1
|
Albert T, Kumar A, Caranto J, Moënne-Loccoz P. Vibrational analyses of the reaction of oxymyoglobin with NO using a photolabile caged NO donor at cryogenic temperatures. J Inorg Biochem 2024; 258:112633. [PMID: 38852292 PMCID: PMC11216511 DOI: 10.1016/j.jinorgbio.2024.112633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
The NO dioxygenation reaction catalyzed by heme-containing globin proteins is a crucial aerobic detoxification pathway. Accordingly, the second order reaction of NO with oxymyoglobin and oxyhemoglobin has been the focus of a large number of kinetic and spectroscopic studies. Stopped-flow and rapid-freeze-quench (RFQ) measurements have provided evidence for the formation of a Fe(III)-nitrato complex with millisecond lifetime prior to release of the nitrate product, but the temporal resolution of these techniques is insufficient for the characterization of precursor species. Most mechanistic models assume the formation of an initial Fe(III)-peroxynitrite species prior to homolytic cleavage of the OO bond and recombination of the resulting NO2 and Fe(IV)=O species. Here we report vibrational spectroscopy measurements for the reaction of oxymyoglobin with a photolabile caged NO donor at cryogenic temperatures. We show that this approach offers efficient formation and trapping of the Fe(III)-nitrato, enzyme-product, complex at 180 K. Resonance Raman spectra of the Fe(III)-nitrato complex trapped via RFQ in the liquid phase and photolabile NO release at cryogenic temperatures are indistinguishable, demonstrating the complementarity of these approaches. Caged NO is released by irradiation <180 K but diffusion into the heme pocket is fully inhibited. Our data provide no evidence for Fe(III)-peroxynitrite of Fe(IV)=O species, supporting low activation energies for the NO to nitrate conversion at the oxymyoglobin reaction site. Photorelease of NO at cryogenic temperatures allows monitoring of the reaction by transmittance FTIR which provides valuable quantitative information and promising prospects for the detection of protein sidechain reorganization events in NO-reacting metalloenzymes.
Collapse
Affiliation(s)
- Therese Albert
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Arun Kumar
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA
| | - Jonathan Caranto
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| |
Collapse
|
2
|
Mondal P, Udukalage D, Mohamed AA, Wong HPH, de Visser SP, Wijeratne GB. A Cytochrome P450 TxtE Model System with Mechanistic and Theoretical Evidence for a Heme Peroxynitrite Active Species. Angew Chem Int Ed Engl 2024:e202409430. [PMID: 39088419 DOI: 10.1002/anie.202409430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 08/03/2024]
Abstract
The cytochrome P450 homolog, TxtE, efficiently catalyzes the direct and regioselective aromatic nitration of the indolyl moiety of L-tryptophan to 4-nitro-L-tryptophan, using nitric oxide (NO) and dioxygen (O2) as co-substrates. Pathways for such direct and selective nitration of heteroaromatic motifs present platforms for engineering new nitration biocatalysts for pharmacologically beneficial targets, among a medley of other pivotal industrial applications. Precise mechanistic details concerning this pathway are only weakly understood, albeit a heme iron(III)-peroxynitrite active species has been postulated. To shed light on this unique reaction landscape, we investigated the indole nitration pathway of a series of biomimetic ferric heme superoxide mimics, [(Por)FeIII(O2 -⋅)], in the presence of NO. Therein, our model systems gave rise to three distinct nitroindole products, including 4-nitroindole, the product analogous to that obtained with TxtE. Moreover, 15N and 18O isotope labeling studies, along with meticulously designed control experiments lend credence to a heme peroxynitrite active nitrating agent, drawing close similarities to the tryptophan nitration mechanism of TxtE. All organic and inorganic reaction components have been fully characterized using spectroscopic methods. Theoretical investigation into several mechanistic possibilities deem a unique indolyl radical based reaction pathway as the most energetically favorable, products of which, are in excellent agreement with experimental findings.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, United States
- Current address: Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, 140306, India
| | - Dhilanka Udukalage
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, United States
| | - Abubaker A Mohamed
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Henrik P H Wong
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Gayan B Wijeratne
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, United States
| |
Collapse
|
3
|
Miralles-Robledillo JM, Martínez-Espinosa RM, Pire C. Transcriptomic profiling of haloarchaeal denitrification through RNA-Seq analysis. Appl Environ Microbiol 2024; 90:e0057124. [PMID: 38814058 PMCID: PMC11218638 DOI: 10.1128/aem.00571-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Denitrification, a crucial biochemical pathway prevalent among haloarchaea in hypersaline ecosystems, has garnered considerable attention in recent years due to its ecological implications. Nevertheless, the underlying molecular mechanisms and genetic regulation governing this respiration/detoxification process in haloarchaea remain largely unexplored. In this study, RNA-sequencing was used to compare the transcriptomes of the haloarchaeon Haloferax mediterranei under oxic and denitrifying conditions, shedding light on the intricate metabolic alterations occurring within the cell, such as the accurate control of the metal homeostasis. Furthermore, the investigation identifies several genes encoding transcriptional regulators and potential accessory proteins with putative roles in denitrification. Among these are bacterioopsin-like transcriptional activators, proteins harboring a domain of unknown function (DUF2249), and cyanoglobin. In addition, the study delves into the genetic regulation of denitrification, finding a regulatory motif within promoter regions that activates numerous denitrification-related genes. This research serves as a starting point for future molecular biology studies in haloarchaea, offering a promising avenue to unravel the intricate mechanisms governing haloarchaeal denitrification, a pathway of paramount ecological importance.IMPORTANCEDenitrification, a fundamental process within the nitrogen cycle, has been subject to extensive investigation due to its close association with anthropogenic activities, and its contribution to the global warming issue, mainly through the release of N2O emissions. Although our comprehension of denitrification and its implications is generally well established, most studies have been conducted in non-extreme environments with mesophilic microorganisms. Consequently, there is a significant knowledge gap concerning extremophilic denitrifiers, particularly those inhabiting hypersaline environments. The significance of this research was to delve into the process of haloarchaeal denitrification, utilizing the complete denitrifier haloarchaeon Haloferax mediterranei as a model organism. This research led to the analysis of the metabolic state of this microorganism under denitrifying conditions and the identification of regulatory signals and genes encoding proteins potentially involved in this pathway, serving as a valuable resource for future molecular studies.
Collapse
Affiliation(s)
- Jose María Miralles-Robledillo
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Sciences, Universitat d'Alacant, Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Sciences, Universitat d'Alacant, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
| | - Carmen Pire
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Sciences, Universitat d'Alacant, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
| |
Collapse
|
4
|
Gardner AM, Gardner PR. Dioxygen and glucose force motion of the electron-transfer switch in the iron(III) flavohemoglobin-type nitric oxide dioxygenase. J Inorg Biochem 2023; 245:112257. [PMID: 37229820 DOI: 10.1016/j.jinorgbio.2023.112257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Kinetic and structural investigations of the flavohemoglobin-type NO dioxygenase have suggested critical roles for transient Fe(III)O2 complex formation and O2-forced movements affecting hydride transfer to the FAD cofactor and electron-transfer to the Fe(III)O2 complex. Stark-effect theory together with structural models and dipole and internal electrostatic field determinations provided a semi-quantitative spectroscopic method for investigating the proposed Fe(III)O2 complex and O2-forced movements. Deoxygenation of the enzyme causes Stark effects on the ferric heme Soret and charge-transfer bands revealing the Fe(III)O2 complex. Deoxygenation also elicits Stark effects on the FAD that expose forces and motions that create a more restricted NADH access to FAD for hydride transfer and switch electron-transfer off. Glucose also forces the enzyme toward an off state. Amino acid substitutions at the B10, E7, E11, G8, D5, and F7 positions influence the Stark effects of O2 on resting heme spin states and FAD consistent with the proposed roles of the side chains in the enzyme mechanism. Deoxygenation of ferric myoglobin and hemoglobin A also induces Stark effects on the hemes suggesting a common 'oxy-met' state. The ferric myoglobin and hemoglobin heme spectra are also glucose-responsive. A conserved glucose or glucose-6-phosphate binding site is found bridging the BC-corner and G-helix in flavohemoglobin and myoglobin suggesting novel allosteric effector roles for glucose or glucose-6-phosphate in the NO dioxygenase and O2 storage functions. The results support the proposed roles of a ferric O2 intermediate and protein motions in regulating electron-transfer during NO dioxygenase turnover.
Collapse
Affiliation(s)
- Anne M Gardner
- Research and Development Division, Miami Valley Biotech, Suite 2445, 1001 E. 2(nd) Street, Dayton, OH 45402, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, R033, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - Paul R Gardner
- Research and Development Division, Miami Valley Biotech, Suite 2445, 1001 E. 2(nd) Street, Dayton, OH 45402, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, R033, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Chemistry and Biochemistry Department, University of Dayton, 300 College Park, Dayton, OH 45469, USA.
| |
Collapse
|
5
|
Sosna M, Ferapontova EE. Electron Transfer in Binary Hemin-Modified Alkanethiol Self-Assembled Monolayers on Gold: Hemin's Lateral and Interfacial Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11180-11190. [PMID: 36062334 DOI: 10.1021/acs.langmuir.2c01064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Orientated coupling of redox enzymes to electrodes by their reconstitution onto redox cofactors, such as hemin conjugated to self-assembled monolayers (SAMs) formed on the electrodes, poses the requirements for a SAM design enabling reconstitution. We show that the kinetics of electron transfer (ET) in binary SAMs of alkanethiols on gold composed of in situ hemin-conjugated 11-amino-1-undecanethiol (AUT) and diluting OH-terminated alkanethiols with 11, 6, and 2 methylene groups (MC11OH, MC6OH, and MC2OH) depends on both the SAM composition and surface density of hemin, Γheme. In AUT/MC11OH SAMs composed of equal linker/diluent lengths, the heterogeneous ET rate constant ks decreased with the Γheme and varied between 70 and 500 s-1. For shorter diluents, the ks of 245-330 s-1 (C6) and 300-340 s-1 (C2) showed a little (if any) Γheme dependence. In AUT/MC11OH SAMs, the increasing Γheme resulted in the steric crowding of hemin species and their neighboring lateral interactions in the plane of hemin localization, affecting the potential distribution at the SAM/electrode interface and inducing local electrostatic effects interfering with hemin oxidation. In AUT/MC6OH and AUT/MC2OH SAMs, hemin discharged at the plane of the closest approach to the gold surface, equal to the diluent length and permeable to electrolyte ions, which lessened those effects. All studied binary SAMs provided steric hindrance for protein reconstitution on the hemin cofactor conjugated to the extended AUT linker. Further use of SAM-modified electrodes with the covalently attached hemin as interfaces for heme proteins' reconstitution should consider SAMs with loosely dispersed redox centers terminating more rigid molecular wires. Such wires place hemin at fixed distances from the electrode surface and thus ensure the interfacial properties required for the effective on-surface reconstitution of proteins and enzymes.
