1
|
Zhang Y, Ju F. Uninheritable but Widespread Bacterial Symbiont Enterococcus casseliflavus Mediates Detoxification of the Insecticide Chlorantraniliprole in the Agricultural Invasive Pest Spodoptera frugiperda. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18365-18377. [PMID: 39105749 DOI: 10.1021/acs.jafc.4c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Host-symbiont interaction plays a crucial role in determining the host's fitness under toxic stress, as observed in numerous insect species. However, the mechanism of the symbionts involved in the detoxification of insecticides remains poorly known. In this study, through microbiome, proteomic, and genomic analysis, we identified a prevalent symbiont, Enterococcus casseliflavus EMBL-3, in a major invasive insect pest,Spodoptera frugiperda. This symbiont enhances the host's insecticide resistance to chlorantraniliprole by breaking amide bonds and dehalogenating insecticides. Complying with the increase in exposure risk of chlorantraniliprole, the E. casseliflavus isolates of insects' symbionts but not those from mammals or environmental strains showed a significant enrichment of potential chlorantraniliprole degradation genes. EMBL-3 is popular in field population insects with efficient horizontal transmission ability through cross-diet and cannibalism. This study provides a new therapeutic target for agricultural pests based on symbiont-targeted insect control for global crop protection.
Collapse
Affiliation(s)
- Yunhua Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou ,Zhejiang Province 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou ,Zhejiang Province 310024, China
| | - Feng Ju
- Research Center for Industries of the Future, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou ,Zhejiang Province 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou ,Zhejiang Province 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou ,Zhejiang Province 310024, China
| |
Collapse
|
2
|
Reverbel S, Dévier MH, Dupraz V, Geneste E, Budzinski H. Assessment of the Presence of Transformation Products of Certain Pharmaceutical Products (Psychotropic Family) by Suspect and Non-Targeted HRMS Screening in Wastewater Treatment Plants. TOXICS 2023; 11:713. [PMID: 37624218 PMCID: PMC10457822 DOI: 10.3390/toxics11080713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023]
Abstract
Aquatic environments are the final receptors of human emissions and are therefore contaminated by molecules, such as pharmaceuticals. After use, these compounds and their metabolites are discharged to wastewater treatment plants (WWTPs). During wastewater treatment, compounds may be eliminated or degraded into transformation products (TPs) or may be persistent. The aim of this study was to develop an analytical method based on high resolution mass spectrometry (HRMS) for the identification of six psychotropic drugs that are widely consumed in France and present in WWTPs, as well as their potential associated metabolites and TPs. Four out of six psychotropic drugs and between twenty-five and thirty-seven potential TPs were detected in wastewater, although this was based on full scan data. TPs not reported in the literature and specific to the study sites and therefore to the wastewater treatment processes were tentatively identified. For the selected drugs, most known and present TPs were identified, such as desmethylvenlafaxine or norcitalopram. Moreover, the short fragmentation study led rather to the identification of several TPs of carbamazepine as ubiquitous persistent TPs.
Collapse
Affiliation(s)
- Solenne Reverbel
- CNRS, Bordeaux INP, University of Bordeaux, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| | - Marie-Hélène Dévier
- CNRS, Bordeaux INP, University of Bordeaux, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| | - Valentin Dupraz
- Régie de l’Eau Bordeaux Métropole, Direction de la Recherche, de l’Innovation et de la Transition Ecologique, F-33081 Bordeaux, France
| | - Emmanuel Geneste
- CNRS, Bordeaux INP, University of Bordeaux, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| | - Hélène Budzinski
- CNRS, Bordeaux INP, University of Bordeaux, EPOC, UMR 5805, LPTC, F-33600 Pessac, France
| |
Collapse
|
3
|
Raj A, Dubey A, Malla MA, Kumar A. Pesticide pestilence: Global scenario and recent advances in detection and degradation methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117680. [PMID: 37011532 DOI: 10.1016/j.jenvman.2023.117680] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/23/2023] [Accepted: 03/04/2023] [Indexed: 06/19/2023]
Abstract
Increased anthropogenic activities are confronted as the main cause for rising environmental and health concerns globally, presenting an indisputable threat to both environment and human well-being. Modern-day industrialization has given rise to a cascade of concurrent environmental and health challenges. The global human population is growing at an alarming rate, posing tremendous pressure on future food security, and healthy and environmentally sustainable diets for all. To feed all, the global food production needs to increase by 50% by 2050, but this increase has to occur from the limited arable land, and under the present-day climate variabilities. Pesticides have become an integral component of contemporary agricultural system, safeguarding crops from pests and diseases and their use must be reduce to fulfill the SDG (Sustainable Development Goals) agenda . However, their indiscriminate use, lengthy half-lives, and high persistence in soil and aquatic ecosystems have impacted global sustainability, overshot the planetary boundaries and damaged the pure sources of life with severe and negative impacts on environmental and human health. Here in this review, we have provided an overview of the background of pesticide use and pollution status and action strategies of top pesticide-using nations. Additionally, we have summarized biosensor-based methodologies for the rapid detection of pesticide residue. Finally, omics-based approaches and their role in pesticide mitigation and sustainable development have been discussed qualitatively. The main aim of this review is to provide the scientific facts for pesticide management and application and to provide a clean, green, and sustainable environment for future generations.
