1
|
Opdensteinen P, Charudattan R, Hong JC, Rosskopf EN, Steinmetz NF. Biochemical and nanotechnological approaches to combat phytoparasitic nematodes. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2444-2460. [PMID: 38831638 PMCID: PMC11332226 DOI: 10.1111/pbi.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/09/2024] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
The foundation of most food production systems underpinning global food security is the careful management of soil resources. Embedded in the concept of soil health is the impact of diverse soil-borne pests and pathogens, and phytoparasitic nematodes represent a particular challenge. Root-knot nematodes and cyst nematodes are severe threats to agriculture, accounting for annual yield losses of US$157 billion. The control of soil-borne phytoparasitic nematodes conventionally relies on the use of chemical nematicides, which can have adverse effects on the environment and human health due to their persistence in soil, plants, and water. Nematode-resistant plants offer a promising alternative, but genetic resistance is species-dependent, limited to a few crops, and breeding and deploying resistant cultivars often takes years. Novel approaches for the control of phytoparasitic nematodes are therefore required, those that specifically target these parasites in the ground whilst minimizing the impact on the environment, agricultural ecosystems, and human health. In addition to the development of next-generation, environmentally safer nematicides, promising biochemical strategies include the combination of RNA interference (RNAi) with nanomaterials that ensure the targeted delivery and controlled release of double-stranded RNA. Genome sequencing has identified more than 75 genes in root knot and cyst nematodes that have been targeted with RNAi so far. But despite encouraging results, the delivery of dsRNA to nematodes in the soil remains inefficient. In this review article, we describe the state-of-the-art RNAi approaches targeting phytoparasitic nematodes and consider the potential benefits of nanotechnology to improve dsRNA delivery.
Collapse
Affiliation(s)
- Patrick Opdensteinen
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Shu and K.C. Chien and Peter Farrell CollaboratoryUniversity of California, San DiegoLa JollaCaliforniaUSA
| | | | - Jason C. Hong
- USDA‐ARS‐U.S. Horticultural Research LaboratoryFort PierceFloridaUSA
| | - Erin N. Rosskopf
- USDA‐ARS‐U.S. Horticultural Research LaboratoryFort PierceFloridaUSA
| | - Nicole F. Steinmetz
- Department of NanoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Nano‐ImmunoEngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Shu and K.C. Chien and Peter Farrell CollaboratoryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of RadiologyUniversity of California, San DiegoLa JollaCaliforniaUSA
- Institute for Materials Discovery and Design, University of California, San DiegoLa JollaCaliforniaUSA
- Moores Cancer CenterUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Engineering in Cancer, Institute of Engineering in MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
2
|
Huang G, Cong Z, Liu Z, Chen F, Bravo A, Soberón M, Zheng J, Peng D, Sun M. Silencing Ditylenchus destructor cathepsin L-like cysteine protease has negative pleiotropic effect on nematode ontogenesis. Sci Rep 2024; 14:10030. [PMID: 38693283 PMCID: PMC11063044 DOI: 10.1038/s41598-024-60018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Ditylenchus destructor is a migratory plant-parasitic nematode that severely harms many agriculturally important crops. The control of this pest is difficult, thus efficient strategies for its management in agricultural production are urgently required. Cathepsin L-like cysteine protease (CPL) is one important protease that has been shown to participate in various physiological and pathological processes. Here we decided to characterize the CPL gene (Dd-cpl-1) from D. destructor. Analysis of Dd-cpl-1 gene showed that Dd-cpl-1 gene contains a signal peptide, an I29 inhibitor domain with ERFNIN and GNFD motifs, and a peptidase C1 domain with four conserved active residues, showing evolutionary conservation with other nematode CPLs. RT-qPCR revealed that Dd-cpl-1 gene displayed high expression in third-stage juveniles (J3s) and female adults. In situ hybridization analysis demonstrated that Dd-cpl-1 was expressed in the digestive system and reproductive organs. Silencing Dd-cpl-1 in 1-cell stage eggs of D. destructor by RNAi resulted in a severely delay in development or even in abortive morphogenesis during embryogenesis. The RNAi-mediated silencing of Dd-cpl-1 in J2s and J3s resulted in a developmental arrest phenotype in J3 stage. In addition, silencing Dd-cpl-1 gene expression in female adults led to a 57.43% decrease in egg production. Finally, Dd-cpl-1 RNAi-treated nematodes showed a significant reduction in host colonization and infection. Overall, our results indicate that Dd-CPL-1 plays multiple roles in D. destructor ontogenesis and could serve as a new potential target for controlling D. destructor.