Collapse
Affiliation(s)
- Maciej Sosna
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Adv Microb Physiol 2022; 80:85-155. [PMID: 35489794 DOI: 10.1016/bs.ampbs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens have sophisticated systems that allow them to survive in hosts in which innate immunity is the frontline of defense. One of the substances produced by infected hosts is nitric oxide (NO) that together with its derived species leads to the so-called nitrosative stress, which has antimicrobial properties. In this review, we summarize the current knowledge on targets and protective systems that bacteria have to survive host-generated nitrosative stress. We focus on bacterial pathogens that pose serious health concerns due to the growing increase in resistance to currently available antimicrobials. We describe the role of nitrosative stress as a weapon for pathogen eradication, the detoxification enzymes, protein/DNA repair systems and metabolic strategies that contribute to limiting NO damage and ultimately allow survival of the pathogen in the host. Additionally, this systematization highlights the lack of available data for some of the most important human pathogens, a gap that urgently needs to be addressed.
Collapse
|
7
|
Gardner PR. Ordered Motions in the Nitric-Oxide Dioxygenase Mechanism of Flavohemoglobin and Assorted Globins with Tightly Coupled Reductases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1414:45-96. [PMID: 36520413 DOI: 10.1007/5584_2022_751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitric-oxide dioxygenases (NODs) activate and combine O2 with NO to form nitrate. A variety of oxygen-binding hemoglobins with associated partner reductases or electron donors function as enzymatic NODs. Kinetic and structural investigations of the archetypal two-domain microbial flavohemoglobin-NOD have illuminated an allosteric mechanism that employs selective tunnels for O2 and NO, gates for NO and nitrate, transient O2 association with ferric heme, and an O2 and NO-triggered, ferric heme spin crossover-driven, motion-controlled, and dipole-regulated electron-transfer switch. The proposed mechanism facilitates radical-radical coupling of ferric-superoxide with NO to form nitrate while preventing suicidal ferrous-NO formation. Diverse globins display the structural and functional motifs necessary for a similar allosteric NOD mechanism. In silico docking simulations reveal monomeric erythrocyte hemoglobin alpha-chain and beta-chain intrinsically matched and tightly coupled with NADH-cytochrome b5 oxidoreductase and NADPH-cytochrome P450 oxidoreductase, respectively, forming membrane-bound flavohemoglobin-like mammalian NODs. The neuroprotective neuroglobin manifests a potential NOD role in a close-fitting ternary complex with membrane-bound NADH-cytochrome b5 oxidoreductase and cytochrome b5. Cytoglobin interfaces weakly with cytochrome b5 for O2 and NO-regulated electron-transfer and coupled NOD activity. The mechanistic model also provides insight into the evolution of O2 binding cooperativity in hemoglobin and a basis for the discovery of allosteric NOD inhibitors.
Collapse
|
8
|
Grachev DI, Shumaev KB, Kosmachevskaya OV, Topunov AF, Ruuge EK. Nitrosyl Comlexes of Hemoglobin in Various Model Systems. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s000635092106004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Wu MR, Hou TT, Liu Y, Miao LL, Ai GM, Ma L, Zhu HZ, Zhu YX, Gao XY, Herbold CW, Wagner M, Li DF, Liu ZP, Liu SJ. Novel Alcaligenes ammonioxydans sp. nov. from wastewater treatment sludge oxidizes ammonia to N 2 with a previously unknown pathway. Environ Microbiol 2021; 23:6965-6980. [PMID: 34581470 DOI: 10.1111/1462-2920.15751] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/02/2021] [Accepted: 08/29/2021] [Indexed: 11/28/2022]
Abstract
Heterotrophic nitrifiers are able to oxidize and remove ammonia from nitrogen-rich wastewaters but the genetic elements of heterotrophic ammonia oxidation are poorly understood. Here, we isolated and identified a novel heterotrophic nitrifier, Alcaligenes ammonioxydans sp. nov. strain HO-1, oxidizing ammonia to hydroxylamine and ending in the production of N2 gas. Genome analysis revealed that strain HO-1 encoded a complete denitrification pathway but lacks any genes coding for homologous to known ammonia monooxygenases or hydroxylamine oxidoreductases. Our results demonstrated strain HO-1 denitrified nitrite (not nitrate) to N2 and N2 O at anaerobic and aerobic conditions respectively. Further experiments demonstrated that inhibition of aerobic denitrification did not stop ammonia oxidation and N2 production. A gene cluster (dnfT1RT2ABCD) was cloned from strain HO-1 and enabled E. coli accumulated hydroxylamine. Sub-cloning showed that genetic cluster dnfAB or dnfABC already enabled E. coli cells to produce hydroxylamine and further to 15 N2 from (15 NH4 )2 SO4 . Transcriptome analysis revealed these three genes dnfA, dnfB and dnfC were significantly upregulated in response to ammonia stimulation. Taken together, we concluded that strain HO-1 has a novel dnf genetic cluster for ammonia oxidation and this dnf genetic cluster encoded a previously unknown pathway of direct ammonia oxidation (Dirammox) to N2 .
Collapse
Affiliation(s)
- Meng-Ru Wu
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ting-Ting Hou
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li-Li Miao
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guo-Min Ai
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lan Ma
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hai-Zhen Zhu
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Xin Zhu
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xi-Yan Gao
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.,Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266273, China
| |
Collapse
|
10
|
Salas A, Cabrera JJ, Jiménez-Leiva A, Mesa S, Bedmar EJ, Richardson DJ, Gates AJ, Delgado MJ. Bacterial nitric oxide metabolism: Recent insights in rhizobia. Adv Microb Physiol 2021; 78:259-315. [PMID: 34147187 DOI: 10.1016/bs.ampbs.2021.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is a reactive gaseous molecule that has several functions in biological systems depending on its concentration. At low concentrations, NO acts as a signaling molecule, while at high concentrations, it becomes very toxic due to its ability to react with multiple cellular targets. Soil bacteria, commonly known as rhizobia, have the capacity to establish a N2-fixing symbiosis with legumes inducing the formation of nodules in their roots. Several reports have shown NO production in the nodules where this gas acts either as a signaling molecule which regulates gene expression, or as a potent inhibitor of nitrogenase and other plant and bacteria enzymes. A better understanding of the sinks and sources of NO in rhizobia is essential to protect symbiotic nitrogen fixation from nitrosative stress. In nodules, both the plant and the microsymbiont contribute to the production of NO. From the bacterial perspective, the main source of NO reported in rhizobia is the denitrification pathway that varies significantly depending on the species. In addition to denitrification, nitrate assimilation is emerging as a new source of NO in rhizobia. To control NO accumulation in the nodules, in addition to plant haemoglobins, bacteroids also contribute to NO detoxification through the expression of a NorBC-type nitric oxide reductase as well as rhizobial haemoglobins. In the present review, updated knowledge about the NO metabolism in legume-associated endosymbiotic bacteria is summarized.
Collapse
Affiliation(s)
- Ana Salas
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Juan J Cabrera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrea Jiménez-Leiva
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Socorro Mesa
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Eulogio J Bedmar
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - David J Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andrew J Gates
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - María J Delgado
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
11
|
Nowaczyk A, Kowalska M, Nowaczyk J, Grześk G. Carbon Monoxide and Nitric Oxide as Examples of the Youngest Class of Transmitters. Int J Mol Sci 2021; 22:ijms22116029. [PMID: 34199647 PMCID: PMC8199767 DOI: 10.3390/ijms22116029] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022] Open
Abstract
The year 2021 is the 100th anniversary of the confirmation of the neurotransmission phenomenon by Otto Loewi. Over the course of the hundred years, about 100 neurotransmitters belonging to many chemical groups have been discovered. In order to celebrate the 100th anniversary of the confirmation of neurotransmitters, we present an overview of the first two endogenous gaseous transmitters i.e., nitric oxide, and carbon monoxide, which are often termed as gasotransmitters.
Collapse
Affiliation(s)
- Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland;
- Correspondence: ; Tel.: +48-52-585-3904
| | - Magdalena Kowalska
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland;
| | - Jacek Nowaczyk
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina St., 87-100 Toruń, Poland;
| | - Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 75 Ujejskiego St., 85-168 Bydgoszcz, Poland;
| |
Collapse
|
12
|
Julió Plana L, Martinez Grundman JE, Estrin DA, Lecomte JTJ, Capece L. Distal lysine (de)coordination in the algal hemoglobin THB1: A combined computer simulation and experimental study. J Inorg Biochem 2021; 220:111455. [PMID: 33882423 DOI: 10.1016/j.jinorgbio.2021.111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/26/2022]
Abstract
THB1 is a monomeric truncated hemoglobin from the green alga Chlamydomonas reinhardtii. In the absence of exogenous ligands and at neutral pH, the heme group of THB1 is coordinated by two protein residues, Lys53 and His77. THB1 is thought to function as a nitric oxide dioxygenase, and the distal binding of O2 requires the cleavage of the Fe-Lys53 bond accompanied by protonation and expulsion of the lysine from the heme cavity into the solvent. Nuclear magnetic resonance spectroscopy and crystallographic data have provided dynamic and structural insights of the process, but the details of the mechanism have not been fully elucidated. We applied a combination of computer simulations and site-directed mutagenesis experiments to shed light on this issue. Molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics restrained optimizations were performed to explore the nature of the transition between the decoordinated and lysine-bound states of the ferrous heme in THB1. Lys49 and Arg52, which form ionic interactions with the heme propionates in the X-ray structure of lysine-bound THB1, were observed to assist in maintaining Lys53 inside the protein cavity and play a key role in the transition. Lys49Ala, Arg52Ala and Lys49Ala/Arg52Ala THB1 variants were prepared, and the consequences of the replacements on the Lys (de)coordination equilibrium were characterized experimentally for comparison with computational prediction. The results reinforced the dynamic role of protein-propionate interactions and strongly suggested that cleavage of the Fe-Lys53 bond and ensuing conformational rearrangement is facilitated by protonation of the amino group inside the distal cavity.
Collapse
Affiliation(s)
- Laia Julió Plana
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jaime E Martinez Grundman
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juliette T J Lecomte
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, United States.