Collapse
Affiliation(s)
- Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, M.P., India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, M.P., India
| | - Muneer Ahmad Malla
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar, 470003, M.P, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, M.P., India; Metagenomics and Secretomics Research Laboratory, Department of Botany, University of Allahabad (A Central University), Prayagraj, 211002, U.P., India.
| |
Collapse
|
4
|
Ngara TR, Zeng P, Zhang H. mibPOPdb: An online database for microbial biodegradation of persistent organic pollutants. IMETA 2022; 1:e45. [PMID: 38867901 PMCID: PMC10989864 DOI: 10.1002/imt2.45] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 06/14/2024]
Abstract
Microbial biodegradation of persistent organic pollutants (POPs) is an attractive, ecofriendly, and cost-efficient clean-up technique for reclaiming POP-contaminated environments. In the last few decades, the number of publications documenting POP-degrading microbes, enzymes, and experimental data sets has continuously increased, necessitating the development of a dedicated web resource that catalogs consolidated information on POP-degrading microbes and tools to facilitate integrative analysis of POP degradation data sets. To address this knowledge gap, we developed the Microbial Biodegradation of Persistent Organic Pollutants Database (mibPOPdb) by accumulating microbial POP degradation information from the public domain and manually curating published scientific literature. Currently, in mibPOPdb, there are 9215 microbial strain entries, including 184 gene (sub)families, 100 enzymes, 48 biodegradation pathways, and 593 intermediate compounds identified in POP-biodegradation processes, and information on 32 toxic compounds listed under the Stockholm Convention environmental treaty. Besides the standard database functionalities, which include data searching, browsing, and retrieval of database entries, we provide a suite of bioinformatics services to facilitate comparative analysis of users' own data sets against mibPOPdb entries. Additionally, we built a Graph Neural Network-based prediction model for the biodegradability classification of chemicals. The predictive model exhibited a good biodegradability classification performance and high prediction accuracy. mibPOPdb is a free data-sharing platform designated to promote research in microbial-based biodegradation of POPs and fills a long-standing gap in environmental protection research. Database URL: http://mibpop.genome-mining.cn/.