Collapse
Affiliation(s)
- Guoqiang Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ziwen Cong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhonglin Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Feng Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Donghai Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
3
|
Lin CJ, Siddique S. Parasitic nematodes: dietary habits and their implications. Trends Parasitol 2024; 40:230-240. [PMID: 38262837 DOI: 10.1016/j.pt.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024]
Abstract
Nematodes, a diverse group of roundworms, exhibit a wide range of dietary habits, including parasitism of animals and plants. These parasites cause substantial economic losses in agriculture and pose significant health challenges to humans and animals. This review explores the unique adaptations of parasitic nematodes, emphasizing their nutritional requirements and metabolic dependencies. Recent research has identified cross-kingdom compartmentalization of vitamin B5 biosynthesis in some parasitic nematodes, shedding light on coevolutionary dynamics and potential targets for control strategies. Several open questions remain regarding the complexity of nematode nutrition, host manipulation, evolutionary adaptations, and the influence of environmental factors on their metabolic processes. Understanding these aspects offers promising avenues for targeted interventions to manage and control these economically and medically important parasites.
Collapse
Affiliation(s)
- Ching-Jung Lin
- Department of Plant Pathology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Shahid Siddique
- Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Mwaka HS, Bauters L, Namaganda J, Marcou S, Bwesigye PN, Kubiriba J, Smagghe G, Tushemereirwe WK, Gheysen G. Transgenic East African Highland Banana Plants Are Protected against Radopholus similis through Host-Delivered RNAi. Int J Mol Sci 2023; 24:12126. [PMID: 37569502 PMCID: PMC10418933 DOI: 10.3390/ijms241512126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The burrowing nematode Radopholus similis is considered a major problem of intensive banana cultivation. It can cause extensive root damage resulting in the toppling disease of banana, which means that plants fall to the ground. Soaking R. similis in double-stranded (ds) RNA of the nematode genes Rps13, chitin synthase (Chs-2), Unc-87, Pat-10 or beta-1,4-endoglucanase (Eng1a) suppressed reproduction on carrot discs, from 2.8-fold (Chs-2) to 7-fold (Rps13). The East African Highland Banana cultivar Nakitembe was then transformed with constructs for expression of dsRNA against the same genes, and for each construct, 30 independent transformants were tested with nematode infection. Four months after transfer from in vitro culture to the greenhouse, the banana plants were transferred to a screenhouse and inoculated with 2000 nematodes per plant, and thirteen weeks later, they were analyzed for several parameters including plant growth, root necrosis and final nematode population. Plants with dsRNA constructs against the nematode genes were on average showing lower nematode multiplication and root damage than the nontransformed controls or the banana plants expressing dsRNA against the nonendogenous gene. In conclusion, RNAi seems to efficiently protect banana against damage caused by R. similis, opening perspectives to control this pest.
Collapse
Affiliation(s)
- Henry Shaykins Mwaka
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (H.S.M.); (L.B.)
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; (S.M.)
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Lander Bauters
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (H.S.M.); (L.B.)
| | - Josephine Namaganda
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Shirley Marcou
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; (S.M.)
| | - Priver Namanya Bwesigye
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Jerome Kubiriba
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Guy Smagghe
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; (S.M.)
| | | | - Godelieve Gheysen
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (H.S.M.); (L.B.)
| |
Collapse
|
5
|
Halder K, Chaudhuri A, Abdin MZ, Majee M, Datta A. RNA Interference for Improving Disease Resistance in Plants and Its Relevance in This Clustered Regularly Interspaced Short Palindromic Repeats-Dominated Era in Terms of dsRNA-Based Biopesticides. FRONTIERS IN PLANT SCIENCE 2022; 13:885128. [PMID: 35645997 PMCID: PMC9141053 DOI: 10.3389/fpls.2022.885128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
