1
|
Abchir O, Nour H, Daoui O, Yamari I, ElKhattabi S, El Kouali M, Talbi M, Errougui A, Chtita S. Structure-based virtual screening, ADMET analysis, and molecular dynamics simulation of Moroccan natural compounds as candidates for the SARS-CoV-2 inhibitors. Nat Prod Res 2023:1-8. [PMID: 37966948 DOI: 10.1080/14786419.2023.2281002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/03/2023] [Indexed: 11/17/2023]
Abstract
The lack of treatments and vaccines effective against SARS-CoV-2 has forced us to explore natural compounds that could potentially inhibit this virus. Additionally, Morocco is renowned for its rich plant diversity and traditional medicinal uses, which inspires us to leverage our cultural heritage and the abundance of natural resources in our country for therapeutic purposes. In this study, an extensive investigation was conducted to gather a collection of phytoconstituents extracted from Moroccan plants, aiming to evaluate their ability to inhibit the proliferation of the SARS-CoV-2 virus. Molecular docking of the studied compounds was performed at the active sites of the main protease (6lu7) and spike (6m0j) proteins to assess their binding affinity to these target proteins. Compounds exhibiting high affinity to the proteins underwent further evaluation based on Lipinski's rule and ADME-Tox analysis to gain insights into their oral bioavailability and safety. The results revealed that the two compounds demonstrated strong binding affinity to the target proteins, making them potential candidates for oral antiviral drugs against SARS-CoV-2. The molecular dynamics results from this computational analysis supported the overall stability of the resulting complex.
Collapse
Affiliation(s)
- Oussama Abchir
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Hassan Nour
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ossama Daoui
- Laboratory of Engineering, Systems, and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fes, Morocco
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Souad ElKhattabi
- Laboratory of Engineering, Systems, and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, Fes, Morocco
| | - Mhammed El Kouali
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mohammed Talbi
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Abdelkbir Errougui
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| |
Collapse
|
2
|
Sharma G, Kumar N, Sharma CS, Mishra SS. In silico guided screening of active components of C. lanceolata as 3-chymotrypsin-like protease inhibitors of novel coronavirus. 3 Biotech 2023; 13:324. [PMID: 37663751 PMCID: PMC10471561 DOI: 10.1007/s13205-023-03745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Despite the intense worldwide efforts towards the identification of potential anti-CoV therapeutics, no antiviral drugs have yet been discovered. Numerous vaccines are now approved for use, but they all serve as preventative measures. To effectively treat viral infections, it is crucial to find new antiviral drugs that are derived from natural sources. Various compounds with potential activity against 3 chymotrypsin-like protease (3CLpro) were reported and some are validated by bioassay studies. Therefore, we performed the computational screening of phytoconstituents of Codonopsis lanceolata to search for potential antiviral hit candidates. The curated compounds of the plant C. lanceolata were collected and downloaded from the literature. The binding affinity of the curated datasets was predicted for the target 3CLpro. Stigmasterol exhibits the highest docking score for the 3CLpro target. In addition, molecular dynamics (MD) simulations were conducted for the validation of docking results using root mean square deviation and root mean square fluctuation plots. The MD results indicated that the docked complex was stable and retained hydrogen bonding and non-bonding interactions. Furthermore, the calculation of pharmacokinetic parameters and Lipinski's rule of five suggest that C. lanceolata has the potential for drug-likeness. In order to develop new medicines for this debilitating disease, we will focus on the primary virus-based and host-based targets that can direct medicinal chemists to identify novel treatments to produce new drugs for it. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03745-2.