Collapse
Affiliation(s)
- Tanyaradzwa R. Ngara
- Department of Biotechnology, College of Life Science and Technology, MOE KEY Laboratory of Molecular BiophysicsHuazhong University of Science and TechnologyWuhanChina
| | - Peiji Zeng
- Department of Biotechnology, College of Life Science and Technology, MOE KEY Laboratory of Molecular BiophysicsHuazhong University of Science and TechnologyWuhanChina
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, MOE KEY Laboratory of Molecular BiophysicsHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
5
|
Raj A, Kumar A. Recent advances in assessment methods and mechanism of microbe-mediated chlorpyrifos remediation. ENVIRONMENTAL RESEARCH 2022; 214:114011. [PMID: 35985484 DOI: 10.1016/j.envres.2022.114011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Chlorpyrifos (CP) is one of the Organophosphorus pesticides (OPs) primarily used in agriculture to safeguard crops from pests and diseases. The pervasive use of chlorpyrifos is hazardous to humans and the environment as it inhibits the receptor for acetylcholinesterase activity, leading to abnormalities linked to the central nervous system. Hence, there is an ardent need to develop an effective and sustainable approach to the on-site degradation of chlorpyrifos. The role of microbes in the remediation of pesticides is considered the most effective and eco-friendly approach, as they have strong degradative potential due to their gene and enzymes naturally adapted to these sites. Several reports have previously been published on exploring the role of microbes in the degradation of CP. However, detection of CP as an environmental contaminant is an essential prerequisite for developing an efficient microbial-mediated biodegradation method with less harmful intermediates. Most of the articles published to date discuss the fate and impact of CP in the environment along with its degradation mechanism but still fail to discuss the analytical portion. This review is focused on the latest developments in the field of bioremediation of CP along with its physicochemical properties, toxicity, fate, and conventional (UV-Visible spectrophotometer, FTIR, NMR, GC-MS, etc) and advanced detection methods (Biosensors and immunochromatography-based methods) from different environmental samples. Apart from it, this review explores the role of metagenomics, system biology, in-silico tools, and genetic engineering in facilitating the bioremediation of CP. One of the objectives of this review is to educate policymakers with scientific data that will enable the development of appropriate strategies to reduce pesticide exposure and the harmful health impacts on both Human and other environmental components. Moreover, this review provides up-to-date developments related to the sustainable remediation of CP.
Collapse
Affiliation(s)
- Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, MP, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, MP, India.
| |
Collapse
|
6
|
Singh AK, Bilal M, Barceló D, Iqbal HMN. A predictive toolset for the identification of degradation pattern and toxic hazard estimation of multimeric hazardous compounds persists in water bodies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153979. [PMID: 35181354 DOI: 10.1016/j.scitotenv.2022.153979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
An array of industrial processing units generates many multimeric hazardous compounds, such as complex technical lignin and its toxic derivatives, thereby persist in expelled water bodies. The inclusion of some group of motifs in the complex technical lignin structure helps it resist degrade biologically, most often even recalcitrant. Relatively small concentrations of lignin are harmful to aquatic organisms and can trigger environmental hazards. Sadly, the entire biotransformation pathway and insightful information about these toxic derivatives are incomplete and missing in the literature. This is mainly because the current conventional treatments often fail to identify all transformed compounds and their environmental fate. Thus, a robust toolset is much needed to cover this literature gap. Inadequate performance of conventional remediation processes and biological degradation patterns can be maximally optimized with the aid of predictive toolset methods that could offer better degradability and complete transformed compound information. A predictive toolset-assisted biodegradation pattern determination is a multifaceted and reliable analytical technique that can help to overcome existing shortcomings by providing an entire transformation pathway. Considering the above critiques, this work reports on the degradation pattern, and toxicological endpoints of five hazardous compounds, i.e., 2-chlorosyringaldehyde, 5-chlorovanillin, catechol, guaiacyl 4-O-5 guaiacyl, and syringyl β-O-4 syringyl β-O-4 sinapyl alcohol, that persists in water matrices. The predictive transformation pattern was revealed notably less complex end-products of catechol as; succinate, and 2-Oxo-4-pentenoate. The gastrointestinal (GI) absorption rate was found high for all tested compounds, excluding trimer compound, i.e., syringyl β-O-4 syringyl β-O-4 sinapyl alcohol. The toxicity and persistence profile tested via Toxtree showed that the Cramer Rules, Verhaar Scheme, and Structural Alerts for Reactivity, (START) biodegradation ability as positive, and all five target compounds were found as class-II persistent compounds. Furthermore, the Ecological Structure-Activity Relationships (ECOSAR)assisted testing specifies that all tested derivatives have multiple aquatic toxic levels. In summary, the current findings endorse the hazardous compounds and undertake prescreening of the deprivation policy to protect the environment.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute of Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain; Sustainability Cluster, School of Engineering, UPES, Dehradun, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
7
|