RNA interference (RNAi) has been exploited by scientists worldwide to make a significant contribution in the arena of sustainable agriculture and integrated pest management. These strategies are of an imperative need to guarantee food security for the teeming millions globally. The already established deleterious effects of chemical pesticides on human and livestock health have led researchers to exploit RNAi as a potential agri-biotechnology tool to solve the burning issue of agricultural wastage caused by pests and pathogens. On the other hand, CRISPR/Cas9, the latest genome-editing tool, also has a notable potential in this domain of biotic stress resistance, and a constant endeavor by various laboratories is in progress for making pathogen-resistant plants using this technique. Considerable outcry regarding the ill effects of genetically modified (GM) crops on the environment paved the way for the research of RNAi-induced double-stranded RNAs (dsRNA) and their application to biotic stresses. Here, we mainly focus on the application of RNAi technology to improve disease resistance in plants and its relevance in today's CRISPR-dominated world in terms of exogenous application of dsRNAs. We also focused on the ongoing research, public awareness, and subsequent commercialization of dsRNA-based biocontrol products.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, New Delhi, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, New Delhi, India
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Manoj Majee
- National Institute of Plant Genome Research, New Delhi, India
| | - Asis Datta
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
6
|
Protein and antigen profiles of third-stage larvae of Gnathostoma spinigerum assessed with next-generation sequencing transcriptomic information. Sci Rep 2022; 12:6915. [PMID: 35484317 PMCID: PMC9051128 DOI: 10.1038/s41598-022-10826-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Gnathostomiasis is a food-borne zoonotic disease that can affect humans who eat improperly cooked meat containg infective third-stage larvae. Definitive diagnosis is through larval recovery. However, this is an invasive technique and is impractical if the larvae have encysted in inaccessible areas of the body. Antigen or antibody detection might be more interesting techniques for diagnosis. Proteomic could elucidate diagnostic markers and improve our understanding of parasite biology. However, proteomic studies on Gnathostoma spinigerum are hampered by the lack of a comprehensive database for protein identification. This study aimed to explore the protein and antigen profiles of advanced third-stage G. spinigerum larvae (aL3Gs) using interrogation of mass spectrometry data and an in-house transcriptomic database for protein identification. Immunoproteomic analysis found 74 proteins in 24-kDa SDS-PAGE bands, which is size-specific for the immunodiagnosis of gnathostomiasis. Moreover, 13 proteins were found in 2-DE 24-kDa bands. The data suggest that collagenase 3, cathepsin B, glutathione S-transferase 1, cuticle collagen 14, major antigen, zinc metalloproteinase nas-4, major egg antigen, peroxiredoxin, and superoxide dismutase [Cu–Zn] may be good candidates for novel human gnathostomiasis diagnostic assays. These findings improve our understanding of the parasite’s biology and provide additional potential targets for novel therapeutics, diagnostics, and vaccines.
Collapse
|
7
|
Vieira P, Myers RY, Pellegrin C, Wram C, Hesse C, Maier TR, Shao J, Koutsovoulos GD, Zasada I, Matsumoto T, Danchin EGJ, Baum TJ, Eves-van den Akker S, Nemchinov LG. Targeted transcriptomics reveals signatures of large-scale independent origins and concerted regulation of effector genes in Radopholus similis. PLoS Pathog 2021; 17:e1010036. [PMID: 34748609 PMCID: PMC8601627 DOI: 10.1371/journal.ppat.1010036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/18/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
The burrowing nematode, Radopholus similis, is an economically important plant-parasitic nematode that inflicts damage and yield loss to a wide range of crops. This migratory endoparasite is widely distributed in warmer regions and causes extensive destruction to the root systems of important food crops (e.g., citrus, banana). Despite the economic importance of this nematode, little is known about the repertoire of effectors owned by this species. Here we combined spatially and temporally resolved next-generation sequencing datasets of R. similis to select a list of candidates for the identification of effector genes for this species. We confirmed spatial expression of transcripts of 30 new candidate effectors within the esophageal glands of R. similis by in situ hybridization, revealing a large number of pioneer genes specific to this nematode. We identify a gland promoter motif specifically associated with the subventral glands (named Rs-SUG box), a putative hallmark of spatial and concerted regulation of these effectors. Nematode transcriptome analyses confirmed the expression of these effectors during the interaction with the host, with a large number of pioneer genes being especially abundant. Our data revealed that R. similis holds a diverse and emergent repertoire of effectors, which has been shaped by various evolutionary events, including neofunctionalization, horizontal gene transfer, and possibly by de novo gene birth. In addition, we also report the first GH62 gene so far discovered for any metazoan and putatively acquired by lateral gene transfer from a bacterial donor. Considering the economic damage caused by R. similis, this information provides valuable data to elucidate the mode of parasitism of this nematode.