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Liao X, Forghani F, Liu D, Ding T. Cumulative damage by nonthermal plasma (NTP) exceeds the defense barrier of multiple antibiotic-resistant Staphylococcus aureus: a key to achieve complete inactivation. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyaa041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
The aim of this study was to provide a comprehensive understanding of the nonthermal plasma (NTP)-induced inactivated behaviors on a multiple antibiotic–resistant (MAR) Staphylococcus aureus (S. aureus).
Materials and Methods
A dielectric barrier discharge (DBD) NTP system was employed for the inactivation of a MAR S. aureus under various applied powers of 35, 45, and 55 W, and gas distances of 4, 6, and 8 mm. The inactivation kinetics of S. aureus were estimated with linear and nonlinear predictive models. In addition, degradation of carotenoid pigment, peroxidation of fatty acids, oxidation of nucleic acids and proteins, and alteration in gene expression were analyzed after NTP treatment.
Results and Discussion
The computationally simulated results indicated that the densities of various reactive species increased with enhanced applied powers and decreased discharge distances. These species were further transformed into reactive oxidative and nitrogen species in the gas–liquid interphase and liquid phase. The oxidative and nitrosative stress of NTP resulted in severe damage to cellular components and the morphological structure of S. aureus. On the other hand, the plasma reactive species could also induce the sublethal injury of S. aureus through upregulating the general stress response, antioxidative and antinitrosative defensive systems. Once the cumulative damages overrode the stress tolerance of S. aureus, the completed cell death was finally achieved by NTP.
Conclusions
This work infers the possible risk of inducing the repair and resistant capacity of pathogens when the applied NTP parameters are inappropriate, which helps the optimization of NTP process to achieve sufficient inactivation.
Collapse
|
14
|
Lubega J, Umbreen S, Loake GJ. Recent advances in the regulation of plant immunity by S-nitrosylation. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:864-872. [PMID: 33005916 DOI: 10.1093/jxb/eraa454] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 05/16/2023]
Abstract
S-nitrosylation, the addition of a nitric oxide (NO) moiety to a reactive protein cysteine (Cys) thiol, to form a protein S-nitrosothiol (SNO), is emerging as a key regulatory post-translational modification (PTM) to control the plant immune response. NO also S-nitrosylates the antioxidant tripeptide, glutathione, to form S-nitrosoglutathione (GSNO), both a storage reservoir of NO bioactivity and a natural NO donor. GSNO and, by extension, S-nitrosylation, are controlled by GSNO reductase1 (GSNOR1). The emerging data suggest that GSNOR1 itself is a target of NO-mediated S-nitrosylation, which subsequently controls its selective autophagy, regulating cellular protein SNO levels. Recent findings also suggest that S-nitrosylation may be deployed by pathogen-challenged host cells to counteract the effect of delivered microbial effector proteins that promote pathogenesis and by the pathogens themselves to augment virulence. Significantly, it also appears that S-nitrosylation may regulate plant immune functions by controlling SUMOylation, a peptide-based PTM. In this context, global SUMOylation is regulated by S-nitrosylation of SUMO conjugating enzyme 1 (SCE1) at Cys139. This redox-based PTM has also been shown to control the function of a key zinc finger transcriptional regulator during the establishment of plant immunity. Here, we provide an update of these recent advances.
Collapse
Affiliation(s)
- Jibril Lubega
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Saima Umbreen
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Comparative proteomic analyses reveal the metabolic aspects and biotechnological potential of nitrate assimilation in the yeast Dekkera bruxellensis. Appl Microbiol Biotechnol 2021; 105:1585-1600. [PMID: 33538877 DOI: 10.1007/s00253-021-11117-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/28/2020] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
The yeast Dekkera bruxellensis is well-known for its adaptation to industrial ethanol fermentation processes, which can be further improved if nitrate is present in the substrate. To date, the assimilation of nitrate has been considered inefficient because of the apparent energy cost imposed on cell metabolism. Recent research, however, has shown that nitrate promotes growth rate and ethanol yield when oxygen is absent from the environment. Given this, the present work aimed to identify the biological mechanisms behind this physiological behaviour. Proteomic analyses comparing four contrasting growth conditions gave some clues on how nitrate could be used as primary nitrogen source by D. bruxellensis GDB 248 (URM 8346) cells in anaerobiosis. The superior anaerobic growth in nitrate seems to be a consequence of increased cell metabolism (glycolytic pathway, production of ATP and NADPH and anaplerotic reactions providing metabolic intermediates) regulated by balanced activation of TORC1 and NCR de-repression mechanisms. On the other hand, the poor growth observed in aerobiosis is likely due to an oxidative stress triggered by nitrate when oxygen is present. These results represent a milestone regarding the knowledge about nitrate metabolism and might be explored for future use of D. bruxellensis as an industrial yeast. KEY POINTS: • Nitrate can be regarded as preferential nitrogen source for D. bruxellensis. • Oxidative stress limits the growth of D. bruxellensis in nitrate in aerobiosis. • Nitrate is a nutrient for novel industrial bioprocesses using D. bruxellensis.
Collapse
|
16
|
Gardner AM, Gardner PR. Allostery in the nitric oxide dioxygenase mechanism of flavohemoglobin. J Biol Chem 2020; 296:100186. [PMID: 33310705 PMCID: PMC7948479 DOI: 10.1074/jbc.ra120.016637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The substrates O2 and NO cooperatively activate the NO dioxygenase function of Escherichia coli flavohemoglobin. Steady-state and transient kinetic measurements support a structure-based mechanistic model in which O2 and NO movements and conserved amino acids at the E11, G8, E2, E7, B10, and F7 positions within the globin domain control activation. In the cooperative and allosteric mechanism, O2 migrates to the catalytic heme site via a long hydrophobic tunnel and displaces LeuE11 away from the ferric iron, which forces open a short tunnel to the catalytic site gated by the ValG8/IleE15 pair and LeuE11. NO permeates this tunnel and leverages upon the gating side chains triggering the CD loop to furl, which moves the E and F-helices and switches an electron transfer gate formed by LysF7, GlnE7, and water. This allows FADH2 to reduce the ferric iron, which forms the stable ferric–superoxide–TyrB10/GlnE7 complex. This complex reacts with internalized NO with a bimolecular rate constant of 1010 M−1 s−1 forming nitrate, which migrates to the CD loop and unfurls the spring-like structure. To restart the cycle, LeuE11 toggles back to the ferric iron. Actuating electron transfer with O2 and NO movements averts irreversible NO poisoning and reductive inactivation of the enzyme. Together, structure snapshots and kinetic constants provide glimpses of intermediate conformational states, time scales for motion, and associated energies.
Collapse
Affiliation(s)
- Anne M Gardner
- Research and Development Division, Miami Valley Biotech, Dayton, Ohio, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paul R Gardner
- Research and Development Division, Miami Valley Biotech, Dayton, Ohio, USA; Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Chemistry and Biochemistry Department, University of Dayton, Dayton, Ohio, USA.
| |
Collapse
|
17
|
Becana M, Yruela I, Sarath G, Catalán P, Hargrove MS. Plant hemoglobins: a journey from unicellular green algae to vascular plants. THE NEW PHYTOLOGIST 2020; 227:1618-1635. [PMID: 31960995 DOI: 10.1111/nph.16444] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/24/2019] [Indexed: 05/17/2023]
Abstract
Globins (Glbs) are widely distributed in archaea, bacteria and eukaryotes. They can be classified into proteins with 2/2 or 3/3 α-helical folding around the heme cavity. Both types of Glbs occur in green algae, bryophytes and vascular plants. The Glbs of angiosperms have been more intensively studied, and several protein structures have been solved. They can be hexacoordinate or pentacoordinate, depending on whether a histidine is coordinating or not at the sixth position of the iron atom. The 3/3 Glbs of class 1 and the 2/2 Glbs (also called class 3 in plants) are present in all angiosperms, whereas the 3/3 Glbs of class 2 have been only found in early angiosperms and eudicots. The three Glb classes are expected to play different roles. Class 1 Glbs are involved in hypoxia responses and modulate NO concentration, which may explain their roles in plant morphogenesis, hormone signaling, cell fate determination, nutrient deficiency, nitrogen metabolism and plant-microorganism symbioses. Symbiotic Glbs derive from class 1 or class 2 Glbs and transport O2 in nodules. The physiological roles of class 2 and class 3 Glbs are poorly defined but could involve O2 and NO transport and/or metabolism, respectively. More research is warranted on these intriguing proteins to determine their non-redundant functions.
Collapse
Affiliation(s)
- Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080, Zaragoza, Spain
| | - Inmaculada Yruela
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 13034, 50080, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology (BIFI-Unizar) Joint Unit to CSIC, Edificio I+D Campus Río Ebro, 50018, Zaragoza, Spain
| | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, East Campus, University of Nebraska-Lincoln, Lincoln, NE, 86583, USA
| | - Pilar Catalán
- Group of Biochemistry, Biophysics and Computational Biology (BIFI-Unizar) Joint Unit to CSIC, Edificio I+D Campus Río Ebro, 50018, Zaragoza, Spain
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, 22071, Huesca, Spain
| | - Mark S Hargrove
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
18
|
Berger N, Vignols F, Przybyla-Toscano J, Roland M, Rofidal V, Touraine B, Zienkiewicz K, Couturier J, Feussner I, Santoni V, Rouhier N, Gaymard F, Dubos C. Identification of client iron-sulfur proteins of the chloroplastic NFU2 transfer protein in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 72:873-884. [PMID: 32240305 DOI: 10.1093/jxb/eraa403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/01/2020] [Indexed: 05/15/2023]
Abstract
Iron-sulfur (Fe-S) proteins have critical functions in plastids, notably participating in photosynthetic electron transfer, sulfur and nitrogen assimilation, chlorophyll metabolism, and vitamin or amino acid biosynthesis. Their maturation relies on the so-called SUF (sulfur mobilization) assembly machinery. Fe-S clusters are synthesized de novo on a scaffold protein complex and then delivered to client proteins via several transfer proteins. However, the maturation pathways of most client proteins and their specificities for transfer proteins are mostly unknown. In order to decipher the proteins interacting with the Fe-S cluster transfer protein NFU2, one of the three plastidial representatives found in Arabidopsis thaliana, we performed a quantitative proteomic analysis of shoots, roots, and seedlings of nfu2 plants, combined with NFU2 co-immunoprecipitation and binary yeast two-hybrid experiments. We identified 14 new targets, among which nine were validated in planta using a binary bimolecular fluorescence complementation assay. These analyses also revealed a possible role for NFU2 in the plant response to desiccation. Altogether, this study better delineates the maturation pathways of many chloroplast Fe-S proteins, considerably extending the number of NFU2 clients. It also helps to clarify the respective roles of the three NFU paralogs NFU1, NFU2, and NFU3.