Malla MA, Dubey A, Raj A, Kumar A, Upadhyay N, Yadav S. Emerging frontiers in microbe-mediated pesticide remediation: Unveiling role of omics and In silico approaches in engineered environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118851. [PMID: 35085655 DOI: 10.1016/j.envpol.2022.118851] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The overuse of pesticides for augmenting agriculture productivity always comes at the cost of environment, biodiversity, and human health and has put the land, water, and environmental footprints under severe threat throughout the globe. Underpinning and maximizing the microbiome functions in pesticide-contaminated environments has become a prerequisite for a sustainable environment and resilient agriculture. It is imperative to elucidate the metabolic network of the microbial communities and environmental variables at the contaminated site to predict the best strategy for remediation and soil microbe-pesticide interactions. High throughput next-generation sequencing and in silico analysis allow us to identify and discern the members and characteristics of core microbiomes at the contaminated site. Integration of modern high throughput multi-omics investigations and informatics pipelines provide novel approaches and pathways to capitalize on the core microbiomes for enhancing environmental functioning and mitigation. The role of eco-genomics tools in visualising the microbial network, taxonomy, functional potential, and environmental variables in contaminated habitats is discussed in this review. The integrated role of the potential microbe identification as individual or consortia, mechanistic approach for pesticide degradation, identification of responsible enzymes/genes, and in silico approach is emphasized for the prospects of the area.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Department of Zoology, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India; Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India
| | - Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India
| | - Aman Raj
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India.
| | - Niraj Upadhyay
- Department of Chemistry, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India
| | - Shweta Yadav
- Department of Zoology, Dr. Harisingh Gour University (Central University), Sagar, 470003, MP, India
| |
Collapse
|
8
|
Wan Y, Liu J, Pi F, Wang J. Advances on removal of organophosphorus pesticides with electrochemical technology. Crit Rev Food Sci Nutr 2022; 63:8850-8867. [PMID: 35426753 DOI: 10.1080/10408398.2022.2062586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Widespread use of organophosphorus pesticides (OPs), especially superfluous and unreasonable use, had brought huge harm to the environment and food chain. It is because only a small part of the pesticides sprayed reached the target, and the rest slid across the soil, causing pollution of groundwater and surface water resources. These pesticides accumulate in the environment, causing environmental pollution. Therefore, in recent years, the control and degradation of OPs have become a public spotlight and research hotspot. Due to its unique advantages such as versatility, environmental compatibility, controllability, and cost-effectiveness compatibility, electrochemical technology has become one of the most promising methods for degradation of OPs. The fundamental knowledge about electrochemical degradation on OPs was introduced in this review. Then, a comprehensive overview of four main types of practical electrochemical technologies to degrade pesticides were presented and evaluated. The knowledge contained herein should conduce to better understand the degradation of pesticides by electrochemical technology, and better exploit the degradation of pesticides in the environment and food. Overall, the objective of this review is to provide comprehensive guidance for rational design and application of electrochemical technology in the degradation of OPs for the safety of the environment and food chain in the future.
Collapse
Affiliation(s)
- Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jinghan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| | - Jiahua Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, People's Republic of China
| |
Collapse
|
9
|
Tao Y, Liu J, Xu Y, Liu H, Yang G, He Y, Xu J, Lu Z. Suspecting screening "known unknown" pesticides and transformation products in soil at pesticide manufacturing sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152074. [PMID: 34863759 DOI: 10.1016/j.scitotenv.2021.152074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
The occurrence and risks of pesticides and their transformation products in soil at the manufacturing sites are "known unknowns." In this study, pesticides and their transformation products were screened in soil at 6 pesticide manufacturing sites across China using liquid and gas chromatography coupled with quadrupole time-of-flight mass spectrometry. The screening strategy can correctly identify 75% of 209 pesticides spiked at 50 ng g-1. A total of 212 pesticides were identified; 23.1% of pesticides detected were above 200 ng g-1, and the maximum concentration was 1.5 × 105 ng g-1. The risk quotients of 20% pesticides were greater than 1, and the maximum risk quotient of imidacloprid reached 6.3 × 104. The most recent site showed a larger number of pesticides with higher diversity, whereas older sites were dominated by organochlorine insecticides. The extended screen identified 163 transformation products with concentrations up to 6.6 × 104 ng g-1. Half of the transformation products had higher concentrations than their parent compounds, and metabolic ratios up to 371 were observed. The results of this study validate the prevalence of pesticides and their transformation products in soil at pesticide manufacturing sites. The results also highlight the importance of comprehensive screening at industrial sites and call for improved management and regulation of pesticide manufacturing, particularly for in-service facilities.