Collapse
Affiliation(s)
- Paulo Vieira
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Roxana Y. Myers
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA ARS, Hilo, Hawaii, United States of America
| | - Clement Pellegrin
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Catherine Wram
- USDA-ARS Horticultural Crops Research Unit, Corvallis, Oregon, United States of America
| | - Cedar Hesse
- USDA-ARS Horticultural Crops Research Unit, Corvallis, Oregon, United States of America
| | - Thomas R. Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Jonathan Shao
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | | | - Inga Zasada
- USDA-ARS Horticultural Crops Research Unit, Corvallis, Oregon, United States of America
| | - Tracie Matsumoto
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA ARS, Hilo, Hawaii, United States of America
| | - Etienne G. J. Danchin
- INRAE, Université Côte d’Azur, CNRS, Institute Sophia Agrobiotech, Sophia Antipolis, France
| | - Thomas J. Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | | | - Lev G. Nemchinov
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| |
Collapse
|
8
|
A novel ATPase gene, Ab-atps, plays an important role in the interaction of rice and white tip nematode, Aphelenchoides besseyi. Sci Rep 2021; 11:18521. [PMID: 34531469 PMCID: PMC8446066 DOI: 10.1038/s41598-021-97981-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 08/06/2021] [Indexed: 11/09/2022] Open
Abstract
Plant kinases containing the LysM domain play important roles in pathogen recognition and self-defense reactions. And it could recognize microbe-associated molecules including chitin and other polypeptides. The white tip nematode Aphelenchoides besseyi is a migratory parasitic nematode that infects plant shoots. It is distributed over almost all rice-producing areas and causes up to 50% economic losses. The rice OsRLK3 gene was a defense-related LysM kinase gene of rice. This study showed that the rice LysM kinase OsRLK3 could be induced by flg22, jasmonic acid, salicylic acid, and chitin. An interaction gene, Ab-atps from A. besseyi, was identified by screening the interaction between the rice gene OsRLK3 and an A. besseyi cDNA library using yeast two-hybrid screening. Ab-atps is a novel ATP synthase gene with a full length of 1341 bp, coding for 183 amino acids. The mRNA of Ab-atps was located in the esophagus and reproductive system of A. besseyi. The expression of Ab-atps was assessed at different developmental stages of the nematode and found to be the highest in the juvenile, followed by the egg, female, and male. Reproduction was significantly decreased in nematodes treated with Ab-atps double-stranded RNA (dsRNA) (p < 0.05). Transient expression experiments showed that Ab-ATPS-GFP was distributed in the nucleus, cytoplasm, and cell membrane, and Ab-ATPS-GFP triggered plant cell death. OsRLK3 was expressed significantly higher at 0.5 day and 1 day (p < 0.05) in rice plants inoculated with nematodes treated with Ab-atps dsRNA and gfp dsRNA for 0.5-7 days, respectively. Further, OsRLK3 expression under Ab-atps dsRNA treatment was significantly lower than with gfp dsRNA treatment at 0.5 day (p < 0.05) and significantly higher than with gfp dsRNA treatment at 1 day (p < 0.05). These results suggest that rice OsRLK3 could interact with A. besseyi Ab-atps, which plays an important role in growth, reproduction, and infection of the nematode. Our findings provide a theoretical basis to further understand the parasitic strategy of A. besseyi and its interaction mechanism with host plants, suggesting new ideas and targets for controlling A. besseyi.
Collapse
|
9
|
Li J, Xu C, Yang S, Chen C, Tang S, Wang J, Xie H. A Venom Allergen-Like Protein, RsVAP, the First Discovered Effector Protein of Radopholus similis That Inhibits Plant Defense and Facilitates Parasitism. Int J Mol Sci 2021; 22:4782. [PMID: 33946385 PMCID: PMC8125365 DOI: 10.3390/ijms22094782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Radopholus similis is a migratory endoparasitic nematode that is extremely harmful to host plants. Venom allergen-like proteins (VAPs) are members of the cysteine-rich secretory protein family that are widely present in plants and animals. In this study, we cloned a VAP gene from R. similis, designated as RsVAP. RsVAP contains an open reading frame of 1089 bp encoding 362 amino acids. RsVAP is specifically expressed in the esophageal gland, and the expression levels of RsVAP are significantly higher in juveniles than in other life stages of R. similis. This expression pattern of RsVAP was consistent with the biological characteristics of juveniles of R. similis, which have the ability of infection and are the main infection stages of R. similis. The pathogenicity and reproduction rate of R. similis in tomato was significantly attenuated after RsVAP was silenced. In tobacco leaves transiently expressing RsVAP, the pathogen-associated molecular pattern-triggered immunity (PTI) induced by a bacterial flagellin fragment (flg22) was inhibited, while the cell death induced by two sets of immune elicitors (BAX and Gpa2/RBP-1) was repressed. The RsVAP-interacting, ras-related protein RABA1d (LeRabA1d) was identified in tomato hosts by yeast two-hybrid and co-immunoprecipitation assays. RsVAP may interact with LeRabA1d to affect the host defense response, which in turn facilitates nematode infection. This study provides the first evidence for the inhibition of plant defense response by a VAP from migratory plant-parasitic nematodes, and, for the first time, the target protein of R. similis in its host was identified.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Xie
- Research Center of Nematodes of Plant Quarantine, Laboratory of Plant Nematology, Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.X.); (S.Y.); (C.C.); (S.T.); (J.W.)
