2017.232] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/18/2017] [Indexed: 01/01/2023]
Abstract
Lung diseases remain one of the main causes of morbidity and mortality in neonates. Cell therapy and regenerative medicine have the potential to revolutionize the management of life-threatening and debilitating lung diseases that currently lack effective treatments. Over the past decade, the repair capabilities of stem/progenitor cells have been harnessed to prevent/rescue lung damage in experimental neonatal lung diseases. Mesenchymal stromal cells and amnion epithelial cells exert pleiotropic effects and represent ideal therapeutic cells for bronchopulmonary dysplasia, a multifactorial disease. Endothelial progenitor cells are optimally suited to promote lung vascular growth and attenuate pulmonary hypertension in infants with congenital diaphragmatic hernia or a vascular bronchopulmonary dysplasia phenotype. Induced pluripotent stem cells (iPSCs) are one of the most exciting breakthroughs of the past decade. Patient-specific iPSCs can be derived from somatic cells and differentiated into any cell type. iPSCs can be capitalized upon to develop personalized regenerative cell products for surfactant protein deficiencies-lethal lung disorders without treatment-that affect a single gene in a single cell type and thus lend themselves to phenotype-specific cell replacement. While the clinical translation has begun, more needs to be learned about the biology of these repair cells to make this translation successful.
Collapse
|
16
|
Neonatal exposure to high oxygen levels leads to impaired ischemia-induced neovascularization in adulthood. Sci Rep 2017; 7:14143. [PMID: 29075011 PMCID: PMC5658429 DOI: 10.1038/s41598-017-14396-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/10/2017] [Indexed: 02/02/2023] Open
Abstract
Adverse perinatal conditions can lead to developmental programming of cardiovascular diseases. Prematurely born infants are often exposed to high oxygen levels, which in animal models has been associated with endothelial dysfunction, hypertension, and cardiac remodeling during adulthood. Here we found that adult mice that have been transiently exposed to O2 after birth show defective neovasculariation after hindlimb ischemia, as demonstrated by impaired blood flow recovery, reduced vascular density in ischemic muscles and increased tissue damages. Ischemic muscles isolated from mice exposed to O2 after birth exhibit increased oxidative stress levels and reduced expression of superoxide dismutase 1 (SOD1) and vascular endothelial growth factor (VEGF). Pro-angiogenic cells (PACs) have been shown to have an important role for postnatal neovascularisation. We found that neonatal exposure to O2 is associated with reduced number of PACs in adults. Moreover, the angiogenic activities of both PACs and mature mouse aortic endothelial cells (MAECs) are significantly impaired in mice exposed to hyperoxia after birth. Our results indicate that neonatal exposure to high oxygen levels leads to impaired ischemia-induced neovascularization during adulthood. The mechanism involves deleterious effects on oxidative stress levels and angiogenic signals in ischemic muscles, together with dysfunctional activities of PACs and mature endothelial cells.
Collapse
|
17
|
Long intergenic noncoding RNA 00305 sponges miR-136 to regulate the hypoxia induced apoptosis of vascular endothelial cells. Biomed Pharmacother 2017; 94:238-243. [DOI: 10.1016/j.biopha.2017.07.099] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022] Open
|
18
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
19
|
Biogenesis of Pro-senescent Microparticles by Endothelial Colony Forming Cells from Premature Neonates is driven by SIRT1-Dependent Epigenetic Regulation of MKK6. Sci Rep 2017; 7:8277. [PMID: 28811647 PMCID: PMC5557933 DOI: 10.1038/s41598-017-08883-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022] Open
Abstract
Senescent cells may exert detrimental effect on microenvironment through the secretion of soluble factors and the release of extracellular vesicles, such as microparticles, key actors in ageing and cardiovascular diseases. We previously reported that sirtuin-1 (SIRT1) deficiency drives accelerated senescence and dysfunction of endothelial colony-forming cells (ECFC) in PT neonates. Because preterm birth (PT) increases the risk for cardiovascular diseases during neonatal period as well as at adulthood, we hypothesized that SIRT1 deficiency could control the biogenesis of microparticles as part of a senescence–associated secretory phenotype (SASP) of PT-ECFC and investigated the related molecular mechanisms. Compared to control ECFC, PT-ECFC displayed a SASP associated with increased release of endothelial microparticles (EMP), mediating a paracrine induction of senescence in naïve endothelial cells. SIRT1 level inversely correlated with EMP release and drives PT-ECFC vesiculation. Global transcriptomic analysis revealed changes in stress response pathways, specifically the MAPK pathway. We delineate a new epigenetic mechanism by which SIRT1 deficiency regulates MKK6/p38MAPK/Hsp27 pathway to promote EMP biogenesis in senescent ECFC. These findings deepen our understanding of the role of ECFC senescence in the disruption of endothelial homeostasis and provide potential new targets towards the control of cardiovascular risk in individuals born preterm.
