1
|
Vandishi AK, Esmaeili A, Taghipour N. The promising prospect of human hair follicle regeneration in the shadow of new tissue engineering strategies. Tissue Cell 2024; 87:102338. [PMID: 38428370 DOI: 10.1016/j.tice.2024.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Hair loss disorder (alopecia) affects numerous people around the world. The low effectiveness and numerous side effects of common treatments have prompted researchers to investigate alternative and effective solutions. Hair follicle (HF) bioengineering is the knowledge of using hair-inductive (trichogenic) cells. Most bioengineering-based approaches focus on regenerating folliculogenesis through manipulation of regulators of physical/molecular properties in the HF niche. Despite the high potential of cell therapy, no cell product has been produced for effective treatment in the field of hair regeneration. This problem shows the challenges in the functionality of cultured human hair cells. To achieve this goal, research and development of new and practical approaches, technologies and biomaterials are needed. Based on recent advances in the field, this review evaluates emerging HF bioengineering strategies and the future prospects for the field of tissue engineering and successful HF regeneration.
Collapse
Affiliation(s)
- Arezoo Karami Vandishi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Li J, Wu Y, Yao X, Tian Y, Sun X, Liu Z, Ye X, Wu C. Preclinical Research of Stem Cells: Challenges and Progress. Stem Cell Rev Rep 2023:10.1007/s12015-023-10528-y. [PMID: 37097496 DOI: 10.1007/s12015-023-10528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 04/26/2023]
Abstract
In recent years, great breakthroughs have been made in basic research and clinical applications of stem cells in regenerative medicine and other fields, which continue to inspire people to explore the field of stem cells. With nearly unlimited self-renewal ability, stem cells can generate at least one type of highly differentiated daughter cell, which provides broad development prospects for the treatment of human organ damage and other diseases. In the field of stem cell research, related technologies for inducing or isolating stem cells are relatively mature, and a variety of stable stem cell lines have been successfully constructed. To realize the full clinical application of stem cells as soon as possible, it is more and more important to further optimize each stage of stem cell research while conforming to Current Good Manufacture Practices (cGMP) standards. Here, we synthesized recent developments in stem cell research and focus on the introduction of xenogenicity in the preclinical research process and the remaining problems of various cell bioreactors. Our goal is to promote the development of technologies for xeno-free culture and clinical expansion of stem cells through in-depth discussion of current research. This review will provide new insight into stem cell research protocols and will contribute to the creation of efficient and stable stem cell expansion systems.
Collapse
Affiliation(s)
- Jinhu Li
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yurou Wu
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Yao
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Tian
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xue Sun
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zibo Liu
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xun Ye
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunjie Wu
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
3
|
Sung JH. Effective and economical cell therapy for hair regeneration. Biomed Pharmacother 2023; 157:113988. [PMID: 36370520 DOI: 10.1016/j.biopha.2022.113988] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
We reviewed and summarized the latest reports on the characteristics of stem cells and follicular cells that are under development for hair loss treatment. Compared with conventional medicine, cell therapy could be effective in the long term with a single treatment while having mild adverse effects. Adipose-derived stem cells (ASCs) have the advantages of easy access and large isolation amount compared with dermal papilla cells (DPCs) and dermal sheath cup cells (DSCs), and promote hair growth through the paracrine effect. ASCs have a poor potential in hair neogenesis, therefore, methods to enhance trichogenecity of ASCs should be developed. DSCs can be isolated from the peribulbar dermal sheath cup, while having immune tolerance, and hair inductivity. Therefore, DSCs were first developed and finished the phase II clinical trial; however, the hair growth was not satisfactory. Considering that a single injection of DSCs is effective for at least 9 months in the clinical setting, they can be an alternative therapy for hair regeneration. Though DPCs are not yet studied in clinical trials, we should pay attention to DPCs, as hair loss is associated with gradual reduction of DPCs and DP cell numbers fluctuate over the hair cycle. DPCs could make new hair follicles with epidermal cells, and have an immunomodulatory function to enable allogeneic transplantation. In addition, we can expand large quantities of DPCs with hair inductivity using spheroid culture, hypoxia condition, and growth factor supplement. 'Off-the-shelf' DPC therapy could be effective and economical, and therefore promising for hair regeneration.
