1
|
Xu N, Zuo J, Li C, Gao C, Guo M. Reconstruction and Analysis of a Genome-Scale Metabolic Model of Acinetobacter lwoffii. Int J Mol Sci 2024; 25:9321. [PMID: 39273268 PMCID: PMC11395192 DOI: 10.3390/ijms25179321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Acinetobacter lwoffii is widely considered to be a harmful bacterium that is resistant to medicines and disinfectants. A. lwoffii NL1 degrades phenols efficiently and shows promise as an aromatic compound degrader in antibiotic-contaminated environments. To gain a comprehensive understanding of A. lwoffii, the first genome-scale metabolic model of A. lwoffii was constructed using semi-automated and manual methods. The iNX811 model, which includes 811 genes, 1071 metabolites, and 1155 reactions, was validated using 39 unique carbon and nitrogen sources. Genes and metabolites critical for cell growth were analyzed, and 12 essential metabolites (mainly in the biosynthesis and metabolism of glycan, lysine, and cofactors) were identified as antibacterial drug targets. Moreover, to explore the metabolic response to phenols, metabolic flux was simulated by integrating transcriptomics, and the significantly changed metabolism mainly included central carbon metabolism, along with some transport reactions. In addition, the addition of substances that effectively improved phenol degradation was predicted and validated using the model. Overall, the reconstruction and analysis of model iNX811 helped to study the antimicrobial systems and biodegradation behavior of A. lwoffii.
Collapse
Affiliation(s)
- Nan Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jiaojiao Zuo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Chenghao Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Cong Gao
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Minliang Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Guida M, Tammaro C, Quaranta M, Salvucci B, Biava M, Poce G, Consalvi S. Amino Acid Biosynthesis Inhibitors in Tuberculosis Drug Discovery. Pharmaceutics 2024; 16:725. [PMID: 38931847 PMCID: PMC11206623 DOI: 10.3390/pharmaceutics16060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
According to the latest World Health Organization (WHO) report, an estimated 10.6 million people were diagnosed with tuberculosis (TB) in 2022, and 1.30 million died. A major concern is the emergence of multi-drug-resistant (MDR) and extensively drug-resistant (XDR) strains, fueled by the length of anti-TB treatment and HIV comorbidity. Innovative anti-TB agents acting with new modes of action are the only solution to counteract the spread of resistant infections. To escape starvation and survive inside macrophages, Mtb has evolved to become independent of the host by synthesizing its own amino acids. Therefore, targeting amino acid biosynthesis could subvert the ability of the mycobacterium to evade the host immune system, providing innovative avenues for drug discovery. The aim of this review is to give an overview of the most recent progress in the discovery of amino acid biosynthesis inhibitors. Among the hits discovered over the past five years, tryptophan (Trp) inhibitors stand out as the most advanced and have significantly contributed to demonstrating the feasibility of this approach for future TB drug discovery. Future efforts should be directed at prioritizing the chemical optimization of these hits to enrich the TB drug pipeline with high-quality leads.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy; (M.G.); (C.T.); (M.Q.); (B.S.); (M.B.)
| | - Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy; (M.G.); (C.T.); (M.Q.); (B.S.); (M.B.)
| |
Collapse
|
3
|
Ahmad SS, Khalid M. Evaluations of FDA-approved Drugs Targeting 3CLP of SARS-CoV-2 Employing a Repurposing Strategy. Comb Chem High Throughput Screen 2024; 27:2805-2815. [PMID: 35975855 DOI: 10.2174/1386207325666220816125639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The SARS-CoV-2 coronavirus (COVID-19) has raised innumerable global concerns, and few effective treatment strategies have yet been permitted by the FDA to lighten the disease burden. SARS-CoV-2 3C-like proteinase (3CLP) is a crucial protease and plays a key role in the viral life cycle, as it controls replication, and thus, it is viewed as a target for drug design. METHODS In this study, we performed structure-based virtual screening of FDA drugs approved during 2015-2019 (a total of 220 drugs) for interaction with the active site of 3CLP (PDB ID 6LU7) using AutoDock 4.2. We report the top ten drugs that outperform the reported drugs against 3CLP (Elbasvir and Nelfinavir), particularly Cefiderocol, having the highest affinity among the compounds tested, with a binding energy of -9.97 kcal/mol. H-bond (LYS102:HZ2-ligand: O49), hydrophobic (ligand-VAL104), and electrostatic (LYS102:NZ-ligand: O50) interactions were observed in the cefiderocol-3CLP complex. The docked complex was subjected to a 50 ns molecular dynamics study to check its stability, and stable RMSD and RMSF graphs were observed. RESULTS Accordingly, we suggest cefiderocol might be effective against SARS-CoV-2 and urge that experimental validation be performed to determine the antiviral efficacy of cefiderocol against SARS-CoV-2. DISCUSSION Along with these, cefiderocol is effective for treating respiratory tract pathogens and a wide range of gram-negative bacteria for whom there are limited therapeutic alternatives. CONCLUSION This article aimed to explore the FDA-approved drugs as a repurposing study against 3CLP for COVID-19 management.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mohammad Khalid