Collapse
|
20
|
Nobile S, Marchionni P, Carnielli VP. Neonatal outcome of small for gestational age preterm infants. Eur J Pediatr 2017; 176:1083-1088. [PMID: 28660312 DOI: 10.1007/s00431-017-2957-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 11/30/2022]
Abstract
UNLABELLED Small for gestational age (SGA) preterm neonates (birth weight < -2 SDS) are considered to have increased risk of bronchopulmonary dysplasia (BPD) compared to appropriate for GA (AGA) neonates. It is unclear if SGA infants have increased risk for respiratory distress syndrome (RDS) and mortality. We analyzed data from 515 neonates born <30 weeks GA, 98(19%) were SGA. SGA were compared to AGA by univariate analysis and logistic regression analysis (LRA). Significant variables at univariate analysis were IUGR (67 vs 7%, p = 0.000), chorioamnionitis (1 vs 13%, p = 0.017), pre-eclampsia (62 vs 18%, p = 0.000), surfactant retreatment (47 vs 25%, p = 0.000), BPD (32 vs 20%, p = 0.015), death (30 vs 12%, p = 0.000), SatO2/FiO2 on day 3 (376 vs 433, p = 0.013), and SatO2/FiO2 ratio on day 28 (400 vs 448, p = 0.000). LRA found the following associations: regarding mortality, a decreased Sat/FiO2 ratio on day 3 (OR 1.99, 95% CI 1.26-3.16, p = 0.003); regarding BPD, surfactant retreatment (3.70, 2.11-6.49, p = 0.000), being SGA (2.69, 1.36-5.36, p = 0.005), decreasing GA (1.05, 1.03-1.08, p = 0.000), decreasing SatO2/FiO2 ratio on day 3 (1.25, 1.11-1.40, p = 0.000); and regarding severe RDS, pre-eclampsia (2.68, 1.58-4.55, p = 0.000) and decreasing GA (1.06, 1.04-1.08, p = 0.000). CONCLUSIONS In our cohort of preterm infants, being SGA was significantly associated with BPD, but not with increased risk of mortality or RDS due to multiple pathophysiologic mechanisms. What is Known: • Small for gestational age preterm neonates are considered to have increased risk of bronchopulmonary dysplasia (BPD) compared to appropriate for GA neonates. • It is still unclear if SGA infants have increased risk for respiratory distress syndrome (RDS) and mortality. What is New: • In our cohort of 515 preterm infants (19% SGA), being SGA was significantly associated with BPD, but not with increased risk of mortality or RDS. • These results may be explained by the heterogeneity of mechanisms leading to SGA condition and by multiple mechanisms involving lung growth impairment and other factors.
Collapse
Affiliation(s)
- Stefano Nobile
- Department of Maternal and Child Health, Salesi Children's Hospital, Ancona, Italy.