Collapse
Affiliation(s)
- Nathalie Berger
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Florence Vignols
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | | | | | - Valérie Rofidal
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Brigitte Touraine
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | | | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Service unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Véronique Santoni
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | | | - Frédéric Gaymard
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Christian Dubos
- BPMP, Université de Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| |
Collapse
|
19
|
Sivaloganathan DM, Brynildsen MP. Quantitative Modeling Extends the Antibacterial Activity of Nitric Oxide. Front Physiol 2020; 11:330. [PMID: 32362838 PMCID: PMC7181900 DOI: 10.3389/fphys.2020.00330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/20/2020] [Indexed: 12/15/2022] Open
Abstract
Numerous materials have been developed to try and harness the antimicrobial properties of nitric oxide (NO). However, the short half-life and reactivity of NO have made precise, tunable delivery difficult. As such, conventional methodologies have generally relied on donors that spontaneously release NO at different rates, and delivery profiles have largely been constrained to decaying dynamics. In recent years, the possibility of finely controlling NO release, for instance with light, has become achievable and this raises the question of how delivery dynamics influence therapeutic potential. Here we investigated this relationship using Escherichia coli as a model organism and an approach that incorporated both experimentation and mathematical modeling. We found that the best performing delivery mode was dependent on the NO payload, and developed a mathematical model to quantitatively dissect those observations. Those analyses suggested that the duration of respiratory inhibition was a major determinant of NO-induced growth inhibition. Inspired by this, we constructed a delivery schedule that leveraged that insight to extend the antimicrobial activity of NO far beyond what was achievable by traditional delivery dynamics. Collectively, these data and analyses suggest that the delivery dynamics of NO have a considerable impact on its ability to achieve and maintain bacteriostasis.
Collapse
Affiliation(s)
- Darshan M. Sivaloganathan
- Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ, United States
| | - Mark P. Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States
| |
Collapse
|
20
|
Moeller FU, Webster NS, Herbold CW, Behnam F, Domman D, Albertsen M, Mooshammer M, Markert S, Turaev D, Becher D, Rattei T, Schweder T, Richter A, Watzka M, Nielsen PH, Wagner M. Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta. Environ Microbiol 2019; 21:3831-3854. [PMID: 31271506 PMCID: PMC6790972 DOI: 10.1111/1462-2920.14732] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
Marine sponges represent one of the few eukaryotic groups that frequently harbour symbiotic members of the Thaumarchaeota, which are important chemoautotrophic ammonia-oxidizers in many environments. However, in most studies, direct demonstration of ammonia-oxidation by these archaea within sponges is lacking, and little is known about sponge-specific adaptations of ammonia-oxidizing archaea (AOA). Here, we characterized the thaumarchaeal symbiont of the marine sponge Ianthella basta using metaproteogenomics, fluorescence in situ hybridization, qPCR and isotope-based functional assays. 'Candidatus Nitrosospongia ianthellae' is only distantly related to cultured AOA. It is an abundant symbiont that is solely responsible for nitrite formation from ammonia in I. basta that surprisingly does not harbour nitrite-oxidizing microbes. Furthermore, this AOA is equipped with an expanded set of extracellular subtilisin-like proteases, a metalloprotease unique among archaea, as well as a putative branched-chain amino acid ABC transporter. This repertoire is strongly indicative of a mixotrophic lifestyle and is (with slight variations) also found in other sponge-associated, but not in free-living AOA. We predict that this feature as well as an expanded and unique set of secreted serpins (protease inhibitors), a unique array of eukaryotic-like proteins, and a DNA-phosporothioation system, represent important adaptations of AOA to life within these ancient filter-feeding animals.
Collapse
Affiliation(s)
- Florian U. Moeller
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Nicole S. Webster
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular BiosciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Craig W. Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Faris Behnam
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Daryl Domman
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg University9220AalborgDenmark
| | - Maria Mooshammer
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Stephanie Markert
- Institute of Marine Biotechnology e.VGreifswaldGermany
- Institute of Pharmacy, Pharmaceutical BiotechnologyUniversity of GreifswaldGreifswaldGermany
| | - Dmitrij Turaev
- Centre for Microbiology and Environmental Systems Science, Division of Computational Systems BiologyUniversity of ViennaAustria
| | - Dörte Becher
- Institute of Microbiology, Microbial ProteomicsUniversity of GreifswaldGreifswaldGermany
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, Division of Computational Systems BiologyUniversity of ViennaAustria
| | - Thomas Schweder
- Institute of Marine Biotechnology e.VGreifswaldGermany
- Institute of Pharmacy, Pharmaceutical BiotechnologyUniversity of GreifswaldGreifswaldGermany
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem ResearchUniversity of ViennaAustria
| | - Margarete Watzka
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem ResearchUniversity of ViennaAustria
| | - Per Halkjaer Nielsen
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg University9220AalborgDenmark
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg University9220AalborgDenmark
| |
Collapse
|
21
|
Reporter Cell Assessment of TLR4-Induced NF-κB Responses to Cell-Free Hemoglobin and the Influence of Biliverdin. Biomedicines 2019; 7:biomedicines7020041. [PMID: 31163699 PMCID: PMC6630411 DOI: 10.3390/biomedicines7020041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/25/2019] [Indexed: 12/20/2022] Open
Abstract
Hemoglobin (Hb) released during red blood cell lysis can initiate TLR4-dependent signaling and trigger NF-κB activation in surrounding cells. Observations of chronic bleeding in various cancers leads us to hypothesize that Hb and Hb degradation products released from lysed RBC near cancer nests might modulate local TLR4-positive cells. We addressed the hypothesis in vitro by measuring Hb- and biliverdin (Bv)-induced NF-κB signaling in an engineered human TLR4 reporter cell model (HEK-BlueTM hTLR4). Therein, TLR4 stimulation was assessed by measuring NF-κB-dependent secreted alkaline phosphatase (SEAP). hTLR4 reporter cells incubated with 8 ηM lipopolysaccharide (LPS) or 20-40 μM fungal mannoprotein (FM) produced significant amounts of SEAP. hTLR4 reporter cells also produced SEAP in response to human, but not porcine or bovine, Hb. HEK-Blue Null2TM reporter cells lacking TLR4 did not respond to LPS, FM, or Hb. Bv was non-stimulatory in reporter cells. When Bv was added to Hb-stimulated reporter cells, SEAP production was reduced by 95%, but when Bv was applied during LPS and FM stimulation, SEAP production was reduced by 33% and 27%, respectively. In conclusion, Hb initiated NF-κB signaling that was dependent upon TLR4 expression and that Bv can act as a TLR4 antagonist. Moreover, this study suggests that hemorrhage and extravascular hemolysis could provide competitive Hb and Bv signaling to nearby cells expressing TLR4, and that this process could modulate NF-κB signaling in TLR4-positive cancer cells and cancer-infiltrating leukocytes.
Collapse
|
22
|
Nye DB, Lecomte JTJ. Replacement of the Distal Histidine Reveals a Noncanonical Heme Binding Site in a 2-on-2 Hemoglobin. Biochemistry 2018; 57:5785-5796. [PMID: 30213188 PMCID: PMC6217817 DOI: 10.1021/acs.biochem.8b00752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme ligation in hemoglobin is typically assumed by the "proximal" histidine. Hydrophobic contacts, ionic interactions, and the ligation bond secure the heme between two α-helices denoted E and F. Across the hemoglobin superfamily, several proteins also use a "distal" histidine, making the native state a bis-histidine complex. The group 1 truncated hemoglobin from Synechocystis sp. PCC 6803, GlbN, is one such bis-histidine protein. Ferric GlbN, in which the distal histidine (His46 or E10) has been replaced with a leucine, though expected to bind a water molecule and yield a high-spin iron complex at neutral pH, has low-spin spectral properties. Here, we applied nuclear magnetic resonance and electronic absorption spectroscopic methods to GlbN modified with heme and amino acid replacements to identify the distal ligand in H46L GlbN. We found that His117, a residue located in the C-terminal portion of the protein and on the proximal side of the heme, is responsible for the formation of an alternative bis-histidine complex. Simultaneous coordination by His70 and His117 situates the heme in a binding site different from the canonical site. This new holoprotein form is achieved with only local conformational changes. Heme affinity in the alternative site is weaker than in the normal site, likely because of strained coordination and a reduced number of specific heme-protein interactions. The observation of an unconventional heme binding site has important implications for the interpretation of mutagenesis results and globin homology modeling.
Collapse
Affiliation(s)
- Dillon B. Nye
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Juliette T. J. Lecomte
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, United States
| |
Collapse
|
23
|
Moussaoui M, Misevičienė L, Anusevičius Ž, Marozienė A, Lederer F, Baciou L, Čėnas N. Quinones and nitroaromatic compounds as subversive substrates of Staphylococcus aureus flavohemoglobin. Free Radic Biol Med 2018; 123:107-115. [PMID: 29793040 DOI: 10.1016/j.freeradbiomed.2018.05.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 11/23/2022]
Abstract
In microorganisms, flavohemoglobins (FHbs) containing FAD and heme (Fe3+, metHb) convert NO. into nitrate at the expense of NADH and O2. FHbs contribute to bacterial resistance to nitrosative stress. Therefore, inhibition of FHbs functions may decrease the pathogen virulence. We report here a kinetic study of the reduction of quinones and nitroaromatic compounds by S. aureus FHb. We show that this enzyme rapidly reduces quinones and nitroaromatic compounds in a mixed single- and two-electron pathway. The reactivity of nitroaromatics increased upon an increase in their single-electron reduction potential (E17), whereas the reactivity of quinones poorly depended on their E17 with a strong preference for a 2-hydroxy-1,4-naphthoquinone structure. The reaction followed a 'ping-pong' mechanism. In general, the maximal reaction rates were found lower than the maximal presteady-state rate of FAD reduction by NADH and/or of oxyhemoglobin (HbFe2+O2) formation (~130 s-1, pH 7.0, 25 °C), indicating that the enzyme turnover is limited by the oxidative half-reaction. The turnover studies showed that quinones prefreqently accept electrons from reduced FAD, and not from HbFe2+O2. These results suggest that quinones and nitroaromatics act as 'subversive substrates' for FHb, and may enhance the cytotoxicity of NO. by formation of superoxide and by diverting the electron flux coming from reduced FAD. Because quinone reduction rate was increased by FHb inhibitors such as econazole, ketoconazole, and miconazole, their combined use may represent a novel chemotherapeutical approach.