Collapse
Affiliation(s)
- Yufeng Tao
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jing Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiwen Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hang Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Guiling Yang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, MI 48201, United States.
| |
Collapse
|
10
|
Jiao B, Zhu Y, Xu J, Dong F, Wu X, Liu X, Zheng Y. Identification and ecotoxicity prediction of pyrisoxazole transformation products formed in soil and water using an effective HRMS workflow. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127223. [PMID: 34600378 DOI: 10.1016/j.jhazmat.2021.127223] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/28/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Pyrisoxazole, an isoxazoline-class fungicide, has been registered and used for approximately 19 years. However, its environmental transformation products (TPs) and corresponding ecotoxicological effects remain ambiguous. In this study, the photolysis, hydrolysis, and soil transformation behavior of pyrisoxazole were systematically investigated by indoor simulation experiments and analyzed by liquid chromatography quadrupole-time-of-flight mass spectrometry (LC-QTOF-MS) and UNIFI software. Transformation products in different environemnts were effectively identfied by a proposed workflow, which organically combined suspect and non-target screening strategies. In total, 17 TPs were screened out. Eight TPs were confirmed using the corresponding reference standards. Structures of another 9 compounds were tentatively proposed based on diagnostic evidence. Among them, 14 products were reported for the first time. The transformation pathways of pyrisoxazole in soil and water were proposed. Pathway analysis demonstrated that the different pH of aqueous solutions had little effect on the pathways, while the influence of different soil types and oxygen conditions was evident. Finally, the toxicity of the proposed TPs to fish and daphnids was predicted using ECOSAR software. These proposed TPs in soil and water, transformation pathways, and predicted ecotoxicity information could provide systematic insight into the fate and environmental risks of pyrisoxazole.
Collapse
Affiliation(s)
- Bin Jiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yuxiao Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| |
Collapse
|
11
|
Alfonso-Muniozguren P, Serna-Galvis EA, Bussemaker M, Torres-Palma RA, Lee J. A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. ULTRASONICS SONOCHEMISTRY 2021; 76:105656. [PMID: 34274706 PMCID: PMC8319449 DOI: 10.1016/j.ultsonch.2021.105656] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 06/01/2023]
Abstract
Contaminants of emerging concern (CEC) such as pharmaceuticals commonly found in urban and industrial wastewater are a potential threat to human health and have negative environmental impact. Most wastewater treatment plants cannot efficiently remove these compounds and therefore, many pharmaceuticals end up in aquatic ecosystems, inducing problems such as toxicity and antibiotic-resistance. This review reports the extent of pharmaceutical removal by individual processes such as bioreactors, advanced oxidation processes and membrane filtration systems, all of which are not 100% efficient and can lead to the direct discharge of pharmaceuticals into water bodies. Also, the importance of understanding biotransformation of pharmaceutical compounds during biological and ultrasound treatment, and its impact on treatment efficacy will be reviewed. Different combinations of the processes above, either as an integrated configuration or in series, will be discussed in terms of their degradation efficiency and scale-up capabilities. The trace quantities of pharmaceutical compounds in wastewater and scale-up issues of ultrasound highlight the importance of membrane filtration as a concentration and volume reduction treatment step for wastewater, which could subsequently be treated by ultrasound.
Collapse
Affiliation(s)
| | - Efraím A Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Grupo de Investigaciones Biomédicas, Facultad de Ciencias de la Salud, Corporación Universitaria Remington (Uniremington), Calle 51 No. 51-27, Medellín, Colombia
| | - Madeleine Bussemaker
- Chemical and Process Engineering, University of Surrey, Guildford GU27XH, United Kingdom
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Judy Lee
- Chemical and Process Engineering, University of Surrey, Guildford GU27XH, United Kingdom.