Collapse
Affiliation(s)
- Jong-Hyuk Sung
- Epi Biotech Co., Ltd., Incheon, South Korea; College of Pharmacy, Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea.
| |
Collapse
|
4
|
Xu K, Yu E, Wu M, Wei P, Yin J. Cells, growth factors and biomaterials used in tissue engineering for hair follicles regeneration. Regen Ther 2022; 21:596-610. [DOI: 10.1016/j.reth.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
|
5
|
Gonzalez-Vilchis RA, Piedra-Ramirez A, Patiño-Morales CC, Sanchez-Gomez C, Beltran-Vargas NE. Sources, Characteristics, and Therapeutic Applications of Mesenchymal Cells in Tissue Engineering. Tissue Eng Regen Med 2022; 19:325-361. [PMID: 35092596 PMCID: PMC8971271 DOI: 10.1007/s13770-021-00417-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 01/31/2023] Open
Abstract
Tissue engineering (TE) is a therapeutic option within regenerative medicine that allows to mimic the original cell environment and functional organization of the cell types necessary for the recovery or regeneration of damaged tissue using cell sources, scaffolds, and bioreactors. Among the cell sources, the utilization of mesenchymal cells (MSCs) has gained great interest because these multipotent cells are capable of differentiating into diverse tissues, in addition to their self-renewal capacity to maintain their cell population, thus representing a therapeutic alternative for those diseases that can only be controlled with palliative treatments. This review aimed to summarize the state of the art of the main sources of MSCs as well as particular characteristics of each subtype and applications of MSCs in TE in seven different areas (neural, osseous, epithelial, cartilage, osteochondral, muscle, and cardiac) with a systemic revision of advances made in the last 10 years. It was observed that bone marrow-derived MSCs are the principal type of MSCs used in TE, and the most commonly employed techniques for MSCs characterization are immunodetection techniques. Moreover, the utilization of natural biomaterials is higher (41.96%) than that of synthetic biomaterials (18.75%) for the construction of the scaffolds in which cells are seeded. Further, this review shows alternatives of MSCs derived from other tissues and diverse strategies that can improve this area of regenerative medicine.
Collapse
Affiliation(s)
- Rosa Angelica Gonzalez-Vilchis
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Angelica Piedra-Ramirez
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Carlos Cesar Patiño-Morales
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Concepcion Sanchez-Gomez
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Nohra E Beltran-Vargas
- Department of Processes and Technology, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, Cuajimalpa. Vasco de Quiroga 4871. Cuajimalpa de Morelos, 05348, CDMX, Mexico.
| |
Collapse
|
6
|
Ji S, Zhu Z, Sun X, Fu X. Functional hair follicle regeneration: an updated review. Signal Transduct Target Ther 2021; 6:66. [PMID: 33594043 PMCID: PMC7886855 DOI: 10.1038/s41392-020-00441-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/25/2020] [Accepted: 11/03/2020] [Indexed: 01/31/2023] Open
Abstract
The hair follicle (HF) is a highly conserved sensory organ associated with the immune response against pathogens, thermoregulation, sebum production, angiogenesis, neurogenesis and wound healing. Although recent advances in lineage-tracing techniques and the ability to profile gene expression in small populations of cells have increased the understanding of how stem cells operate during hair growth and regeneration, the construction of functional follicles with cycling activity is still a great challenge for the hair research field and for translational and clinical applications. Given that hair formation and cycling rely on tightly coordinated epithelial-mesenchymal interactions, we thus review potential cell sources with HF-inducive capacities and summarize current bioengineering strategies for HF regeneration with functional restoration.