| |
Collapse
|
10
|
Multi-copy alpha-amylase genes are crucial for Ditylenchus destructor to parasitize the plant host. PLoS One 2020; 15:e0240805. [PMID: 33104741 PMCID: PMC7588122 DOI: 10.1371/journal.pone.0240805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022] Open
Abstract
Ditylenchus destructor is a migratory plant-parasitic nematode that causes huge damage to global root and tuber production annually. The main plant hosts of D. destructor contain plenty of starch, which makes the parasitic environment of D. destructor to be different from those of most other plant-parasitic nematodes. It is speculated that D. destructor may harbor some unique pathogenesis-related genes to parasitize the starch-rich hosts. Herein, we focused on the multi-copy alpha-amylase genes in D. destructor, which encode a key starch-catalyzing enzyme. Our previously published D. destructor genome showed that it has three alpha-amylase encoding genes, Dd_02440, Dd_11154, and Dd_13225. Comparative analysis of alpha-amylases from different species demonstrated that the other plant-parasitic nematodes, even Ditylenchus dipsaci in the same genus, harbor only one or no alpha-amylase gene, and the three genes from D. destructor were closely clustered in the phylogenetic tree, indicating that there was a unique expansion of the alpha-amylase gene in D. destructor. The enzymatic activity of the three alpha-amylase proteins was verified by an enzyme assay. Quantitative real-time PCR assay showed that the expression of the three alpha-amylase genes in the post-hatching stage of D. destructor was found to be significantly higher than that in eggs. In the in situ hybridization assay, the expression of the genes was localized to the intestine, implying the association of these genes with nematode digestion. An infection assay in sweet potato demonstrated that RNA interference of any one alpha-amylase gene had no influence on the infectivity of D. destructor. Using the multi-target dsRNA cocktail method, it was found that silencing of two of the three genes inhibited nematode infection, and the infectivity of worms treated with three dsRNA simultaneously changed the most, which decreased by 76.6%. Thus, the multi-copy alpha-amylase genes in D. destructor are compensatory and crucial for nematodes to parasitize the plant host.
Collapse
|
11
|
Mathew R, Opperman CH. Current Insights into Migratory Endoparasitism: Deciphering the Biology, Parasitism Mechanisms, and Management Strategies of Key Migratory Endoparasitic Phytonematodes. PLANTS (BASEL, SWITZERLAND) 2020; 9:E671. [PMID: 32466416 PMCID: PMC7356796 DOI: 10.3390/plants9060671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/12/2023]
Abstract
Despite their physiological differences, sedentary and migratory plant-parasitic nematodes (PPNs) share several commonalities. Functional characterization studies of key effectors and their targets identified in sedentary phytonematodes are broadly applied to migratory PPNs, generalizing parasitism mechanisms existing in distinct lifestyles. Despite their economic significance, host-pathogen interaction studies of migratory endoparasitic nematodes are limited; they have received little attention when compared to their sedentary counterparts. Because several migratory PPNs form disease complexes with other plant-pathogens, it is important to understand multiple factors regulating their feeding behavior and lifecycle. Here, we provide current insights into the biology, parasitism mechanism, and management strategies of the four-key migratory endoparasitic PPN genera, namely Pratylenchus, Radopholus, Ditylenchus, and Bursaphelenchus. Although this review focuses on these four genera, many facets of feeding mechanisms and management are common across all migratory PPNs and hence can be applied across a broad genera of migratory phytonematodes.
Collapse
Affiliation(s)
| | - Charles H. Opperman
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA;
| |
Collapse
|
12
|
Qiu ZX, Li Y, Li MM, Wang WY, Zhang TT, Liu JZ. Investigation of three enzymes and their roles in the embryonic development of parthenogenetic Haemaphysalis longicornis. Parasit Vectors 2020; 13:46. [PMID: 32005284 PMCID: PMC6995198 DOI: 10.1186/s13071-020-3916-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The tick Haemaphysalis longicornis exhibits two separate reproductive populations: bisexual and parthenogenetic, which have diploid and triploid karyotypes, respectively. The parthenogenetic population can undergo engorgement without copulation and produce viable female-only offspring with a longer incubation period than the bisexual population. Three enzymes, cathepsin B, cathepsin D and acid phosphatase, were found to be involved in vitellin degradation during the embryonic development of bisexual H. longicornis. However, the expression and activity profiles of these enzymes during the embryonic development of parthenogenetic ticks remain unknown. In the present study, the transcriptional expression profile, enzyme activity and roles in embryogenesis of the three enzymes during the embryonic development of parthenogenetic H. longicornis were investigated. METHODS Quantitative real-time polymerase chain reaction (qPCR) and fluorescence detection were used to analyze the dynamic changes in the three enzymes during embryogenesis. The roles of the three enzymes during embryogenesis were also explored using RNA interference (RNAi). RESULTS The three enzymes were all expressed during embryonic development in parthenogenetic H. longicornis. The expression of cathepsin B was highest on day 15, whereas that of cathepsin D was highest on day 3 and the peak of acid phosphatase expression occurred on day 9. The activity of cathepsin B was highest on day 3 and lowest on day 5, then gradually increased and remained stable. Cathepsin D activity was highest on day 1 and showed a gradually decreasing trend, whereas acid phosphatase showed the opposite trend and reached a peak on day 23. RNA interference experiments in engorged female ticks revealed that there was no significant difference in the number of eggs laid, but the hatching rate of the eggs was significantly decreased. CONCLUSION The three enzymes all play important roles in embryonic development of H. longicornis, but the expression patterns and changes in the activity of the enzymes in the bisexual and parthenogenetic populations are different. The results will help a better understanding of the similarities and differences underlying embryonic development in the bisexual and parthenogenetic populations and contribute to the future exploration of the development of the parthenogenetic population of H. longicornis.