| | - Paolo Marchionni
- Department of Maternal and Child Health, Salesi Children's Hospital, Ancona, Italy.,Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Virgilio P Carnielli
- Department of Maternal and Child Health, Salesi Children's Hospital, Ancona, Italy
| |
Collapse
|
21
|
Collins JJP, Tibboel D, de Kleer IM, Reiss IKM, Rottier RJ. The Future of Bronchopulmonary Dysplasia: Emerging Pathophysiological Concepts and Potential New Avenues of Treatment. Front Med (Lausanne) 2017; 4:61. [PMID: 28589122 PMCID: PMC5439211 DOI: 10.3389/fmed.2017.00061] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Yearly more than 15 million babies are born premature (<37 weeks gestational age), accounting for more than 1 in 10 births worldwide. Lung injury caused by maternal chorioamnionitis or preeclampsia, postnatal ventilation, hyperoxia, or inflammation can lead to the development of bronchopulmonary dysplasia (BPD), one of the most common adverse outcomes in these preterm neonates. BPD patients have an arrest in alveolar and microvascular development and more frequently develop asthma and early-onset emphysema as they age. Understanding how the alveoli develop, and repair, and regenerate after injury is critical for the development of therapies, as unfortunately there is still no cure for BPD. In this review, we aim to provide an overview of emerging new concepts in the understanding of perinatal lung development and injury from a molecular and cellular point of view and how this is paving the way for new therapeutic options to prevent or treat BPD, as well as a reflection on current treatment procedures.
Collapse
Affiliation(s)
- Jennifer J P Collins
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Ismé M de Kleer
- Division of Pediatric Pulmonology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
22
|
Möbius MA, Thébaud B. Bronchopulmonary Dysplasia: Where Have All the Stem Cells Gone?: Origin and (Potential) Function of Resident Lung Stem Cells. Chest 2017; 152:1043-1052. [PMID: 28479114 DOI: 10.1016/j.chest.2017.04.173] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/05/2017] [Accepted: 04/25/2017] [Indexed: 12/12/2022] Open
Abstract
Celebrating its 50th anniversary in 2017, bronchopulmonary dysplasia (BPD)-the chronic lung disease of prematurity that follows ventilator and oxygen therapy for acute respiratory failure-remains the most frequent complication of extreme prematurity. Survival of premature infants born at increasingly earlier stages of gestation has made the prevention of lung injury increasingly challenging. BPD is postulated to be a misdirection of many functions in the developing lung, including growth factor signalling and matrix as well as cellular composition, resulting in impaired alveolar and lung vascular growth. Despite improvements in understanding the mechanisms that regulate normal lung development, BPD remains without therapies. Insights into stem cell biology have identified the repair potential of stem cells. Promising preclinical studies demonstrated the lung protective effects of stem cell-based therapies in animal models mimicking BPD, leading to early-phase clinical trials. Although the time is ripe to conduct well-designed early-phase clinical trials, much more needs to be learned about the biology of these cells to develop safe, efficient, high-quality, clinical-grade cell products. Stem cells are essential for normal organ development, maintenance, and repair. It is therefore biologically plausible that exhaustion/dysfunction of resident lung stem cells contributes to the inability of the immature lung to repair itself. Understanding how normal lung stem cells function and how these cells are perturbed in BPD may prove useful in designing superior cell products with enhanced repair capabilities to ensure the successful translation of basic research into clinical practice.
Collapse
Affiliation(s)
- Marius Alexander Möbius
- Department of Neonatology and Pediatric Critical Care Medicine, Technische Universität Dresden, Dresden, Germany; DFG Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany; Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Bernard Thébaud
- Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada; Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
23
|
O'Reilly M, Thébaud B. Cell-based therapies for neonatal lung disease. Cell Tissue Res 2016; 367:737-745. [PMID: 27770256 DOI: 10.1007/s00441-016-2517-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
Abstract
Preterm birth occurs in approximately 11 % of all births worldwide. Advances in perinatal care have enabled the survival of preterm infants born as early as 23-24 weeks of gestation. However, many are affected by bronchopulmonary dysplasia (BPD)-a common respiratory complication of preterm birth, which has life-long consequences for lung health. Currently, there is no specific treatment for BPD. Recent advances in stem cell research have opened new therapeutic avenues for prevention/repair of lung damage. This review summarizes recent pre-clinical data and early clinical translation of cell-based therapies for BPD.
Collapse
Affiliation(s)
- Megan O'Reilly
- Department of Physiology and Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada, T6G 2E1
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine and Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, Canada, K1H 8L6. .,Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, 401 Smyth Road, Ottawa, ON, Canada, K1H 5B2.
| |
Collapse
|