Collapse
Affiliation(s)
- Ganesh Sharma
- Department of Pharmaceutical Chemistry, Bhupal Nobles’ College of Pharmacy, Bhupal Nobles’ University, Udaipur, 313002 India
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Bhupal Nobles’ College of Pharmacy, Bhupal Nobles’ University, Udaipur, 313002 India
| | - Chandra Shekhar Sharma
- Department of Pharmaceutical Chemistry, Bhupal Nobles’ College of Pharmacy, Bhupal Nobles’ University, Udaipur, 313002 India
| | - Shashank Shekher Mishra
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun, 248009 India
| |
Collapse
|
3
|
Gurushankar K, Jeyaseelan SC, Grishina M, Siswanto I, Tiwari R, Puspaningsih NNT. Density Functional Theory, Molecular Dynamics and AlteQ Studies Approaches of Baimantuoluoamide A and Baimantuoluoamide B to Identify Potential Inhibitors of M pro Proteins: a Novel Target for the Treatment of SARS COVID-19. JETP LETTERS 2023; 117:1-10. [PMID: 37360903 PMCID: PMC10184967 DOI: 10.1134/s0021364023600039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/28/2023]
Abstract
COVID-19 has resulted in epidemi conditions over the world. Despite efforts by scientists from all over the world to develop an effective va ine against this virus, there is presently no recognized cure for COVID-19. The most succeed treatments for various ailments come from natural components found in medicinal plants, which are also rucial for the development of new medications. This study intends to understand the role of the baimantuoluoamide A and baimantuoluoamide B molecules in the treatment of Covid19. Initially, density functional theory (DFT) used to explore their electronic potentials along with the Becke3-Lee-Yang-Parr (B3LYP) 6-311 + G(d, p) basis set. A number of characteristics, including the energy gap, hardness, local softness, electronegativity, and electrophilicity, have also been calculated to discuss the reactivity of mole ules. Using natural bond orbital, the title compound's bioactive nature and stability were investigated. Further, both compounds potential inhibitors with main protease (Mpro) proteins, molecular dynamics simulations and AlteQ investigations also studied. Supplementary Information The online version contains supplementary material available at 10.1134/S0021364023600039.
Collapse
Affiliation(s)
- K. Gurushankar
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia
- Department of Physics, Kalasalingam Academy of Research and Education, 626126 Krishnankoil, Tamilnadu India
| | - S. Ch. Jeyaseelan
- Post Graduate & Research Department of Physics, N.M.S.S.V.N. College, 625019 Madurai, Tamilnadu India
- Post Graduate Department of Physics, Mannar Thirumalai Naciker College, 625004 Madurai, Tamilnadu India
| | - M. Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia
| | - I. Siswanto
- Bioinformati Laboratory, UCoE Research Center for Bio-Molecule Engineering Universitas Airlangga, 60115 Surabaya, Indonesia
| | - R. Tiwari
- Department of Physics, Coordinator Research and Development Cell, Dr CV Raman University, 495113 Kargi Kota, Bilaspur CG India
| | - N. N. T. Puspaningsih
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, 60115 Surabaya, Indonesia
| |
Collapse
|
4
|
Oner E, Demirhan I, Miraloglu M, Yalin S, Kurutas EB. Investigation of antiviral substances in Covid 19 by Molecular Docking: In Silico Study. Afr Health Sci 2023; 23:23-36. [PMID: 37545919 PMCID: PMC10398506 DOI: 10.4314/ahs.v23i1.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
Aims This paper aimed to investigate the antiviral drugs against Sars-Cov-2 main protease (MPro) using in silico methods. Material and Method A search was made for antiviral drugs in the PubChem database and antiviral drugs such as Bictegravir, Emtricitabine, Entecavir, Lamivudine, Tenofovir, Favipiravir, Hydroxychloroquine, Lopinavir, Oseltamavir, Remdevisir, Ribavirin, Ritonavir were included in our study. The protein structure of Sars-Cov-2 Mpro (PDB ID: 6LU7) was taken from the Protein Data Bank (www.rcsb. Org) system and included in our study. Molecular docking was performed using AutoDock/Vina, a computational docking program. Protein-ligand interactions were performed with the AutoDock Vina program. 3D visualizations were made with the Discovery Studio 2020 program. N3 inhibitor method was used for our validation. Results In the present study, bictegravir, remdevisir and lopinavir compounds in the Sars-Cov-2 Mpro structure showed higher binding affinity compared to the antiviral compounds N3 inhibitor, according to our molecular insertion results. However, the favipiravir, emtricitabine and lamuvidune compounds were detected very low binding affinity. Other antiviral compounds were found close binding affinity with the N3 inhibitor. Conclusion Bictegravir, remdevisir and lopinavir drugs showed very good results compared to the N3 inhibitor. Therefore, they could be inhibitory in the Sars Cov-2 Mpro target.