Collapse
Affiliation(s)
- Zhao-Xi Qiu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yuan Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Meng-Meng Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wen-Ying Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tian-Tian Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jing-Ze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
13
|
Mathew R, Opperman CH. The genome of the migratory nematode, Radopholus similis, reveals signatures of close association to the sedentary cyst nematodes. PLoS One 2019; 14:e0224391. [PMID: 31652297 PMCID: PMC6814228 DOI: 10.1371/journal.pone.0224391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/11/2019] [Indexed: 11/19/2022] Open
Abstract
Radopholus similis, commonly known as the burrowing nematode, is an important pest of myriad crops and ornamentals including banana (Musa spp.) and Citrus spp. In order to characterize the potential role of putative effectors encoded by R. similis genes we compared predicted proteins from a draft R. similis genome with other plant-parasitic nematodes in order to define the suite of excreted/secreted proteins that enable it to function as a parasite and to ascertain the phylogenetic position of R. similis in the Tylenchida order. Identification and analysis of candidate genes encoding for key plant cell-wall degrading enzymes including GH5 cellulases, PL3 pectate lyases and GH28 polygalactouranase revealed a pattern of occurrence similar to other PPNs, although with closest phylogenetic associations to the sedentary cyst nematodes. We also observed the absence of a suite of effectors essential for feeding site formation in the cyst nematodes. Clustering of various orthologous genes shared by R. similis with other nematodes showed higher overlap with the cyst nematodes than with the root-knot or other migratory endoparasitic nematodes. The data presented here support the hypothesis that R. similis is evolutionarily closer to the cyst nematodes, however, differences in the effector repertoire delineate ancient divergence of parasitism, probably as a consequence of niche specialization. These similarities and differences further underscore distinct evolutionary relationships during the evolution of parasitism in this group of nematodes.
Collapse
Affiliation(s)
- Reny Mathew
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC United States of America
| | - Charles H. Opperman
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC United States of America
| |
Collapse
|
14
|
Huang X, Xu CL, Yang SH, Li JY, Wang HL, Zhang ZX, Chen C, Xie H. Life-stage specific transcriptomes of a migratory endoparasitic plant nematode, Radopholus similis elucidate a different parasitic and life strategy of plant parasitic nematodes. Sci Rep 2019; 9:6277. [PMID: 31000750 PMCID: PMC6472380 DOI: 10.1038/s41598-019-42724-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/02/2019] [Indexed: 01/21/2023] Open
Abstract
Radopholus similis is an important migratory endoparasitic nematode, severely harms banana, citrus and many other commercial crops. Little is known about the molecular mechanism of infection and pathogenesis of R. similis. In this study, 64761 unigenes were generated from eggs, juveniles, females and males of R. similis. 11443 unigenes showed significant expression difference among these four life stages. Genes involved in host parasitism, anti-host defense and other biological processes were predicted. There were 86 and 102 putative genes coding for cell wall degrading enzymes and antioxidase respectively. The amount and type of putative parasitic-related genes reported in sedentary endoparasitic plant nematodes are variable from those of migratory parasitic nematodes on plant aerial portion. There were no sequences annotated to effectors in R. similis, involved in feeding site formation of sedentary endoparasites nematodes. This transcriptome data provides a new insight into the parasitic and pathogenic molecular mechanisms of the migratory endoparasitic nematodes. It also provides a broad idea for further research on R. similis.
Collapse
Affiliation(s)
- Xin Huang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Chun-Ling Xu
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Si-Hua Yang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jun-Yi Li
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Hong-Le Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Zi-Xu Zhang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Chun Chen
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Hui Xie
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China.
| |
Collapse
|
15
|
RNAi-mediated protection against banana diseases and pests. 3 Biotech 2019; 9:112. [PMID: 30863696 DOI: 10.1007/s13205-019-1650-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/23/2019] [Indexed: 12/14/2022] Open
Abstract
Pests and pathogens restrict the production potential of many crop plants. The losses incurred due to pests and diseases are huge threatening food security. Management strategies include use of chemical pesticides which can be detrimental to human health and environment and other physical and biological methods which have serious limitations. An alternative would be to utilize the advanced technology such as RNA interference (RNAi) to engineer disease resistance in crop plants. The phenomenon of RNAi is very well studied in organisms across genera and found to be conserved. Taking advantage of this, dsRNAs have been delivered into pests and pathogens and showed significant growth inhibition. Banana is susceptible to various groups of pathogens which results in poor yield. The proof-of-principle studies using RNAi technology have already been demonstrated in banana to develop resistance to two important groups of pathogens. Transgenic banana plants expressing small interfering RNA targeting BBTV and Fusarium pathogen have shown high level of resistance. In this review, we summarize and discuss the studies utilizing RNAi as a strategy to develop resistance to major banana diseases and encourage further research in exploiting RNAi-based resistance in other crop plants.