Collapse
Affiliation(s)
- Shuaifei Ji
- grid.506261.60000 0001 0706 7839Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048 People’s Republic of China
| | - Ziying Zhu
- grid.506261.60000 0001 0706 7839Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048 People’s Republic of China
| | - Xiaoyan Sun
- grid.506261.60000 0001 0706 7839Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048 People’s Republic of China
| | - Xiaobing Fu
- grid.506261.60000 0001 0706 7839Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048 People’s Republic of China
| |
Collapse
|
7
|
Farzaneh Z, Abbasalizadeh S, Asghari-Vostikolaee MH, Alikhani M, Cabral JMS, Baharvand H. Dissolved oxygen concentration regulates human hepatic organoid formation from pluripotent stem cells in a fully controlled bioreactor. Biotechnol Bioeng 2020; 117:3739-3756. [PMID: 32725885 DOI: 10.1002/bit.27521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 07/11/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
Abstract
Developing technologies for scalable production of human organoids has gained increased attention for "organoid medicine" and drug discovery. We developed a scalable and integrated differentiation process for generation of hepatic organoid from human pluripotent stem cells (hPSCs) in a fully controlled stirred tank bioreactor with 150 ml working volume by application of physiological oxygen concentrations in different liver tissue zones. We found that the 20-40% dissolved oxygen concentration [DO] (corresponded to 30-60 mmHg pO2 within the liver tissue) significantly influences the process outcome via regulating the differentiation fate of hPSC aggregates by enhancing mesoderm induction. Regulation of the [DO] at 30% DO resulted in efficient generation of human fetal-like hepatic organoids that had a uniform size distribution and were comprised of red blood cells and functional hepatocytes, which exhibited improved liver-specific marker gene expressions, key liver metabolic functions, and, more important, higher inducible cytochrome P450 activity compared to the other trials. These hepatic organoids were successfully engrafted in an acute liver injury mouse model and produced albumin after implantation. These results demonstrated the significant impact of the dissolved oxygen concentration on hPSC hepatic differentiation fate and differentiation efficacy that should be considered ascritical translational aspect of established scalable liver organoid generation protocols for potential clinical and drug discovery applications.
Collapse
Affiliation(s)
- Zahra Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Abbasalizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Bioengineering and IBB - Institute for Bioengineering and Biosciences, Institute Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Mohammad-Hassan Asghari-Vostikolaee
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Alikhani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Joaquim M S Cabral
- Department of Bioengineering and IBB - Institute for Bioengineering and Biosciences, Institute Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
8
|
Bergeron L, Busuttil V, Botto JM. Multipotentiality of skin-derived precursors: application to the regeneration of skin and other tissues. Int J Cosmet Sci 2020; 42:5-15. [PMID: 31612512 DOI: 10.1111/ics.12587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/12/2019] [Indexed: 12/13/2022]
Abstract
Skin-derived precursors (SKPs) have been described as multipotent dermal precursors. Here, we provide a review of the breadth and depth of scientific literature and studies regarding SKPs, accounting for a large number of scientific publications. Interestingly, these progenitors can be isolated from embryonic and adult skin, as well as from a population of dermal cells cultured in vitro in monolayer. Gathering information from different authors, this review explores different aspects of the SKP theme, such as the potential distinct origins of SKPs in rodents and in humans, and also their ability to differentiate in vitro and in vivo into multiple lineages of different progeny. This remarkable capacity makes SKPs an interesting endogenous source of precursors to explore in the framework of experimental and therapeutic applications in different domains. SKPs are not only involved in the skin's dermal maintenance and support as well as wound healing, but also in hair follicle morphogenesis. This review points out the interests of future researches on SKPs for innovative perspectives that may be helpful in many different types of scientific and medical domains.