Collapse
Affiliation(s)
- Erkan Oner
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, 33090, Türkey
| | - Ilter Demirhan
- Vocational School of Health Services, Department of Electronics-Automation Biomedical Device Tecnology Program, Harran University, Sanlıurfa, 63090, Türkey
| | - Meral Miraloglu
- Department of Medical Microbiology, Cukurova University, Medical Faculty, Adana, Türkey
| | - Serap Yalin
- Department of Biochemistry, Faculty of Pharmacy, Mersin University, Mersin, 33090, Türkey
| | - Ergul Belge Kurutas
- Department of Medical Biochemistry, Faculty of Medicine, Sutcu Imam Univestiy, Kahramanmaras, 46090, Türkey
| |
Collapse
|
5
|
Sharun K, Tiwari R, Yatoo MI, Natesan S, Megawati D, Singh KP, Michalak I, Dhama K. A comprehensive review on pharmacologic agents, immunotherapies and supportive therapeutics for COVID-19. NARRA J 2022; 2:e92. [PMID: 38449903 PMCID: PMC10914132 DOI: 10.52225/narra.v2i3.92] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2024]
Abstract
The emergence of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected many countries throughout the world. As urgency is a necessity, most efforts have focused on identifying small molecule drugs that can be repurposed for use as anti-SARS-CoV-2 agents. Although several drug candidates have been identified using in silico method and in vitro studies, most of these drugs require the support of in vivo data before they can be considered for clinical trials. Several drugs are considered promising therapeutic agents for COVID-19. In addition to the direct-acting antiviral drugs, supportive therapies including traditional Chinese medicine, immunotherapies, immunomodulators, and nutritional therapy could contribute a major role in treating COVID-19 patients. Some of these drugs have already been included in the treatment guidelines, recommendations, and standard operating procedures. In this article, we comprehensively review the approved and potential therapeutic drugs, immune cells-based therapies, immunomodulatory agents/drugs, herbs and plant metabolites, nutritional and dietary for COVID-19.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mohd I. Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng Srinagar, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Senthilkumar Natesan
- Department of Infectious Diseases, Indian Institute of Public Health Gandhinagar, Opp to Airforce station HQ, Gandhinagar, India
| | - Dewi Megawati
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Indonesia
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Karam P. Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
6
|
Saloni, Kumari D, Ranjan P, Chakraborty T. A computational study of potential therapeutics for COVID-19 invoking conceptual density functional theory. Struct Chem 2022; 33:2195-2204. [PMID: 36097582 PMCID: PMC9452875 DOI: 10.1007/s11224-022-02048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/28/2022] [Indexed: 01/18/2023]
Abstract
The pandemic, COVID-19, has caused social and economic disruption at a larger pace all over the world. Identification of an effective drug for the deadliest disease is still an exigency. One of the most promising approaches to combat the lethal disease is use of repurposed drugs. This study provides insights into some of the potential repurposed drugs viz. camostat mesylate, hydroxychloroquine, nitazoxanide, and oseltamivir in terms of the computational quantum chemical method. Properties of these compounds have been elucidated in terms of Conceptual Density Functional Theory (CDFT)-based descriptors, IR spectra, and thermochemical properties. Computed results specify that hydroxychloroquine is the most reactive drug among them. Thermochemical data reveals that camostat mesylate has the utmost heat capacity, entropy, and thermal energy. Our findings indicate that camostat mesylate and hydroxychloroquine may be investigated further as potential COVID-19 therapeutics. We anticipate that the current study will aid the scientific community to design and develop viable therapeutics against COVID-19.