Collapse
|
16
|
Li JY, Chen WZ, Yang SH, Xu CL, Huang X, Chen C, Xie H. Screening of reference genes in real-time PCR for Radopholus similis. PeerJ 2019; 7:e6253. [PMID: 30671304 PMCID: PMC6339476 DOI: 10.7717/peerj.6253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Six candidate reference genes were chosen from the transcriptome database of Radopholus similis using the bioinformatics method, including four conventional reference genes (actin, Eukaryotic translation initiation factor 5A (eIF5A), Tubulin alpha (a-tubulin), ubiquitin (UBI)) and two new candidate reference genes (Ribosomal protein S21 (Rps21) and Serine/threonine protein phosphatase PP1-β catalytic subunit (β-PP1)). In addition, a traditional reference gene 18S ribosomal RNA (18S rRNA) obtained from NCBI databases was also added to the analysis. Real-time PCR was used to detect the expression of seven candidate reference genes in six populations of R. similis and four developmental stages (female, male, larva and egg) of a population. The stability of the expression of candidate genes was evaluated by three software programs, BestKeeper, geNorm and NormFinder. The results showed that eIF5A is the most suitable reference gene for gene functional research of different populations, while both Rps21 and eIF5A are the most suitable reference genes for different developmental stages of a population. Therefore, eIF5A is the best reference gene for studying R. similis. However, one defect of this study is that only seven candidate reference genes were analyzed; ideally, more genes should be tested.
Collapse
Affiliation(s)
- Jun-Yi Li
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, People's Republic of China
| | - Wan-Zhu Chen
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, People's Republic of China
| | - Si-Hua Yang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, People's Republic of China
| | - Chun-Ling Xu
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, People's Republic of China
| | - Xin Huang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, People's Republic of China
| | - Chun Chen
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, People's Republic of China
| | - Hui Xie
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
17
|
Cardoso JM, Fonseca L, Egas C, Abrantes I. Cysteine proteases secreted by the pinewood nematode, Bursaphelenchus xylophilus: In silico analysis. Comput Biol Chem 2018; 77:291-296. [DOI: 10.1016/j.compbiolchem.2018.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/27/2018] [Accepted: 10/20/2018] [Indexed: 12/14/2022]
|
18
|
Gosal SS, Wani SH. RNAi for Resistance Against Biotic Stresses in Crop Plants. BIOTECHNOLOGIES OF CROP IMPROVEMENT, VOLUME 2 2018. [PMCID: PMC7123769 DOI: 10.1007/978-3-319-90650-8_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA interference (RNAi)-based gene silencing has become one of the most successful strategies in not only identifying gene function but also in improving agronomical traits of crops by silencing genes of different pathogens/pests and also plant genes for improvement of desired trait. The conserved nature of RNAi pathway across different organisms increases its applicability in various basic and applied fields. Here we attempt to summarize the knowledge generated on the fundamental mechanisms of RNAi over the years, with emphasis on insects and plant-parasitic nematodes (PPNs). This chapter also reviews the rich history of RNAi research, gene regulation by small RNAs across different organisms, and application potential of RNAi for generating transgenic plants resistant to major pests. But, there are some limitations too which restrict wider applications of this technology to its full potential. Further refinement of this technology in terms of resolving these shortcomings constitutes one of the thrust areas in present RNAi research. Nevertheless, its application especially in breeding agricultural crops resistant against biotic stresses will certainly offer the possible solutions for some of the breeding objectives which are otherwise unattainable.
Collapse
Affiliation(s)
- Satbir Singh Gosal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir India
| |
Collapse
|
19
|
Wang HL, Cheng X, Ding SW, Wang DW, Chen C, Xu CL, Xie H. Molecular identification and functional characterization of the cathepsin B gene (Ab-cb-1) in the plant parasitic nematode Aphelenchoides besseyi. PLoS One 2018; 13:e0199935. [PMID: 29958285 PMCID: PMC6025850 DOI: 10.1371/journal.pone.0199935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/15/2018] [Indexed: 11/23/2022] Open
Abstract
The rice white tip nematode, Aphelenchoides besseyi, is widely distributed in rice planting areas worldwide and causes serious economic losses. Cathepsin genes have been demonstrated to have importance in studying the reproduction, development, pathogenicity, and control methods of plant nematodes. In this paper, a novel cathepsin B gene, Ab-cb-1, was found and cloned. The Ab-cb-1 gene was 1347 bp in length and encodes 369 amino acids. The Ab-CB-1 protein contains characteristic occluding loops but no signal peptide. A homology analysis showed that Ab-CB-1 had the highest identity value (64%) to the known amino acid sequence of cathepsin B-like cysteine protease 6 from Toxocara canis. When Ab-cb-1 was expressed in a prokaryotic system, the protein massed approximately 45 kDa and could decompose carrot callus. Ab-cb-1 mRNA was localized in the nematode intestine. The relative expression level of Ab-cb-1 in the A. besseyi Ab-S24 population, which had high reproductivity, was approximately 6.9 times that in the Ab-N10 population, which had low reproductivity, and the difference was significant (p<0.05). The Ab-cb-1 expression level was highest in females; the expression levels in males, juveniles and eggs were 30%, 12.2% and 5% of that in females, respectively, and the differences were significant among all four stages (p<0.05). Nematodes of the Ab-S24 population were treated with Ab-cb-1 dsRNA for 12 h, 24 h, 36 h and 48 h, and their reproduction decreased with increasing time. These results demonstrated that Ab-CB-1 was a digestive enzyme with hydrolytic protease properties and that Ab-cb-1 played an important role in the reproduction of A. besseyi.