Collapse
Affiliation(s)
- Myriam Moussaoui
- Laboratoire de Chimie Physique, Université Paris Sud, CNRS UMR 8000, 91405 Orsay Cedex France
| | - Lina Misevičienė
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Žilvinas Anusevičius
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Audronė Marozienė
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Florence Lederer
- Laboratoire de Chimie Physique, Université Paris Sud, CNRS UMR 8000, 91405 Orsay Cedex France
| | - Laura Baciou
- Laboratoire de Chimie Physique, Université Paris Sud, CNRS UMR 8000, 91405 Orsay Cedex France
| | - Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
24
|
Distinct Nitrite and Nitric Oxide Physiologies in Escherichia coli and Shewanella oneidensis. Appl Environ Microbiol 2018; 84:AEM.00559-18. [PMID: 29654177 DOI: 10.1128/aem.00559-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/06/2018] [Indexed: 11/20/2022] Open
Abstract
Nitrite has been used as a bacteriostatic agent for centuries in food preservation. It is widely accepted that this biologically inert molecule functions indirectly, serving as a stable reservoir of bioactive nitric oxide (NO) and other reactive nitrogen species to impact physiology. As a result, to date, we know surprisingly little about in vivo targets of nitrite. Here, we carry out comparative analyses of nitrite and NO physiology in Escherichia coli and in Shewanella oneidensis, a Gram-negative environmental bacterium renowned for respiratory versatility. These two bacteria differ from each other in many aspects of nitrite and NO physiology, including NO generation, NO degradation, and unexpectedly, their contrary susceptibility to nitrite and NO. In cell extracts of both bacteria, most of the NO targets are also susceptible to nitrite, and vice versa. However, with respect to growth inhibition caused by NO, the targets are impacted distinctly; NO targets are responsible for the inhibition of growth of E. coli but not of S. oneidensis More surprisingly, all proteins identified to be implicated in NO tolerance in other bacteria appear to play a dispensable role in protecting S. oneidensis against NO. These data suggest that S. oneidensis is equipped with a robust but yet unknown NO protecting system. In the case of nitrite, it is clear that the target of physiological significance in both bacteria is cytochrome heme-copper oxidase.IMPORTANCE Nitrite is toxic to living organisms at high levels, but such antibacterial effects of nitrite are attributable to the formation of nitric oxide (NO), a highly reactive radical gas molecule. Here, we report that Shewanella oneidensis is highly resistant to NO but sensitive to nitrite compared to Escherichia coli by approximately 4-fold. In both bacteria, nitrite inhibits bacterial growth by targeting cytochrome heme-copper oxidase. In contrast, the targets of NO are diverse. Although these targets are similar in E. coli and S. oneidensis, they are responsible for growth inhibition caused by NO in the former but not in the latter. Overall, the presented data, along with the previous data, solidify a proposal that the in vivo targets of NO and nitrite in bacteria are largely different.
Collapse
|
25
|
Abstract
Nitric oxide (NO) is a cellular signalling molecule widely conserved among organisms, including microorganisms such as bacteria, yeasts, and fungi, and higher eukaryotes such as plants and mammals. NO is mainly produced by the activities of NO synthase (NOS) or nitrite reductase (NIR). There are several NO detoxification systems, including NO dioxygenase (NOD) and S-nitrosoglutathione reductase (GSNOR). NO homeostasis, based on the balance between NO synthesis and degradation, is important for regulating its physiological functions, since an excess of NO causes nitrosative stress due to the high reactivity of NO and NO-derived compounds. In yeast, NO may be involved in stress responses, but the role of NO and the mechanism underlying NO signalling are poorly understood due to the lack of mammalian NOS orthologs in the yeast genome. NOS and NIR activities have been observed in yeast cells, but the gene-encoding NOS and the mechanism by which NO production is catalysed by NIR remain unclear. On the other hand, yeast cells employ NOD and GSNOR to maintain intracellular redox balance following endogenous NO production, treatment with exogenous NO, or exposure to environmental stresses. This article reviews NO metabolism (synthesis, degradation) and its regulation in yeast. The physiological roles of NO in yeast, including the oxidative stress response, are also discussed. Such investigations into NO signalling are essential for understanding how NO modulates the genetics and physiology of yeast. In addition to being responsible for the pathology and pharmacology of various degenerative diseases, NO signalling may be a potential target for the construction and engineering of industrial yeast strains.
Collapse
|
26
|
Preimesberger MR, Johnson EA, Nye DB, Lecomte JTJ. Covalent attachment of the heme to Synechococcus hemoglobin alters its reactivity toward nitric oxide. J Inorg Biochem 2017; 177:171-182. [PMID: 28968520 DOI: 10.1016/j.jinorgbio.2017.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 01/19/2023]
Abstract
The cyanobacterium Synechococcus sp. PCC 7002 produces a monomeric hemoglobin (GlbN) implicated in the detoxification of reactive nitrogen and oxygen species. GlbN contains a b heme, which can be modified under certain reducing conditions. The modified protein (GlbN-A) has one heme-histidine C-N linkage similar to the C-S linkage of cytochrome c. No clear functional role has been assigned to this modification. Here, optical absorbance and NMR spectroscopies were used to compare the reactivity of GlbN and GlbN-A toward nitric oxide (NO). Both forms of the protein are capable of NO dioxygenase activity and both undergo heme bleaching after multiple NO challenges. GlbN and GlbN-A bind NO in the ferric state and form diamagnetic complexes (FeIII-NO) that resist reductive nitrosylation to the paramagnetic FeII-NO forms. Dithionite reduction of FeIII-NO GlbN and GlbN-A, however, resulted in distinct outcomes. Whereas GlbN-A rapidly formed the expected FeII-NO complex, NO binding to FeII GlbN caused immediate heme loss and, remarkably, was followed by slow heme rebinding and HNO (nitrosyl hydride) production. Additionally, combining FeIII GlbN, 15N-labeled nitrite, and excess dithionite resulted in the formation of FeII-H15NO GlbN. Dithionite-mediated HNO production was also observed for the related GlbN from Synechocystis sp. PCC 6803. Although ferrous GlbN-A appeared capable of trapping preformed HNO, the histidine-heme post-translational modification extinguished the NO reduction chemistry associated with GlbN. Overall, the results suggest a role for the covalent modification in FeII GlbNs: protection from NO-mediated heme loss and prevention of HNO formation.
Collapse
Affiliation(s)
| | - Eric A Johnson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dillon B Nye
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
27
|
Carabet LA, Guertin M, Lagüe P, Lamoureux G. Mechanism of the Nitric Oxide Dioxygenase Reaction of Mycobacterium tuberculosis Hemoglobin N. J Phys Chem B 2017; 121:8706-8718. [DOI: 10.1021/acs.jpcb.7b06494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lavinia A. Carabet
- Department of Chemistry
and Biochemistry and Centre for Research in Molecular
Modeling (CERMM), Concordia University, Montréal, Québec, Canada H4B 1R6
| | | | | | - Guillaume Lamoureux
- Department of Chemistry
and Biochemistry and Centre for Research in Molecular
Modeling (CERMM), Concordia University, Montréal, Québec, Canada H4B 1R6
| |
Collapse
|
28
|
Bhattacharya A, Biswas P, Kar P, Roychoudhury P, Basu S, Ganguly S, Ghosh S, Panda K, Pal R, Dasgupta AK. Nitric oxide sensing by chlorophyll a. Anal Chim Acta 2017; 985:101-113. [PMID: 28864180 DOI: 10.1016/j.aca.2017.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/19/2017] [Accepted: 07/07/2017] [Indexed: 12/16/2022]
Abstract
Nitric oxide (NO) acts as a signalling molecule that has direct and indirect regulatory roles in various functional processes in biology, though in plant kingdom its role is relatively unexplored. One reason for this is the fact that sensing of NO is always challenging. There are very few probes that can classify the different NO species. The present paper proposes a simple but straightforward way for sensing different NO species using chlorophyll, the source of inspiration being hemoglobin that serves as NO sink in mammalian systems. The proposed method is able to classify NO from DETA-NONOate or (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1,2-diolate, nitrite, nitrate and S-nitrosothiol or SNO. This discrimination is carried out by chlorophyll a (chl a) at nano molar (nM) order of sensitivity and at 293 K-310 K. Molecular docking reveals the differential binding effects of NO and SNO with chlorophyll, the predicted binding affinity matching with the experimental observation. Additional experiments with a diverse range of cyanobacteria reveal that apart from the spectroscopic approach the proposed sensing module can be used in microscopic inspection of NO species. Binding of NO is sensitive to temperature and static magnetic field. This provides additional support for the involvement of the porphyrin ring structures to the NO sensing process. This also, broadens the scope of the sensing methods as hinted in the text.
Collapse
Affiliation(s)
- Abhishek Bhattacharya
- Department of Biochemistry, University of Calcutta 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Pranjal Biswas
- Department of Biochemistry, University of Calcutta 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Puranjoy Kar
- Department of Biochemistry, University of Calcutta 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Piya Roychoudhury
- Department of Botany, University of Calcutta 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Sankar Basu
- Department of Biochemistry, University of Calcutta 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Souradipta Ganguly
- Department of Biotechnology and Guha Centre for Genetic Engineering & Biotechnology, University of Calcutta 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Sanjay Ghosh
- Department of Biochemistry, University of Calcutta 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Koustubh Panda
- Department of Biotechnology and Guha Centre for Genetic Engineering & Biotechnology, University of Calcutta 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Ruma Pal
- Department of Botany, University of Calcutta 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Anjan Kr Dasgupta
- Department of Biochemistry, University of Calcutta 35, Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
29
|
Liu X, El-Mahdy MA, Boslett J, Varadharaj S, Hemann C, Abdelghany TM, Ismail RS, Little SC, Zhou D, Thuy LTT, Kawada N, Zweier JL. Cytoglobin regulates blood pressure and vascular tone through nitric oxide metabolism in the vascular wall. Nat Commun 2017; 8:14807. [PMID: 28393874 PMCID: PMC5394235 DOI: 10.1038/ncomms14807] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 02/01/2017] [Indexed: 12/19/2022] Open
Abstract
The identity of the specific nitric oxide dioxygenase (NOD) that serves as the main in vivo regulator of O2-dependent NO degradation in smooth muscle remains elusive. Cytoglobin (Cygb) is a recently discovered globin expressed in fibroblasts and smooth muscle cells with unknown function. Cygb, coupled with a cellular reducing system, efficiently regulates the rate of NO consumption by metabolizing NO in an O2-dependent manner with decreased NO consumption in physiological hypoxia. Here we show that Cygb is a major regulator of NO degradation and cardiovascular tone. Knockout of Cygb greatly prolongs NO decay, increases vascular relaxation, and lowers blood pressure and systemic vascular resistance. We further demonstrate that downregulation of Cygb prevents angiotensin-mediated hypertension. Thus, Cygb has a critical role in the regulation of vascular tone and disease. We suggest that modulation of the expression and NOD activity of Cygb represents a strategy for the treatment of cardiovascular disease. The gaseous signalling molecule nitric oxide regulates vascular tone. Here, the authors show that nitric oxide is degraded by the enzyme cytoglobin in the vascular wall, and that mice lacking cytoglobin have reduced blood pressure and are less sensitive to angiotensin-mediated hypertension.