Collapse
Affiliation(s)
- Saloni
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, 201310, Greater Noida, UP India
| | - Dimple Kumari
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, 201310, Greater Noida, UP India
| | - Prabhat Ranjan
- Department of Mechatronics Engineering, Manipal University Jaipur, Dehmi Kalan-303007, Rajasthan, India
| | - Tanmoy Chakraborty
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, 201310, Greater Noida, UP India
| |
Collapse
|
7
|
Belhassan A, Chtita S, Zaki H, Alaqarbeh M, Alsakhen N, Almohtaseb F, Lakhlifi T, Bouachrine M. In silico detection of potential inhibitors from vitamins and their derivatives compounds against SARS-CoV-2 main protease by using molecular docking, molecular dynamic simulation and ADMET profiling. J Mol Struct 2022; 1258:132652. [PMID: 35194243 PMCID: PMC8855669 DOI: 10.1016/j.molstruc.2022.132652] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/25/2022]
Abstract
COVID-19 is a new infectious disease caused by SARS-COV-2 virus of the coronavirus Family. The identification of drugs against this serious infection is a significant requirement due to the rapid rise in the positive cases and deaths around the world. With this concept, a molecular docking analysis for vitamins and their derivatives (28 molecules) with the active site of SARS-CoV-2 main protease was carried out. The results of molecular docking indicate that the structures with best binding energy in the binding site of the studied enzyme (lowest energy level) are observed for the compounds; Folacin, Riboflavin, and Phylloquinone oxide (Vitamin K1 oxide). A Molecular Dynamic simulation was carried out to study the binding stability for the selected vitamins with the active site of SARS-CoV-2 main protease enzyme. Molecular Dynamic shows that Phylloquinone oxide and Folacin are quite unstable in binding to SARS-CoV-2 main protease, while the Riboflavin is comparatively rigid. The higher fluctuations in Phylloquinone oxide and Folacin indicate that they may not fit very well into the binding site. As expected, the Phylloquinone oxide exhibits small number of H-bonds with protein and Folacin does not form a good interaction with protein. Riboflavin exhibits the highest number of Hydrogen bonds and forms consistent interactions with protein. Additionally, this molecule respect the conditions mentioned in Lipinski's rule and have acceptable ADMET proprieties which indicates that Riboflavin (Vitamin B2) could be interesting for the antiviral treatment of COVID-19.
Collapse
Affiliation(s)
- Assia Belhassan
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca 7955, Morocco
| | - Hanane Zaki
- EST Khenifra, Sultan Moulay Sliman University, Benimellal, Morocco
| | - Marwa Alaqarbeh
- National Agricultural Research Center, Al‑Baqa 19381, Jordan
| | - Nada Alsakhen
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Firas Almohtaseb
- Institute of Water and Environmental Management, University of Debrecen, Egyetemtér 1, Debrecen 4032 Hungary
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, Moulay Ismail University of Meknes, Morocco
- EST Khenifra, Sultan Moulay Sliman University, Benimellal, Morocco
| |
Collapse
|
8
|
3D-QSAR, ADME-Tox, and molecular docking of semisynthetic triterpene derivatives as antibacterial and insecticide agents. Struct Chem 2022; 33:1063-1084. [PMID: 35345415 PMCID: PMC8941842 DOI: 10.1007/s11224-022-01912-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/03/2022] [Indexed: 01/02/2023]
Abstract