| |
Collapse
|
12
|
The Chemical Compounds from Degradation of Profenofos and Malathion by Indigenous Bacterial Consortium. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Indonesian Pesticide Regulations state that Malathion and Profenofos have been restricted in their use for agriculture because of is bioaccumulative in ecological systems. Cleaning technology using microorganisms is an effective solution for cleaning pesticide residues. This study aims to identify the bacteria that degrade and the degradation process of Malathion and Profenophos into non-toxic compounds. The research method was experimental, identification of bacteria by 16S-rRNA gene analysis, degradation ability by GC MS. The results of phylogenetic tree analysis showed that the tested bacteria were closely related to Oceanobacillus iheyenis (RPL1) and Exiquobacterium profundum (RPL5) with a similarity level of 87% and 99%. The two bacteria are used as a consortium of test bacteria. The results of degradation based on the observation chromatogram T = 0 showed that the Malathion compound C10H19O6PS2 or butanedioic acid [(dimethoxyphosphinothioyl) thio]) was detected at peak 4, real-time = 19,675, area% = 7.37 and Profenofos compound C11H15BrClO3PSO-(4-Bromo-2-chlorophenyl)o-ethyl s-propyl thiophosphate, peak 8, real-time = 23,957, area% = 6.91. Likewise, the chromatogram results at T = 96 were still detected Malathion ((dimethoxyphosphinothioyl) thio) at peak 14, real-time = 19,675, area% = 2.25, and Profenofos (o- (4-Bromo-2-chlorophenyl)) o – ethyl. s – propyl thiophosphate) peak = 22 real-time = 23,951, area% = 2,2. However, the observation of T = 192 hours, Malathion and Profenofos compounds were not detected. The conclusion showed that the consortium bacteria were able to completely degrade Malathion and Profenophos within 192 hours.
Collapse
|
13
|
Singh AK, Bilal M, Iqbal HMN, Raj A. Trends in predictive biodegradation for sustainable mitigation of environmental pollutants: Recent progress and future outlook. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144561. [PMID: 33736422 DOI: 10.1016/j.scitotenv.2020.144561] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 02/05/2023]
Abstract
The feasibility of in-silico techniques, together with the computational framework, has been applied to predictive bioremediation aiming to clean-up contaminants, toxicity evaluation, and possibilities for the degradation of complex recalcitrant compounds. Emerging contaminants from different industries have posed a significant hazard to the environment and public health. Given current bioremediation strategies, it is often a failure or inadequate for sustainable mitigation of hazardous pollutants. However, clear-cut vital information about biodegradation is quite incomplete from a conventional remediation techniques perspective. Lacking complete information on bio-transformed compounds leads to seeking alternative methods. Only scarce information about the transformed products and toxicity profile is available in the published literature. To fulfill this literature gap, various computational or in-silico technologies have emerged as alternating techniques, which are being recognized as in-silico approaches for bioremediation. Molecular docking, molecular dynamics simulation, and biodegradation pathways predictions are the vital part of predictive biodegradation, including the Quantitative Structure-Activity Relationship (QSAR), Quantitative structure-biodegradation relationship (QSBR) model system. Furthermore, machine learning (ML), artificial neural network (ANN), genetic algorithm (GA) based programs offer simultaneous biodegradation prediction along with toxicity and environmental fate prediction. Herein, we spotlight the feasibility of in-silico remediation approaches for various persistent, recalcitrant contaminants while traditional bioremediation fails to mitigate such pollutants. Such could be addressed by exploiting described model systems and algorithm-based programs. Furthermore, recent advances in QSAR modeling, algorithm, and dedicated biodegradation prediction system have been summarized with unique attributes.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
14
|
Cai W, Ye P, Yang B, Shi Z, Xiong Q, Gao F, Liu Y, Zhao J, Ying G. Biodegradation of typical azole fungicides in activated sludge under aerobic conditions. J Environ Sci (China) 2021; 103:288-297. [PMID: 33743910 DOI: 10.1016/j.jes.2020.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Widespread use of azole fungicides and low removal efficiency in wastewater treatment plants (WWTPs) have led to the elevated concentration of azole fungicides in receiving environment. However, there was limited research about the removal mechanism of azole fungicides in the biological treatment of WWTPs. Imidazole fungicide climbazole and triazole fungicide fluconazole were selected to investigate the biodegradation mechanism of azole fungicides in activated sludge under aerobic conditions. Climbazole was found to be adsorbed to solid sludge and resulted in quick biodegradation. The degradation of climbazole in the aerobic activated sludge system was fitted well by the first-order kinetic model with a half-life of 5.3 days, while fluconazole tended to stay in liquid and had only about 30% of loss within 77 days incubation. Ten biotransformation products of climbazole were identified by high resolution mass spectrometry using suspect and non-target screening method. But no biodegradation products of fluconazole were identified due to its limited removal. The possible biodegradation pathways for climbazole were proposed based on the products identification and pathway prediction system, and involves oxidative dehalogenation, side chain oxidation and azole ring loss. The findings from this study suggest that it should be a concern for the persistence of fluconazole in the environment.