- College of Pharmacy, Department of Pharmacognosy, Prince Sattam Bin Abdul Aziz University, Alkharj 16278, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Muduli S, Karmakar S, Mishra S. The coordinated action of the enzymes in the L-lysine biosynthetic pathway and how to inhibit it for antibiotic targets. Biochim Biophys Acta Gen Subj 2023; 1867:130320. [PMID: 36813209 DOI: 10.1016/j.bbagen.2023.130320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Antimicrobial resistance is a global health issue that requires immediate attention in terms of new antibiotics and new antibiotic targets. The l-lysine biosynthesis pathway (LBP) is a promising avenue for drug discovery as it is essential for bacterial growth and survival and is not required by human beings. SCOPE OF REVIEW The LBP involves a coordinated action of fourteen different enzymes distributed over four distinct sub-pathways. The enzymes involved in this pathway belong to different classes, such as aspartokinase, dehydrogenase, aminotransferase, epimerase, etc. This review provides a comprehensive account of the secondary and tertiary structure, conformational dynamics, active site architecture, mechanism of catalytic action, and inhibitors of all enzymes involved in LBP of different bacterial species. MAJOR CONCLUSIONS LBP offers a wide scope for novel antibiotic targets. The enzymology of a majority of the LBP enzymes is well understood, although these enzymes are less widely studied in the critical pathogens (according to the 2017 WHO report) that require immediate attention. In particular, the enzymes in the acetylase pathway, DapAT, DapDH, and Aspartokinase in critical pathogens have received little attention. High throughput screening for inhibitor design against the enzymes of lysine biosynthetic pathway is rather limited, both in number and in the extent of success. GENERAL SIGNIFICANCE This review can serve as a guide for the enzymology of LBP and help in identifying new drug targets and designing potential inhibitors.
Collapse
Affiliation(s)
- Sunita Muduli
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
5
|
Ahmad SS, Khan MB, Ahmad K, Lim JH, Shaikh S, Lee EJ, Choi I. Biocomputational Screening of Natural Compounds against Acetylcholinesterase. Molecules 2021; 26:2641. [PMID: 33946559 PMCID: PMC8125523 DOI: 10.3390/molecules26092641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by irreversible and progressive neurodegeneration. Cholinergic dysfunction has been reported in AD, and several cholinesterase inhibitors, including natural compounds and synthetic analogs, have been developed to treat the disease. However, there is currently no treatment for AD, as most drug-like compounds have failed in clinical trials. Acetylcholinesterase (AChE) is the target of most drugs used commercially to treat AD. This work focused on screening natural compounds obtained from the ZINC database (224, 205 compounds) against AChE to identify those possibly capable of enabling the management of AD. Indirubin and dehydroevodiamine were the best potential AChE inhibitors with free binding energies of -10.03 and -9.00 kcal/mol, respectively. The key residue (His447) of the active site of AChE was found to participate in complex interactions with these two molecules. Six H-bonds were involved in the 'indirubin-AChE' interaction and three H-bonds in the 'dehydroevodiamine-AChE' interaction. These compounds were predicted to cross the blood-brain barrier (BBB) and to exhibit high levels of intestinal absorption. Furthermore, 'indirubin-AChE' and 'dehydroevodiamine-AChE' complexes were found to be stable, as determined by root mean square deviation (RMSD) during a 50 ns molecular dynamics simulation study. Based on the free binding energies and stabilities obtained by simulation studies, we recommend that experimental studies be undertaken on indirubin and dehydroevodiamine with a view towards their potential use as treatments for AD.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (J.-H.L.); (S.S.); (E.-J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Mohd Babu Khan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605014, India;
| | - Khurshid Ahmad
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Jeong-Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (J.-H.L.); (S.S.); (E.-J.L.)
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (J.-H.L.); (S.S.); (E.-J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Eun-Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (J.-H.L.); (S.S.); (E.-J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (J.-H.L.); (S.S.); (E.-J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
6
|
Liu S, Dang M, Lei Y, Ahmad SS, Khalid M, Kamal MA, Chen L. Ajmalicine and its Analogues Against AChE and BuChE for the Management of Alzheimer's Disease: An In-silico Study. Curr Pharm Des 2021; 26:4808-4814. [PMID: 32264807 DOI: 10.2174/1381612826666200407161842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/02/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most well-known reason for disability in persons aged greater than 65 years worldwide. AD influences the part of the brain that controls cognitive and non-cognitive functions. OBJECTIVE The study focuses on the screening of natural compounds for the inhibition of AChE and BuChE using a computational methodology. METHODS We performed a docking-based virtual screening utilizing the 3D structure of AChE and BuChE to search for potential inhibitors for AD. In this work, a screened inhibitor Ajmalicine similarity search was carried out against a natural products database (Super Natural II). Lipinski rule of five was carried out and docking studies were performed between ligands and enzyme using 'Autodock4.2'. RESULTS Two phytochemical compounds SN00288228 and SN00226692 were predicted for the inhibition of AChE and BuChE, respectively. The docking results revealed Ajmalicine, a prominent natural alkaloid, showing promising inhibitory potential against AChE and BuChE with the binding energy of -9.02 and -8.89 kcal/mole, respectively. However, SN00288228- AChE, and SN00226692-BuChE were found to have binding energy -9.88 and -9.54 kcal/mole, respectively. These selected phytochemical compounds showed better interactions in comparison to Ajmalicine with the target molecule. CONCLUSION The current study verifies that SN00288228 and SN00226692 are more capable inhibitors of human AChE and BuChE as compared to Ajmalicine with reference to ΔG values.