Collapse
Affiliation(s)
- Xiaoping Liu
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Mohamed A El-Mahdy
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - James Boslett
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Saradhadevi Varadharaj
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Craig Hemann
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Tamer M Abdelghany
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Raed S Ismail
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sean C Little
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Danlei Zhou
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Asahimachi 1-4-3, Abenoku, Osaka 545-8585, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Asahimachi 1-4-3, Abenoku, Osaka 545-8585, Japan
| | - Jay L Zweier
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
30
|
Calvo-Begueria L, Cuypers B, Van Doorslaer S, Abbruzzetti S, Bruno S, Berghmans H, Dewilde S, Ramos J, Viappiani C, Becana M. Characterization of the Heme Pocket Structure and Ligand Binding Kinetics of Non-symbiotic Hemoglobins from the Model Legume Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2017; 8:407. [PMID: 28421084 PMCID: PMC5378813 DOI: 10.3389/fpls.2017.00407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/09/2017] [Indexed: 05/04/2023]
Abstract
Plant hemoglobins (Hbs) are found in nodules of legumes and actinorhizal plants but also in non-symbiotic organs of monocots and dicots. Non-symbiotic Hbs (nsHbs) have been classified into two phylogenetic groups. Class 1 nsHbs show an extremely high O2 affinity and are induced by hypoxia and nitric oxide (NO), whereas class 2 nsHbs have moderate O2 affinity and are induced by cold and cytokinins. The functions of nsHbs are still unclear, but some of them rely on the capacity of hemes to bind diatomic ligands and catalyze the NO dioxygenase (NOD) reaction (oxyferrous Hb + NO → ferric Hb + nitrate). Moreover, NO may nitrosylate Cys residues of proteins. It is therefore important to determine the ligand binding properties of the hemes and the role of Cys residues. Here, we have addressed these issues with the two class 1 nsHbs (LjGlb1-1 and LjGlb1-2) and the single class 2 nsHb (LjGlb2) of Lotus japonicus, which is a model legume used to facilitate the transfer of genetic and biochemical information into crops. We have employed carbon monoxide (CO) as a model ligand and resonance Raman, laser flash photolysis, and stopped-flow spectroscopies to unveil major differences in the heme environments and ligand binding kinetics of the three proteins, which suggest non-redundant functions. In the deoxyferrous state, LjGlb1-1 is partially hexacoordinate, whereas LjGlb1-2 shows complete hexacoordination (behaving like class 2 nsHbs) and LjGlb2 is mostly pentacoordinate (unlike other class 2 nsHbs). LjGlb1-1 binds CO very strongly by stabilizing it through hydrogen bonding, but LjGlb1-2 and LjGlb2 show lower CO stabilization. The changes in CO stabilization would explain the different affinities of the three proteins for gaseous ligands. These affinities are determined by the dissociation rates and follow the order LjGlb1-1 > LjGlb1-2 > LjGlb2. Mutations LjGlb1-1 C78S and LjGlb1-2 C79S caused important alterations in protein dynamics and stability, indicating a structural role of those Cys residues, whereas mutation LjGlb1-1 C8S had a smaller effect. The three proteins and their mutant derivatives exhibited similarly high rates of NO consumption, which were due to NOD activity of the hemes and not to nitrosylation of Cys residues.
Collapse
Affiliation(s)
- Laura Calvo-Begueria
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Bert Cuypers
- Department of Physics, University of AntwerpAntwerp, Belgium
| | | | - Stefania Abbruzzetti
- Dipartimento di Bioscienze, Università degli Studi di ParmaParma, Italy
- NEST, Istituto Nanoscienze, Consiglio Nazionale delle RicerchePisa, Italy
| | - Stefano Bruno
- Dipartimento di Farmacia, Università degli Studi di ParmaParma, Italy
| | - Herald Berghmans
- Department of Biomedical Sciences, University of AntwerpAntwerp, Belgium
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of AntwerpAntwerp, Belgium
| | - Javier Ramos
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Cristiano Viappiani
- NEST, Istituto Nanoscienze, Consiglio Nazionale delle RicerchePisa, Italy
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di ParmaParma, Italy
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| |
Collapse
|
31
|
Tanner R, O’Shea MK, White AD, Müller J, Harrington-Kandt R, Matsumiya M, Dennis MJ, Parizotto EA, Harris S, Stylianou E, Naranbhai V, Bettencourt P, Drakesmith H, Sharpe S, Fletcher HA, McShane H. The influence of haemoglobin and iron on in vitro mycobacterial growth inhibition assays. Sci Rep 2017; 7:43478. [PMID: 28256545 PMCID: PMC5335253 DOI: 10.1038/srep43478] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/24/2017] [Indexed: 01/04/2023] Open
Abstract
The current vaccine against tuberculosis, live attenuated Mycobacterium bovis BCG, has variable efficacy, but development of an effective alternative is severely hampered by the lack of an immune correlate of protection. There has been a recent resurgence of interest in functional in vitro mycobacterial growth inhibition assays (MGIAs), which provide a measure of a range of different immune mechanisms and their interactions. We identified a positive correlation between mean corpuscular haemoglobin and in vitro growth of BCG in whole blood from healthy UK human volunteers. Mycobacterial growth in peripheral blood mononuclear cells (PBMC) from both humans and macaques was increased following the experimental addition of haemoglobin (Hb) or ferric iron, and reduced following addition of the iron chelator deferoxamine (DFO). Expression of Hb genes correlated positively with mycobacterial growth in whole blood from UK/Asian adults and, to a lesser extent, in PBMC from South African infants. Taken together our data indicate an association between Hb/iron levels and BCG growth in vitro, which may in part explain differences in findings between whole blood and PBMC MGIAs and should be considered when using such assays.
Collapse
Affiliation(s)
- Rachel Tanner
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | | | - Julius Müller
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | - Hal Drakesmith
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sally Sharpe
- Public Health England, Porton Down, Salisbury, UK
| | | | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Preimesberger MR, Majumdar A, Lecomte JTJ. Dynamics of Lysine as a Heme Axial Ligand: NMR Analysis of the Chlamydomonas reinhardtii Hemoglobin THB1. Biochemistry 2017; 56:551-569. [DOI: 10.1021/acs.biochem.6b00926] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew R. Preimesberger
- T.
C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- Biomolecular
NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Juliette T. J. Lecomte
- T.
C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
33
|
Nitric oxide signaling in yeast. Appl Microbiol Biotechnol 2016; 100:9483-9497. [DOI: 10.1007/s00253-016-7827-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022]
|
34
|
Navati MS, Chung W, Friedman JM. Trehalose-Based Glassy Matrices as an Effective Tool to Trap Short-Lived Intermediates in the Nitric Oxide Dioxygenation (NOD) Reaction of Hemoglobin. J Phys Chem B 2016; 120:4529-39. [DOI: 10.1021/acs.jpcb.5b12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mahantesh S. Navati
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Will Chung
- Joel Friedman
Laboratory, Herricks High School, Shelter Rock Road, New Hyde Park, New York 11040, United States
| | - Joel M. Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
35
|
Robinson JL, Brynildsen MP. Discovery and dissection of metabolic oscillations in the microaerobic nitric oxide response network of Escherichia coli. Proc Natl Acad Sci U S A 2016; 113:E1757-66. [PMID: 26951670 PMCID: PMC4812703 DOI: 10.1073/pnas.1521354113] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The virulence of many pathogens depends upon their ability to cope with immune-generated nitric oxide (NO·). In Escherichia coli, the major NO· detoxification systems are Hmp, an NO· dioxygenase (NOD), and NorV, an NO· reductase (NOR). It is well established that Hmp is the dominant system under aerobic conditions, whereas NorV dominates anaerobic conditions; however, the quantitative contributions of these systems under the physiologically relevant microaerobic regime remain ill defined. Here, we investigated NO· detoxification in environments ranging from 0 to 50 μM O2, and discovered a regime in which E. coli NO· defenses were severely compromised, as well as conditions that exhibited oscillations in the concentration of NO·. Using an integrated computational and experimental approach, E. coli NO· detoxification was found to be extremely impaired at low O2 due to a combination of its inhibitory effects on NorV, Hmp, and translational activities, whereas oscillations were found to result from a kinetic competition for O2 between Hmp and respiratory cytochromes. Because at least 777 different bacterial species contain the genetic requirements of this stress response oscillator, we hypothesize that such oscillatory behavior could be a widespread phenomenon. In support of this hypothesis,Pseudomonas aeruginosa, whose respiratory and NO· response networks differ considerably from those of E. coli, was found to exhibit analogous oscillations in low O2 environments. This work provides insight into how bacterial NO· defenses function under the low O2 conditions that are likely to be encountered within host environments.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| |
Collapse
|
36
|
Pesce A, Bustamante JP, Bidon-Chanal A, Boechi L, Estrin DA, Luque FJ, Sebilo A, Guertin M, Bolognesi M, Ascenzi P, Nardini M. The N-terminal pre-A region of Mycobacterium tuberculosis 2/2HbN promotes NO-dioxygenase activity. FEBS J 2015; 283:305-22. [PMID: 26499089 DOI: 10.1111/febs.13571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 08/09/2015] [Accepted: 08/16/2015] [Indexed: 01/24/2023]
Abstract
UNLABELLED A unique defense mechanisms by which Mycobacterium tuberculosis protects itself from nitrosative stress is based on the O2 -dependent NO-dioxygenase (NOD) activity of truncated hemoglobin 2/2HbN (Mt2/2HbN). The NOD activity largely depends on the efficiency of ligand migration to the heme cavity through a two-tunnel (long and short) system; recently, it was also correlated with the presence at the Mt2/2HbN N-terminus of a short pre-A region, not conserved in most 2/2HbNs, whose deletion results in a drastic reduction of NO scavenging. In the present study, we report the crystal structure of Mt2/2HbN-ΔpreA, lacking the pre-A region, at a resolution of 1.53 Å. We show that removal of the pre-A region results in long range effects on the protein C-terminus, promoting the assembly of a stable dimer, both in the crystals and in solution. In the Mt2/2HbN-ΔpreA dimer, access of heme ligands to the short tunnel is hindered. Molecular dynamics simulations show that the long tunnel branch is the only accessible pathway for O2 -ligand migration to/from the heme, and that the gating residue Phe(62)E15 partly restricts the diameter of the tunnel. Accordingly, kinetic measurements indicate that the kon value for peroxynitrite isomerization by Mt2/2HbN-ΔpreA-Fe(III) is four-fold lower relative to the full-length protein, and that NO scavenging by Mt2/2HbN-ΔpreA-Fe(II)-O2 is reduced by 35-fold. Therefore, we speculate that Mt2/2HbN evolved to host the pre-A region as a mechanism for preventing dimerization, thus reinforcing the survival of the microorganism against the reactive nitrosative stress in macrophages. DATABASE Coordinates and structure factors have been deposited in the Protein Data Bank under accession number 5AB8.