Collapse
Affiliation(s)
- L Bergeron
- Ashland Specialties France, Global Skin Research Center, 655, route du Pin Montard, 06904, Sophia Antipolis, France
| | - V Busuttil
- Ashland Specialties France, Global Skin Research Center, 655, route du Pin Montard, 06904, Sophia Antipolis, France
| | - J-M Botto
- Ashland Specialties France, Global Skin Research Center, 655, route du Pin Montard, 06904, Sophia Antipolis, France
| |
Collapse
|
9
|
Guo L, Wang X, Yuan J, Zhu M, Fu X, Xu RH, Wu C, Wu Y. TSA restores hair follicle-inductive capacity of skin-derived precursors. Sci Rep 2019; 9:2867. [PMID: 30814580 PMCID: PMC6393485 DOI: 10.1038/s41598-019-39394-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
The genesis of the hair follicle relies on signals derived from mesenchymal cells in the dermis during skin morphogenesis and regeneration. Multipotent skin-derived precursors (SKPs), which exhibit long term proliferation potential when being cultured in spheroids, have been shown to induce hair genesis and hair follicle regeneration in mice, implying a therapeutic potential of SKPs in hair follicle regeneration and bioengineering. However, the hair-inductive property of SKPs declines progressively upon ex vivo culture expansion, suggesting that the expressions of the genes responsible for hair induction are epigenetically unstable. In this study, we found that TSA markedly alleviated culture expansion induced SKP senescence, increased the expression and activity of alkaline phosphatase (AP) in the cells and importantly restored the hair inductive capacity of SKPs. TSA increased the acetylation level of histone H3, including the K19/14 sites in the promoter regions of bone morphogenetic proteins (BMPs) genes, which were associated with elevated gene expression and BMP signaling activity, suggesting a potential attribution of BMP pathway in TSA induced recovery of the hair inductive capacity of SKPs.
Collapse
Affiliation(s)
- Ling Guo
- State Key Laboratory of Chemical Oncogenomics, and the the Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoxiao Wang
- State Key Laboratory of Chemical Oncogenomics, and the the Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Jifan Yuan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Meishu Zhu
- Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
- Stem Cell and Tissue Regeneration Laboratory, The First Affiliated Hospital, General Hospital of PLA, Beijing, China
| | - Ren-He Xu
- University of Macau, Institute of Translational Medicine, and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, Taipa, Macau, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| | - Yaojiong Wu
- State Key Laboratory of Chemical Oncogenomics, and the the Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China.
| |
Collapse
|
10
|
Sparks HD, Anjum F, Vallmajo-Martin Q, Ehrbar M, Abbasi S, Kallos MS, Biernaskie J. Flowable Polyethylene Glycol Hydrogels Support the in Vitro Survival and Proliferation of Dermal Progenitor Cells in a Mechanically Dependent Manner. ACS Biomater Sci Eng 2019; 5:950-958. [PMID: 33405787 DOI: 10.1021/acsbiomaterials.8b01294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell-based therapies have garnered considerable interest largely because of their potential utility for tissue regeneration in a variety of organs, including skin. Designing vehicles that enable optimal delivery and purposeful integration of donor cells within tissues will be critical for their success. Here, we investigate the utility of an injectable, self-polymerizing, fully synthetic hydrogel in supporting the survival, proliferation, and function of cultured adult dermal progenitor cells (DPCs) which may serve as a source of renewable cells to repair severe skin injuries or restore hair growth. We show that modifying the stiffness of these transglutaminase cross-linked poly(ethylene glycol) (TG-PEG) hydrogels significantly alters DPC behavior and phenotype; increasing stiffness promotes their differentiation and migration whereas softer gels maintained them in a proliferative state. We found that 2-3% TG-PEG was optimal to promote cell expansion and survival. Unexpectedly, DPCs grown in all conditions maintained their inductive function and thus generated de novo hair follicles. Our data suggests that TG-PEG hydrogels may be a versatile platform for stem and progenitor cell transplantation and fate specification while maintaining functional competence.