In the present work, 27 triterpene derivatives have been subjected to 3D-QSAR, ADME-Tox, and molecular docking for their insecticidal activity. The selected derivatives are previously semi-synthesized based on compounds obtained from Euphorbia resinifera and Euphorbia officinarum latex. The in silico studies were used to predict and to evaluate the antibacterial and insecticidal properties of the 3D structure of triterpene derivatives. The 3D-QSAR models are developed using CoMFA and CoMSIA techniques, and they have showed excellent statistical results (R2 = 0.99; Q2 = 0.672; R2pred = 0.91 for CoMFA and R2 = 0.97; Q2 = 0.61; R2pred = 0.94 for CoMSIA). The results indicate that the built models are able to describe the relationship between the structure of triterpene derivatives and the pLD50 bioactivity. Based on contour maps obtained from CoMFA and CoMSIA models, 38 new molecules are designed and their pLD50 activities are predicted. The drug-like and ADME-Tox properties of the molecule designed are examined and led to the selection of four molecules (55, 56, 59, 64) as promising antibacterial and insecticidal agents. Compounds 55, 56, 59, and 64 are able to inhibit the MurE (PDB code: 1E8C) and EcR (PDB code: 1R20) proteins involved in the process of antibacterial and insecticidal activities. This hypothesis is confirmed by the implementation of a molecular docking test. This test predicted the most important referential interactions that occur between the structure of triterpene derivatives and the targeted receptors. Among the four docked molecules, three molecules (55, 56, and 59) showed greater stability than the reference molecule 16 inside the MurE and EcR receptors pocket. Therefore, the structure of the three new triterpene derivatives can be adopted as reference for the synthesis of antibacterial drugs and also in the development of insecticides.
Collapse
|
9
|
Yang H, Ding Y, Tang J, Guo F. Inferring human microbe–drug associations via multiple kernel fusion on graph neural network. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2021.107888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Rakib A, Nain Z, Sami SA, Mahmud S, Islam A, Ahmed S, Siddiqui ABF, Babu SMOF, Hossain P, Shahriar A, Nainu F, Emran TB, Simal-Gandara J. A molecular modelling approach for identifying antiviral selenium-containing heterocyclic compounds that inhibit the main protease of SARS-CoV-2: an in silico investigation. Brief Bioinform 2021; 22:1476-1498. [PMID: 33623995 PMCID: PMC7929402 DOI: 10.1093/bib/bbab045] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been declared a global pandemic by the World Health Organization, and the situation worsens daily, associated with acute increases in case fatality rates. The main protease (Mpro) enzyme produced by SARS-CoV-2 was recently demonstrated to be responsible for not only viral reproduction but also impeding host immune responses. The element selenium (Se) plays a vital role in immune functions, both directly and indirectly. Thus, we hypothesised that Se-containing heterocyclic compounds might curb the activity of SARS-CoV-2 Mpro. We performed a molecular docking analysis and found that several of the selected selenocompounds showed potential binding affinities for SARS-CoV-2 Mpro, especially ethaselen (49), which exhibited a docking score of -6.7 kcal/mol compared with the -6.5 kcal/mol score for GC376 (positive control). Drug-likeness calculations suggested that these compounds are biologically active and possess the characteristics of ideal drug candidates. Based on the binding affinity and drug-likeness results, we selected the 16 most effective selenocompounds as potential anti-COVID-19 drug candidates. We also validated the structural integrity and stability of the drug candidate through molecular dynamics simulation. Using further in vitro and in vivo experiments, we believe that the targeted compound identified in this study (ethaselen) could pave the way for the development of prospective drugs to combat SARS-CoV-2 infections and trigger specific host immune responses.