Collapse
Affiliation(s)
| | - Juan P Bustamante
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
| | - Axel Bidon-Chanal
- Departament de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Leonardo Boechi
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
| | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
| | - Francisco Javier Luque
- Departament de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, University of Barcelona, Santa Coloma de Gramenet, Spain
| | - Anne Sebilo
- Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Quebec, Canada
| | - Michel Guertin
- Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Quebec, Canada
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, Italy.,CNR-IBF and CIMAINA, University of Milan, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy, Roma Tre University, Rome, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milan, Italy
| |
Collapse
|
37
|
Gardner PR, Gardner DP, Gardner AP. Globins Scavenge Sulfur Trioxide Anion Radical. J Biol Chem 2015; 290:27204-27214. [PMID: 26381408 DOI: 10.1074/jbc.m115.679621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Indexed: 01/16/2023] Open
Abstract
Ferrous myoglobin was oxidized by sulfur trioxide anion radical (STAR) during the free radical chain oxidation of sulfite. Oxidation was inhibited by the STAR scavenger GSH and by the heme ligand CO. Bimolecular rate constants for the reaction of STAR with several ferrous globins and biomolecules were determined by kinetic competition. Reaction rate constants for myoglobin, hemoglobin, neuroglobin, and flavohemoglobin are large at 38, 120, 2,600, and ≥ 7,500 × 10(6) m(-1) s(-1), respectively, and correlate with redox potentials. Measured rate constants for O2, GSH, ascorbate, and NAD(P)H are also large at ∼100, 10, 130, and 30 × 10(6) m(-1) s(-1), respectively, but nevertheless allow for favorable competition by globins and a capacity for STAR scavenging in vivo. Saccharomyces cerevisiae lacking sulfite oxidase and deleted of flavohemoglobin showed an O2-dependent growth impairment with nonfermentable substrates that was exacerbated by sulfide, a precursor to mitochondrial sulfite formation. Higher O2 exposures inactivated the superoxide-sensitive mitochondrial aconitase in cells, and hypoxia elicited both aconitase and NADP(+)-isocitrate dehydrogenase activity losses. Roles for STAR-derived peroxysulfate radical, superoxide radical, and sulfo-NAD(P) in the mechanism of STAR toxicity and flavohemoglobin protection in yeast are suggested.
Collapse
|
38
|
Wang Z, Teoh SH, Hong M, Luo F, Teo EY, Chan JKY, Thian ES. Dual-Microstructured Porous, Anisotropic Film for Biomimicking of Endothelial Basement Membrane. ACS APPLIED MATERIALS & INTERFACES 2015; 7:13445-13456. [PMID: 26030777 DOI: 10.1021/acsami.5b02464] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Human endothelial basement membrane (BM) plays a pivotal role in vascular development and homeostasis. Here, a bioresponsive film with dual-microstructured geometries was engineered to mimic the structural roles of the endothelial BM in developing vessels, for vascular tissue engineering (TE) application. Flexible poly(ε-caprolactone) (PCL) thin film was fabricated with microscale anisotropic ridges/grooves and through-holes using a combination of uniaxial thermal stretching and direct laser perforation, respectively. Through optimizing the interhole distance, human mesenchymal stem cells (MSCs) cultured on the PCL film's ridges/grooves obtained an intact cell alignment efficiency. With prolonged culturing for 8 days, these cells formed aligned cell multilayers as found in native tunica media. By coculturing human umbilical vein endothelial cells (HUVECs) on the opposite side of the film, HUVECs were observed to build up transmural interdigitation cell-cell contact with MSCs via the through-holes, leading to a rapid endothelialization on the PCL film surface. Furthermore, vascular tissue construction based on the PCL film showed enhanced bioactivity with an elevated total nitric oxide level as compared to single MSCs or HUVECs culturing and indirect MSCs/HUVECs coculturing systems. These results suggested that the dual-microstructured porous and anisotropic film could simulate the structural roles of endothelial BM for vascular reconstruction, with aligned stromal cell multilayers, rapid endothelialization, and direct cell-cell interaction between the engineered stromal and endothelial components. This study has implications of recapitulating endothelial BM architecture for the de novo design of vascular TE scaffolds.
Collapse
Affiliation(s)
- Zuyong Wang
- †Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Swee Hin Teoh
- ‡School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Minghui Hong
- §Department of Electrical and Computer Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore
| | - Fangfang Luo
- §Department of Electrical and Computer Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576, Singapore
| | - Erin Yiling Teo
- ⊥Department of Reproductive Medicine, KK Women's and Children's Hospital, 100 Buikit Timah Road, Singapore 229899, Singapore
| | - Jerry Kok Yen Chan
- ⊥Department of Reproductive Medicine, KK Women's and Children's Hospital, 100 Buikit Timah Road, Singapore 229899, Singapore
- ∥Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- ⊗Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Eng San Thian
- †Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
39
|
Quaye IK. Extracellular hemoglobin: the case of a friend turned foe. Front Physiol 2015; 6:96. [PMID: 25941490 PMCID: PMC4403290 DOI: 10.3389/fphys.2015.00096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/12/2015] [Indexed: 12/14/2022] Open
Abstract
Hemoglobin (Hb) is a highly conserved molecule present in all life forms and functionally tied to the complexity of aerobic organisms on earth in utilizing oxygen from the atmosphere and delivering to cells and tissues. This primary function sustains the energy requirements of cells and maintains cellular homeostasis. Decades of intensive research has presented a paradigm shift that shows how the molecule also functions to facilitate smooth oxygen delivery through the cardiovascular system for cellular bioenergetic homeostasis and signaling for cell function and defense. These roles are particularly highlighted in the binding of Hb to gaseous molecules carbon dioxide (CO2), nitric oxide (NO) and carbon monoxide (CO), while also serving indirectly or directly as sources of these signaling molecules. The functional activities impacted by Hb outside of bioenergetics homeostasis, include fertilization, signaling functions, modulation of inflammatory responses for defense and cell viability. These activities are efficiently executed while Hb is sequestered safely within the confines of the red blood cell (rbc). Outside of rbc confines, Hb disaggregates and becomes a danger molecule to cell survival. In these perpectives, Hb function is broadly dichotomous, either a friend in its natural environment providing and facilitating the means for cell function or foe when dislocated from its habitat under stress or pathological condition disrupting cell function. The review presents insights into how this dichotomy in function manifests.
Collapse
Affiliation(s)
- Isaac K Quaye
- Department of Biochemistry, University of Namibia School of Medicine Windhoek, Namibia
| |
Collapse
|
40
|
Rhéault JF, Gagné È, Guertin M, Lamoureux G, Auger M, Lagüe P. Molecular Model of Hemoglobin N from Mycobacterium tuberculosis Bound to Lipid Bilayers: A Combined Spectroscopic and Computational Study. Biochemistry 2015; 54:2073-84. [DOI: 10.1021/bi5010624] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jean-François Rhéault
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Québec, Canada
| | | | - Michel Guertin
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Québec, Canada
| | - Guillaume Lamoureux
- Centre for Research
in Molecular Modeling (CERMM), Concordia University, Montréal, Québec, Canada
| | | | - Patrick Lagüe
- Department
of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, Québec, Canada
| |
Collapse
|
41
|
Sanz-Luque E, Ocaña-Calahorro F, de Montaigu A, Chamizo-Ampudia A, Llamas Á, Galván A, Fernández E. THB1, a truncated hemoglobin, modulates nitric oxide levels and nitrate reductase activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:467-79. [PMID: 25494936 DOI: 10.1111/tpj.12744] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/21/2014] [Accepted: 12/02/2014] [Indexed: 05/18/2023]
Abstract
Hemoglobins are ubiquitous proteins that sense, store and transport oxygen, but the physiological processes in which they are implicated is currently expanding. Recent examples of previously unknown hemoglobin functions, which include scavenging of the signaling molecule nitric oxide (NO), illustrate how the implication of hemoglobins in different cell signaling processes is only starting to be unraveled. The extent and diversity of the hemoglobin protein family suggest that hemoglobins have diverged and have potentially evolved specialized functions in certain organisms. A unique model organism to study this functional diversity at the cellular level is the green alga Chlamydomonas reinhardtii because, among other reasons, it contains an unusually high number of a particular type of hemoglobins known as truncated hemoglobins (THB1-THB12). Here, we reveal a cell signaling function for a truncated hemoglobin of Chlamydomonas that affects the nitrogen assimilation pathway by simultaneously modulating NO levels and nitrate reductase (NR) activity. First, we found that THB1 and THB2 expression is modulated by the nitrogen source and depends on NIT2, a transcription factor required for nitrate assimilation genes expression. Furthermore, THB1 is highly expressed in the presence of NO and is able to convert NO into nitrate in vitro. Finally, THB1 is maintained on its active and reduced form by NR, and in vivo lower expression of THB1 results in increased NR activity. Thus, THB1 plays a dual role in NO detoxification and in the modulation of NR activity. This mechanism can partly explain how NO inhibits NR post-translationally.
Collapse
Affiliation(s)
- Emanuel Sanz-Luque
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Campus de excelencia internacional (CeiA3), Edif. Severo Ochoa, 14071, Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
In the last few years, advances in algal research have identified the participation of haemoglobins in nitrogen metabolism and the management of reactive nitrogen and oxygen species. This chapter summarises the state of knowledge concerning algal haemoglobins with a focus on the most widely used model system, namely, Chlamydomonas reinhardtii. Genetic, physiologic, structural, and chemical information is compiled to provide a framework for further studies.