Collapse
Affiliation(s)
- Shu Liu
- Department of Neurology, Tangshan Workers Hospital, Tangshan, Hebei, 063000, China
| | - Minyan Dang
- Innoscience Research Sdn Bhd, Jalan USJ 25/1, 47650 Subang Jaya, Selangor, Malaysia
| | - Yan Lei
- Innoscience Research Sdn Bhd, Jalan USJ 25/1, 47650 Subang Jaya, Selangor, Malaysia
| | - Syed S Ahmad
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Kingdom of Saudi Arabia,Enzymoics; Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770,
Australia
| | - Li Chen
- Department of Neurology, Shaanxi Provincial People’s Hospital, 256 friendship west road, BinLin, Xi’an, Shaanxi,
710068, China
| |
Collapse
|
7
|
Lu Y, Pang J, Wang G, Hu X, Li X, Li G, Wang X, Yang X, Li C, You X. Quantitative proteomics approach to investigate the antibacterial response of Helicobacter pylori to daphnetin, a traditional Chinese medicine monomer. RSC Adv 2021; 11:2185-2193. [PMID: 35424199 PMCID: PMC8693750 DOI: 10.1039/d0ra06677j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium related to the development of peptic ulcers and stomach cancer. An increasing number of infected individuals are found to harbor antibiotic-resistant H. pylori, which results in treatment failure. Daphnetin, a traditional Chinese medicine, has a broad spectrum of antibacterial activity without the development of bacterial resistance. However, the antibacterial mechanisms of daphnetin have not been elucidated entirely. To better understand the mechanisms of daphnetin's effect on H. pylori, a label-free quantitative proteomics approach based on an EASY-nLC 1200 system coupled with an Orbitrap Fusion Lumos mass spectrometer was established to investigate the key protein differences between daphnetin- and non-daphnetin-treated H. pylori. Using the criteria of greater than 1.5-fold changes and adjusted p value <0.05, proteins related to metabolism, membrane structure, nucleic acid and protein synthesis, ion binding, H. pylori colonization and infection, stress reaction, flagellar assembly and so on were found to be changed under daphnetin pressure. And the changes of selected proteins in expression level were confirmed by targeted proteomics. These new data provide us a more comprehensive horizon of the proteome changes in H. pylori that occur in response to daphnetin.
Collapse
Affiliation(s)
- Yun Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Genzhu Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Guoqing Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| |
Collapse
|
8
|
Arabaghian H, Salloum T, Alousi S, Panossian B, Araj GF, Tokajian S. Molecular Characterization of Carbapenem Resistant Klebsiella pneumoniae and Klebsiella quasipneumoniae Isolated from Lebanon. Sci Rep 2019; 9:531. [PMID: 30679463 PMCID: PMC6345840 DOI: 10.1038/s41598-018-36554-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative organism and a major public health threat. In this study, we used whole-genome sequences to characterize 32 carbapenem-resistant K. pneumoniae (CRKP) and two carbapenem-resistant K. quasipneumoniae (CRKQ). Antimicrobial resistance was assessed using disk diffusion and E-test, while virulence was assessed in silico. The capsule type was determined by sequencing the wzi gene. The plasmid diversity was assessed by PCR-based replicon typing to detect the plasmid incompatibility (Inc) groups. The genetic relatedness was determined by multilocus sequence typing, pan-genome, and recombination analysis. All of the isolates were resistant to ertapenem together with imipenem and/or meropenem. Phenotypic resistance was due to blaOXA-48,blaNDM-1, blaNDM-7, or the coupling of ESBLs and outer membrane porin modifications. This is the first comprehensive study reporting on the WGS of CRKP and the first detection of CRKQ in the region. The presence and dissemination of CRKP and CRKQ, with some additionally having characteristics of hypervirulent clones such as the hypermucoviscous phenotype and the capsular type K2, are particularly concerning. Additionally, mining the completely sequenced K. pneumoniae genomes revealed the key roles of mobile genetic elements in the spread of antibiotic resistance and in understanding the epidemiology of these clinically significant pathogens.
Collapse
Affiliation(s)
- Harout Arabaghian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1401, Lebanon
| | - Tamara Salloum
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1401, Lebanon
| | - Sahar Alousi
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1401, Lebanon
| | - Balig Panossian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1401, Lebanon
| | - George F Araj
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, 1107, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1401, Lebanon.
| |
Collapse
|