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, 881 Madison Ave, Memphis, TN 38163, USA
| | - Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Islamic University, Bangladesh
| | - Saad Ahmed Sami
- Department of Biotechnology and Genetic Engineering, Islamic University, Bangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
| | - Ashiqul Islam
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Bangladesh
| | - Shahriar Ahmed
- Department of Pharmacy, University of Chittagong, Bangladesh
| | | | | | - Payar Hossain
- Bachelor of Pharmacy professional degree focused in Pharmacy from University of Chittagong, Bangladesh
| | - Asif Shahriar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, USA
| | - Firzan Nainu
- Faculty of Pharmacy Universitas Hasanuddin, Indonesia
| | | | | |
Collapse
|
11
|
Ouassaf M, Belaidi S, Mogren Al Mogren M, Chtita S, Ullah Khan S, Thet Htar T. Combined docking methods and molecular dynamics to identify effective antiviral 2, 5-diaminobenzophenonederivatives against SARS-CoV-2. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2021; 33:101352. [PMID: 33558797 PMCID: PMC7857992 DOI: 10.1016/j.jksus.2021.101352] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 05/28/2023]
Abstract
The aim of this work is to contribute to the research in finding lead compounds for clinical use, to identify new drugs that target the SARS-CoV-2 virus main protease (Mpro). In this study, we used molecular docking strategies to analyze 2.5-diaminobenzophenone compounds against Malaria and to compare results with the Nelfinavir as a FDA-approved HIV-1 protease inhibitor recommended for the treatment of COVID-19. These efforts identified the potential compounds against SAR-COV-2 Mpro with the docking scores ranges from -6.1 to -7.75 kcal/mol, which exhibited better interactions than the Nelfinavir. Among thirty-six studied, compounds 20c, 24c, 30c, 34c, 35c and 36c showed the highest affinity and involved in forming hydrophobic interactions with Glu166, Thr24, Thr25, and Thr26 residues and forming H-bonding interactions with Gln189, Cys145, and His41residues. Pharmacokinetic properties and toxicity (ADMET) were also determined for identified compounds. This study result in the identification of two compounds 35 and 36 having high binding affinity, good pharmacokinetics properties and lowest toxicity. The structural stability and dynamics of lead compounds within the active site of 3CLpro was also examined using molecular dynamics (MD) simulation. Essential dynamics demonstrated that the two complexes remain stable during the entire duration of simulation. We have shown that these two lead molecules would have the potential to act as promising drug-candidates and would be of interest as starting point for designing compounds against the SARS-CoV-2.
Collapse
Affiliation(s)
- Mebarka Ouassaf
- Department of Chemistry, Faculty of Exact Sciences, Department of Chemistry, Group of Computational and Pharmaceutical Chemistry, LMC E Laboratory, Biskra University, Biskra 07000, Algeria
| | - Salah Belaidi
- Department of Chemistry, Faculty of Exact Sciences, Department of Chemistry, Group of Computational and Pharmaceutical Chemistry, LMC E Laboratory, Biskra University, Biskra 07000, Algeria
| | | | - Samir Chtita
- Department of Chemistry, Faculty of Sciences Ben M'Sik, Casablanca Hassan I University, Casablanca, Morocco
| | - Shafi Ullah Khan
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Thet Thet Htar
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| |
Collapse
|
12
|
Panikar S, Shoba G, Arun M, Sahayarayan JJ, Usha Raja Nanthini A, Chinnathambi A, Alharbi SA, Nasif O, Kim HJ. Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (M pro) with pharmacokinetics and toxicological properties. J Infect Public Health 2021; 14:601-610. [PMID: 33848890 PMCID: PMC7874929 DOI: 10.1016/j.jiph.2020.12.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/12/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022] Open
Abstract
Background The current health concern to the entire world is the chronic respiratory disease caused by coronavirus 2 (COVID-19). A specific treatment or proper therapy is still lacking, and the investigations from across the world for proper drug/vaccine development towards disease control are in progress. The Coronavirus replication takes place by the conversion of the polypeptide into functional protein and this occurs due to the key enzyme Main protease (Mpro). Therefore, identification of natural and effective Mpro inhibitors could be a safe and promising approach for COVID-19 control. Methods The present in silico study evaluates the effect of bioactive compounds found in Eucalyptus and Corymbia species essential oil on Mpro by docking. Molecular docking of the major seven compounds of essential oil (citronellol, alpha-terpineol, eucalyptol, d-limonene, 3-carene, o-cymene, and alpha-pinene) with Mpro was studied by AutoDock 4.2, and the properties were analysed by PreADMET and Biovia Discovery Studio visualizer. Results The calculated parameters such as binding energy, hydrophobic interactions, and hydrogen bond interactions of 6LU7 (Mpro) with Eucalyptus and Corymbia volatile secondary metabolites represented its scope as an effective therapy option against covid-19. Among the docked compounds, eucalyptol shows the least binding energy without toxicity. Conclusions The outcome of this study reported that the essential oil of Eucalyptus and Corymbia species, mainly eucalyptol can be utilized as a potential inhibitor against COVID-19 and also it can be used in its treatment. Hence, further analysis was required to explore its potential application in medicine.