Collapse
Affiliation(s)
- Wenwen Cai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pu Ye
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Bin Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Zhouqi Shi
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Xiong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangzhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yousheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jianliang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Guangguo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Krishnaswamy VG, Jaffar MF, Sridharan R, Ganesh S, Kalidas S, Palanisamy V, Mani K. Effect of chlorpyrifos on the earthworm Eudrilus euginae and their gut microbiome by toxicological and metagenomic analysis. World J Microbiol Biotechnol 2021; 37:76. [PMID: 33786661 DOI: 10.1007/s11274-021-03040-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
The earthworms are important soil invertebrates and play a crucial role in pedogenesis. The application of pesticides and prolonged exposure to pesticides causes mortality of earthworms apart from profoundly affecting the resident gut microbiome. The microbiome plays a significant effect on the metabolic processes associated with earthworms. The pesticide Chlorpyrifos (CPF) was studied for its toxicity on Eudrilus euginae by toxicity studies. The LC50 value of filter paper contact test and acute toxicity test was 3.8 mg/mL and 180 mg/kg. The prolonged exposure of earthworms to pesticide on reproductive toxicity resulted in the mortality of earthworms and absence of cocoon formation. Further, the effects of CPF on the whole gut microbiome of E. euginae was analyzed using a long amplicon Nanopore sequencing. Results indicated no fluctuations with Firmicutes and Bacteroidetes, that were found to be dominant at bacterial phyla level while at the genus level, remarkable differences were noticed. Clostridium dominated the earthworm gut prior to CPF exposure while Bacillus dominated after exposure. Similarly, the fungal members such as Ascomycota and Basidiomycota were observed to dominate the gut of earthworm at the phyla level before and after exposure to CPF. In contrast, Clavispora (65%) was the dominant genus before CPF exposure and Taloromyces (42%) dominated after the CPF exposure. Our study demonstrates the effect of CPF on the mortality of E. euginae while the amplicon sequencing established the unique microbiome of the gut in response to the CPF exposure.
Collapse
Affiliation(s)
- Veena Gayathri Krishnaswamy
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India.
| | - Mariyam Fathima Jaffar
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - Rajalakshmi Sridharan
- Department of Biotechnology, Stella Maris College (Autonomous), Affiliated to University of Madras, Chennai, India
| | - Shruthi Ganesh
- Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India
| | - Suryasri Kalidas
- Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India
| | - Vignesh Palanisamy
- Department of Biotechnology, PSG College of Technology, Coimbatore, India
| | - Kabilan Mani
- Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, India.
| |
Collapse
|
16
|
Qiu M, Hu A, Huang YMM, Zhao Y, He Y, Xu J, Lu Z. Elucidating degradation mechanisms of florfenicol in soil by stable-isotope assisted nontarget screening. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123974. [PMID: 33265015 DOI: 10.1016/j.jhazmat.2020.123974] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/18/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Antibiotics in soil environments are a growing concern. Identifying transformation products is key to elucidating degradation pathways and mechanisms of antibiotics and other organic micropollutants. The primary challenge of transformation product identification is the interference of matrices. In this study, stable-isotope assisted nontarget screening was used to identify biodegradation products of florfenicol in soil. A total of 74 candidates were prioritized from thousands of mass features observed by a tiered peak filtering approach. Moreover, with the support of in silico prediction tools, the structures of 12 transformation products were elucidated, and 9 of them were reported for the first time. A biodegradation map of florfenicol consisting of amide hydrolysis, dechlorination, dehydration, defluorination, and sulfone reduction was established based on these identified products. A total of 8 products were also found in 6 field soil samples with manure application. Because of the structural similarity to florfenicol, some transformation products might still keep antimicrobial activity toward a variety of bacterial species. The strategies demonstrated in this study provide a basis for efficient identification of transformation products of other organic micropollutants in a variety of environmental matrices. The results also shed light on the degradation mechanisms, risk assessments, and regulations of these compounds.
