Wang Y, Zhang R, Guo X, Xu Y, Sun W, Guo S, Wu J. Acyl hydrazone derivatives with trifluoromethylpyridine as potential agrochemical for controlling plant diseases.
PEST MANAGEMENT SCIENCE 2024;
80:6322-6333. [PMID:
39114893 DOI:
10.1002/ps.8361]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 11/09/2024]
Abstract
BACKGROUND
Crops are consistently under siege by a multitude of pathogens. These pathogenic microorganisms, including viruses and bacteria, result in substantial reductions in quality and yield globally by inducing detrimental crop diseases, thus posing a significant challenge to global food security. However, the biological activity sepectrum of commercially available pesticides is limited and the pesticide efficacy is poor, necessitating the urgent development of broad-spectrum and efficient strategies for crop disease prevention and control.
RESULTS
The bioassay results revealed that certain target compounds demonstrated outstanding in vivo antiviral efficacy against cucumber mosaic virus and tobacco mosaic virus. In particular, compound D6 showed remarkable antiviral activity against CMV, significantly higher than that of the control agent ningnanmycin. Mechanism of action studies have shown that compound D6 could enhance the activity of defense enzymes and upregulate the expression of genes related to disease resistance, thereby enhancing the antiviral effects in plants. In addition, these compounds displayed superior inhibitory activity against plant bacterial diseases. For Xoo, compound D10 showed an excellent inhibitory effect that was better than that of the control agent bismerthiazol. Scanning electron microscopy and fluorescence double-staining experiments revealed that compound D10 effectively inhibited bacterial growth by disrupting the cell membrane.
CONCLUSION
A series of trifluoromethyl hydrazone derivatives were designed and synthesized, and it was found that they have control effects on plant viruses and bacterial diseases. In addition, this study revealed the mechanism of action of the active compounds and demonstrated their potential as multifunctional crop protectants. © 2024 Society of Chemical Industry.
Collapse