Collapse
Affiliation(s)
- Sukanya Panikar
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India
| | - Gunasekaran Shoba
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India; Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, Tamil Nadu, India
| | - Muthukrishnan Arun
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - A Usha Raja Nanthini
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India.
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box-2455, Riyadh 11451, Saudi Arabia
| | - Sulaiman A Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box-2455, Riyadh 11451, Saudi Arabia
| | - Omaima Nasif
- Department of Physiology, College of Medicine, King Saud University, [Medical City], King Khalid University Hospital, PO Box-2925, Riyadh 11461, Saudi Arabia
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.
| |
Collapse
|
13
|
Gusarov S, Stoyanov SR. COSMO-RS-Based Descriptors for the Machine Learning-Enabled Screening of Nucleotide Analogue Drugs against SARS-CoV-2. J Phys Chem Lett 2020; 11:9408-9414. [PMID: 33104327 PMCID: PMC7605243 DOI: 10.1021/acs.jpclett.0c02836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/15/2020] [Indexed: 05/11/2023]
Abstract
Chemical similarity-based approaches employed to repurpose or develop new treatments for emerging diseases, such as COVID-19, correlates molecular structure-based descriptors of drugs with those of a physiological counterpart or clinical phenotype. We propose novel descriptors based on a COSMO-RS (short for conductor-like screening model for real solvents) σ-profiles for enhanced drug screening enabled by machine learning (ML). The descriptors' performance is hereby illustrated for nucleotide analogue drugs that inhibit the ribonucleic acid-dependent ribonucleic acid polymerase, key to viral transcription and genome replication. The COSMO-RS-based descriptors account for both chemical reactivity and structure, and are more effective for ML-based screening than fingerprints based on molecular structure and simple physical/chemical properties. The descriptors are evaluated using principal component analysis, an unsupervised ML technique. Our results correlate with the active monophosphate forms of the leading drug remdesivir and the prospective drug EIDD-2801 with nucleotides, followed by other promising drugs, and are superior to those from molecular structure-based descriptors and molecular docking. The COSMO-RS-based descriptors could help accelerate drug discovery for the treatment of emerging diseases.
Collapse
Affiliation(s)
- Sergey Gusarov
- National
Research Council, Nanotechnology Research Centre, 11421 Saskatchewan Drive NW, Edmonton, Alberta T6G 2M9, Canada
| | - Stanislav R. Stoyanov
- Natural
Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, Alberta T9G 1A8, Canada
| |
Collapse
|
14
|
Garza-López RA, Kozak JJ, Gray HB. Copper(II) Inhibition of the SARS-CoV-2 Main Protease. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020:12673436. [PMID: 33200118 PMCID: PMC7668746 DOI: 10.26434/chemrxiv.12673436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/21/2020] [Indexed: 05/27/2023]
Abstract
In an analysis of the structural stability of the coronavirus main protease (Mpro), we identified regions of the protein that could be disabled by cobalt(III)-cation binding to histidines and cysteines [1]. Here we have extended our work to include copper(II) chelates, which we have docked to HIS 41 and CYS 145 in the Mpro active-site region. We have found stable docked structures where Cu(II) could readily bond to the CYS 145 thiolate, which would be lethal to the enzyme.
Collapse
Affiliation(s)
- Roberto A Garza-López
- Department of Chemistry and Seaver Chemistry Laboratory, Pomona College, Claremont, CA 91711
| | - John J Kozak
- Department of Chemistry, DePaul University, Chicago IL 60604-6116
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|