Collapse
Affiliation(s)
| | | | - Queralt Vallmajo-Martin
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, Zurich 8091, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Schmelzbergstrasse 12, Zurich 8091, Switzerland
| | | | | | | |
Collapse
|
11
|
Owczarczyk-Saczonek A, Krajewska-Włodarczyk M, Kruszewska A, Banasiak Ł, Placek W, Maksymowicz W, Wojtkiewicz J. Therapeutic Potential of Stem Cells in Follicle Regeneration. Stem Cells Int 2018; 2018:1049641. [PMID: 30154860 PMCID: PMC6098866 DOI: 10.1155/2018/1049641] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/24/2018] [Accepted: 07/22/2018] [Indexed: 02/08/2023] Open
Abstract
Alopecia is caused by a variety of factors which affect the hair cycle and decrease stem cell activity and hair follicle regeneration capability. This process causes lower self-acceptance, which may result in depression and anxiety. However, an early onset of androgenic alopecia is associated with an increased incidence of the metabolic syndrome and an increased risk of the cardiac ischaemic disease. The ubiquity of alopecia provides an encouragement to seek new, more effective therapies aimed at hair follicle regeneration and neoregeneration. We know that stem cells can be used to regenerate hair in several therapeutic strategies: reversing the pathological mechanisms which contribute to hair loss, regeneration of complete hair follicles from their parts, and neogenesis of hair follicles from a stem cell culture with isolated cells or tissue engineering. Hair transplant has become a conventional treatment technique in androgenic alopecia (micrografts). Although an autologous transplant is regarded as the gold standard, its usability is limited, because of both a limited amount of material and a reduced viability of cells obtained in this way. The new therapeutic options are adipose-derived stem cells and stem cells from Wharton's jelly. They seem an ideal cell population for use in regenerative medicine because of the absence of immunogenic properties and their ease of obtainment, multipotential character, ease of differentiating into various cell lines, and considerable potential for angiogenesis. In this article, we presented advantages and limitations of using these types of cells in alopecia treatment.
Collapse
Affiliation(s)
- Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Anna Kruszewska
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Łukasz Banasiak
- Department of Plastic, Reconstructive and Aesthetic Surgery, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Waldemar Placek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Wojciech Maksymowicz
- Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Foundation for Nerve Cell Regeneration, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Laboratory for Regenerative Medicine, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
12
|
Agabalyan NA, Rosin NL, Rahmani W, Biernaskie J. Hair follicle dermal stem cells and skin-derived precursor cells: Exciting tools for endogenous and exogenous therapies. Exp Dermatol 2018; 26:505-509. [PMID: 28418596 DOI: 10.1111/exd.13359] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2017] [Indexed: 12/11/2022]
Abstract
Understanding the cellular interactions and molecular signals underlying hair follicle (HF) regeneration may have significant implications for restorative therapies for skin disease that diminish hair growth, whilst also serving to provide fundamental insight into the mechanisms underlying adult tissue regeneration. One of the major, yet underappreciated, players in this process is the underlying HF mesenchyme. Here, we provide an overview of a mesenchymal progenitor pool referred to as hair follicle dermal stem cells (hfDSCs), discuss their potential functions within the skin and their relationship to skin-derived precursors (SKPs), and consider unanswered questions about the function of these specialized fibroblasts. We contend that dermal stem cells provide an important reservoir of renewable dermal progenitors that may enable development of novel restorative therapies following hair loss, skin injury or disease.
Collapse
Affiliation(s)
- Natacha A Agabalyan
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nicole L Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Waleed Rahmani
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Kiani MT, Higgins CA, Almquist BD. The Hair Follicle: An Underutilized Source of Cells and Materials for Regenerative Medicine. ACS Biomater Sci Eng 2018; 4:1193-1207. [PMID: 29682604 PMCID: PMC5905671 DOI: 10.1021/acsbiomaterials.7b00072] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hair follicle is one of only two structures within the adult body that selectively degenerates and regenerates, making it an intriguing organ to study and use for regenerative medicine. Hair follicles have been shown to influence wound healing, angiogenesis, neurogenesis, and harbor distinct populations of stem cells; this has led to cells from the follicle being used in clinical trials for tendinosis and chronic ulcers. In addition, keratin produced by the follicle in the form of a hair fiber provides an abundant source of biomaterials for regenerative medicine. In this review, we provide an overview of the structure of a hair follicle, explain the role of the follicle in regulating the microenvironment of skin and the impact on wound healing, explore individual cell types of interest for regenerative medicine, and cover several applications of keratin-based biomaterials.
Collapse
Affiliation(s)
- Mehrdad T Kiani
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ UK
- Department of Materials Science, 496 Lomita Mall, Stanford University, Stanford CA 94305 USA
| | - Claire A Higgins
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ UK
| | - Benjamin D Almquist
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ UK
| |
Collapse
|