Collapse
Affiliation(s)
- Min Qiu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ailun Hu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yu-Ming M Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201, United States
| | - Yun Zhao
- Hangzhou Academy of Agricultural Sciences, Hangzhou, Zhejiang 310024, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhijiang Lu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
17
|
Qu C, Wu Z, Pan D, Cai Z, Liu X. Characterization of Lactobacillus reuteri WQ-Y1 with the ciprofloxacin degradation ability. Biotechnol Lett 2021; 43:855-864. [PMID: 33387114 DOI: 10.1007/s10529-020-03068-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/12/2020] [Indexed: 11/27/2022]
Abstract
OBJECT As a broad-spectrum fluoroquinolone antibiotic drug, ciprofloxacin (CIP) is frequently used in the treatment of a wide variety of infections. However, the residues of this antibiotic pose a big threat to the aquatic environment and human health. In this research, Lactobacillus reuteri WQ-Y1 with CIP degradation ability was screened and identified. RESULTS L. reuteri WQ-Y1 with a degradation rate of 65.1% for 4 µg mL-1 CIP was screened from 17 lactic acid bacteria (LAB), and cytochrome P450 enzyme was confirmed to promote the degradation of CIP by L. reuteri WQ-Y1. Meanwhile, the CIP degradation rate were also higher in 48 h' culture time when co-cultured with 1 mg/mL of glucose in the culture media. Furthermore, result also proved that fluoroquinolone antibiotics with the similar piperazine ring structures could be degraded by L. reuteri WQ-Y1. CONCLUSIONS L. reuteri WQ-Y1 could degrade fluoroquinolone antibiotics with the similar piperazine ring structure. However, future work still needs to be done on the confirmation of the key enzymes in the cytochrome P450 enzymes family in the biodegradation. The isolated ciprofloxacin-degrading strain L. reuteri WQ-Y1 had a CIP degradation rate of 65.1% at 24 hours, and one biodegradation metabolite was identified and proved to be an important metabolite of CIP from cytochrome P450 enzymes family hydrolysis with UPLC-MS/MS spectrograms approach.
Collapse
Affiliation(s)
- Chunxiao Qu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Shagnhai, 200436, People's Republic of China
| | - Zhen Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Shagnhai, 200436, People's Republic of China.
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| | - Daodong Pan
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Shagnhai, 200436, People's Republic of China.
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| | - Zhendong Cai
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Xiaotao Liu
- Ningbo Dairy Group, Ningbo, 315211, Zhejiang, China
| |
Collapse
|
18
|
Dissipation Behavior of Three Pesticides in Prickly Pear ( Opuntia ficus-indica (L.) Mill.) Pads in Morelos, Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16162922. [PMID: 31443140 PMCID: PMC6720382 DOI: 10.3390/ijerph16162922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 11/23/2022]
Abstract
The dissipation of three field-applied pesticides (chlorothalonil, chlorpyrifos, and malathion), on cultivated prickly pear (Opuntia ficus-indica (L.) Mill.) pads was studied. The extraction of pesticides was carried out using the European quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction technique and detection was carried out using tandem liquid chromatography with mass spectrometry. At harvest, 15 days after application, pesticide dissipation was below the level of detectability. Dissipation curves for prickly pear pads fit to a first-order kinetic equation. Two initial concentration levels were used for each pesticide. The approximate dissipation time for all pesticides studied was similar (10 days) and the half-life time was around six days. Final concentrations for the three pesticides were below the reference maximum residue level (MRL) (0.01 mg/kg), which suggests that these products can be applied safely in the commercial production of prickly pear pads at the established concentrations.
Collapse
|