Collapse
Affiliation(s)
- Eric A Johnson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
43
|
Johnson EA, Rice S, Preimesberger MR, Nye DB, Gilevicius L, Wenke BB, Brown JM, Witman GB, Lecomte JTJ. Characterization of THB1, a Chlamydomonas reinhardtii truncated hemoglobin: linkage to nitrogen metabolism and identification of lysine as the distal heme ligand. Biochemistry 2014; 53:4573-89. [PMID: 24964018 PMCID: PMC4108185 DOI: 10.1021/bi5005206] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/23/2014] [Indexed: 12/21/2022]
Abstract
The nuclear genome of the model organism Chlamydomonas reinhardtii contains genes for a dozen hemoglobins of the truncated lineage. Of those, THB1 is known to be expressed, but the product and its function have not yet been characterized. We present mutagenesis, optical, and nuclear magnetic resonance data for the recombinant protein and show that at pH near neutral in the absence of added ligand, THB1 coordinates the heme iron with the canonical proximal histidine and a distal lysine. In the cyanomet state, THB1 is structurally similar to other known truncated hemoglobins, particularly the heme domain of Chlamydomonas eugametos LI637, a light-induced chloroplastic hemoglobin. Recombinant THB1 is capable of binding nitric oxide (NO(•)) in either the ferric or ferrous state and has efficient NO(•) dioxygenase activity. By using different C. reinhardtii strains and growth conditions, we demonstrate that the expression of THB1 is under the control of the NIT2 regulatory gene and that the hemoglobin is linked to the nitrogen assimilation pathway.
Collapse
Affiliation(s)
- Eric A. Johnson
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Selena
L. Rice
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | | - Dillon B. Nye
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lukas Gilevicius
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Belinda B. Wenke
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jason M. Brown
- Department
of Cell and Developmental Biology, University
of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - George B. Witman
- Department
of Cell and Developmental Biology, University
of Massachusetts Medical School, Worcester, Massachusetts 01655, United States
| | - Juliette T. J. Lecomte
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
44
|
Antimicrobial Agents Act Differently on Staphyloccocus aureus and Ralstonia eutropha Flavohemoglobins. Appl Biochem Biotechnol 2014; 173:1023-37. [DOI: 10.1007/s12010-014-0938-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/21/2014] [Indexed: 11/25/2022]
|
45
|
Harcourt RD. The McClure and Weiss models of Fe–O2 bonding for oxyhemes, and the HbO2 + NO reaction. J Biol Inorg Chem 2013; 19:113-23. [DOI: 10.1007/s00775-013-1066-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 11/06/2013] [Indexed: 10/25/2022]
|
46
|
Sainz M, Pérez-Rontomé C, Ramos J, Mulet JM, James EK, Bhattacharjee U, Petrich JW, Becana M. Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:875-87. [PMID: 24118423 DOI: 10.1111/tpj.12340] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/09/2013] [Accepted: 09/27/2013] [Indexed: 05/09/2023]
Abstract
The heme of bacteria, plant and animal hemoglobins (Hbs) must be in the ferrous state to bind O(2) and other physiological ligands. Here we have characterized the full set of non-symbiotic (class 1 and 2) and 'truncated' (class 3) Hbs of Lotus japonicus. Class 1 Hbs are hexacoordinate, but class 2 and 3 Hbs are pentacoordinate. Three of the globins, Glb1-1, Glb2 and Glb3-1, are nodule-enhanced proteins. The O(2) affinity of Glb1-1 (50 pm) was the highest known for any Hb, and the protein may function as an O(2) scavenger. The five globins were reduced by free flavins, which transfer electrons from NAD(P)H to the heme iron under aerobic and anaerobic conditions. Class 1 Hbs were reduced at very fast rates by FAD, class 2 Hbs at slower rates by both FMN and FAD, and class 3 Hbs at intermediate rates by FMN. The members of the three globin classes were immunolocalized predominantly in the nuclei. Flavins were quantified in legume nodules and nuclei, and their concentrations were sufficient to maintain Hbs in their functional state. All Hbs, except Glb1-1, were expressed in a flavohemoglobin-deficient yeast mutant and found to confer tolerance to oxidative stress induced by methyl viologen, copper or low temperature, indicating an anti-oxidative role for the hemes. However, only Glb1-2 and Glb2 afforded protection against nitrosative stress induced by S-nitrosoglutathione. Because this compound is specifically involved in transnitrosylation reactions with thiol groups, our results suggest a contribution of the single cysteine residues of both proteins in the stress response.
Collapse
Affiliation(s)
- Martha Sainz
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080, Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Tinajero-Trejo M, Jesse HE, Poole RK. Gasotransmitters, poisons, and antimicrobials: it's a gas, gas, gas! F1000PRIME REPORTS 2013; 5:28. [PMID: 23967379 PMCID: PMC3732073 DOI: 10.12703/p5-28] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We review recent examples of the burgeoning literature on three gases that have major impacts in biology and microbiology. NO, CO and H2S are now co-classified as endogenous gasotransmitters with profound effects on mammalian physiology and, potentially, major implications in therapeutic applications. All are well known to be toxic yet, at tiny concentrations in human and cell biology, play key signalling and regulatory functions. All may also be endogenously generated in microbes. NO and H2S share the property of being biochemically detoxified, yet are beneficial in resisting the bactericidal properties of antibiotics. The mechanism underlying this protection is currently under debate. CO, in contrast, is not readily removed; mounting evidence shows that CO, and especially organic donor compounds that release the gas in biological environments, are themselves effective, novel antimicrobial agents.
Collapse
|
48
|
Hundahl CA, Elfving B, Müller HK, Hay-Schmidt A, Wegener G. A gene-environment study of cytoglobin in the human and rat hippocampus. PLoS One 2013; 8:e63288. [PMID: 23696808 PMCID: PMC3655970 DOI: 10.1371/journal.pone.0063288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/02/2013] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cytoglobin (Cygb) was discovered a decade ago as the fourth vertebrate heme-globin. The function of Cygb is still unknown, but accumulating evidence from in vitro studies point to a putative role in scavenging of reactive oxygen species and nitric oxide metabolism and in vivo studies have shown Cygb to be up regulated by hypoxic stress. This study addresses three main questions related to Cygb expression in the hippocampus: 1) Is the rat hippocampus a valid neuroanatomical model for the human hippocampus; 2) What is the degree of co-expression of Cygb and neuronal nitric oxide synthase (nNOS) in the rat hippocampus; 3) The effect of chronic restraint stress (CRS) on Cygb and nNOS expression. METHODS Immunohistochemistry was used to compare Cygb expression in the human and rat hippocampi as well as Cygb and nNOS co-expression in the rat hippocampus. Transcription and translation of Cygb and nNOS were investigated using quantitative real-time polymerase chain reaction (real-time qPCR) and Western blotting on hippocampi from Flinders (FSL/FRL) rats exposed to CRS. PRINCIPAL FINDINGS Cygb expression pattern in the human and rat hippocampus was found to be similar. A high degree of Cygb and nNOS co-expression was observed in the rat hippocampus. The protein levels of nNOS and Cygb were significantly up-regulated in FSL animals in the dorsal hippocampus. In the ventral hippocampus Cygb protein levels were significantly up-regulated in the FSL compared to the FRL, following CRS. SIGNIFICANCE The rodent hippocampus can be used to probe questions related to Cygb protein localization in human hippocampus. The high degree of Cygb and nNOS co-expression gives support for Cygb involvement in nitric oxide metabolism. CRS induced Cygb and nNOS expression indicating that Cygb expression is stress responsive. Cygb and nNOS may be important in physiological response to stress.
Collapse
Affiliation(s)
- Christian Ansgar Hundahl
- Centre of Excellence for Translational Medicine, University of Tartu, Tartu, Estonia
- Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anders Hay-Schmidt
- Department of Neuroscience and Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Unit for Drug Research and Development, School of Pharmacy (Pharmacology), North-West University, Potchefstroom, South Africa
| |
Collapse
|
49
|
Dellarole M, Roumestand C, Royer C, Lecomte JTJ. Volumetric properties underlying ligand binding in a monomeric hemoglobin: a high-pressure NMR study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1910-22. [PMID: 23619242 DOI: 10.1016/j.bbapap.2013.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/09/2013] [Accepted: 04/15/2013] [Indexed: 11/16/2022]
Abstract
The 2/2 hemoglobin of the cyanobacterium Synechococcus sp. PCC 7002, GlbN, coordinates the heme iron with two histidines and exists either with a b heme or with a covalently attached heme. The binding of exogenous ligands displaces the distal histidine and induces a conformational rearrangement involving the reorganization of internal void volumes. The formation of passageways within the resulting conformation is thought to facilitate ligand exchange and play a functional role. Here we monitored the perturbation induced by pressure on the ferric bis-histidine and cyanide-bound states of GlbN using (1)H-(15)N HSQC NMR spectroscopy. We inspected the outcome with a statistical analysis of 170 homologous 2/2 hemoglobin sequences. We found that the compression landscape of GlbN, as represented by the variation of an average chemical shift parameter, was highly sensitive to ligand swapping and heme covalent attachment. Stabilization of rare conformers was observed at high pressures and consistent with cavity redistribution upon ligand binding. In all states, the EF loop was found to be exceptionally labile to pressure, suggesting a functional role as a semi-flexible hinge between the adjacent helices. Finally, coevolved clusters presented a common pattern of compensating pressure responses. The high-pressure dissection combined with protein sequence analysis established locations with volumetric signatures relevant to residual communication of 2/2 hemoglobins. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Mariano Dellarole
- Centre de Biochimie Structurale, CNRS, UMR 5048, Montpellier, France
| | | | | | | |
Collapse
|
50
|
Abstract
Approximately, 20 years ago, a haemoglobin gene was identified within the genome of the cyanobacterium Nostoc commune. Haemoglobins have now been confirmed in multiple species of photosynthetic microbes beyond N. commune, and the diversity of these proteins has recently come under increased scrutiny. This chapter summarizes the state of knowledge concerning the phylogeny, physiology and chemistry of globins in cyanobacteria and green algae. Sequence information is by far the best developed and the most rapidly expanding aspect of the field. Structural and ligand-binding properties have been described for just a few proteins. Physiological data are available for even fewer. Although activities such as nitric oxide dioxygenation and oxygen scavenging are strong candidates for cellular function, dedicated studies will be required to complete the story on this intriguing and ancient group of proteins.
Collapse
|