Collapse
Affiliation(s)
- Hong-Le Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xi Cheng
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Shan-Wen Ding
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Dong-Wei Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Chun Chen
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Chun-Ling Xu
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Hui Xie
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology / Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
20
|
Roderick H, Urwin PE, Atkinson HJ. Rational design of biosafe crop resistance to a range of nematodes using RNA interference. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:520-529. [PMID: 28703405 PMCID: PMC5787825 DOI: 10.1111/pbi.12792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 05/31/2023]
Abstract
Double-stranded RNA (dsRNA) molecules targeting two genes have been identified that suppress economically important parasitic nematode species of banana. Proteasomal alpha subunit 4 (pas-4) and Actin-4 (act-4) were identified from a survey of sequence databases and cloned sequences for genes conserved across four pests of banana, Radopholus similis, Pratylenchus coffeae, Meloidogyne incognita and Helicotylenchus multicinctus. These four species were targeted with dsRNAs containing exact 21 nucleotide matches to the conserved regions. Potential off-target effects were limited by comparison with Caenorhabditis, Drosophila, rat, rice and Arabidopsis genomes. In vitro act-4 dsRNA treatment of R. similis suppressed target gene expression by 2.3-fold, nematode locomotion by 66 ± 4% and nematode multiplication on carrot discs by 49 ± 5%. The best transgenic carrot hairy root lines expressing act-4 or pas-4 dsRNA reduced transcript message abundance of target genes in R. similis by 7.9-fold and fourfold and nematode multiplication by 94 ± 2% and 69 ± 3%, respectively. The same act-4 and pas-4 lines reduced P. coffeae target transcripts by 1.7- and twofold and multiplication by 50 ± 6% and 73 ± 8%. Multiplication of M. incognita on the pas-4 lines was reduced by 97 ± 1% and 99 ± 1% while target transcript abundance was suppressed 4.9- and 5.6-fold. There was no detectable RNAi effect on nontarget nematodes exposed to dsRNAs targeting parasitic nematodes. This work defines a framework for development of a range of nonprotein defences to provide broad resistance to pests and pathogens of crops.
Collapse
|
21
|
Li Y, Wang K, Lu Q, Du J, Wang Z, Wang D, Sun B, Li H. Transgenic Nicotiana benthamiana plants expressing a hairpin RNAi construct of a nematode Rs-cps gene exhibit enhanced resistance to Radopholus similis. Sci Rep 2017; 7:13126. [PMID: 29030572 PMCID: PMC5640634 DOI: 10.1038/s41598-017-13024-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022] Open
Abstract
Burrowing nematodes (Radopholus similis) cause severe harm in many agronomic and horticultural crops and are very difficult to manage. Cathepsin S is one of the most important cysteine proteinases and plays key roles in nematodes and many other parasites. To evaluate the effect of in planta RNAi on the control of this nematode, a specific fragment from the protease gene, cathepsin S (Rs-cps), was cloned into the binary vector pFGC5941 in the forward and reverse orientations to construct recombinant plant RNAi vectors. Transgenic Nicotiana benthamiana plants expressing Rs-cps dsRNA were obtained and studied. The transcript abundance of Rs-cps dsRNA appeared to be diverse in the different transgenic lines. Moreover, the bioassay results revealed that Rs-cps transgenic N. benthamiana plants were resistant to R. similis and the transcription level of Rs-cps in R. similis was drastically decreased. In addition, the reproduction and hatching rate of R. similis isolated from the Rs-cps transgenic plants were also significantly reduced. Our results suggest that Rs-cps is essential for the reproduction and pathogenicity of R. similis. This is the first study to employ in planta RNAi approach to target the Rs-cps gene for the control of plant parasitic nematodes.
Collapse
Affiliation(s)
- Yu Li
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Ke Wang
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Qisen Lu
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Juan Du
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Zhenyue Wang
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Desen Wang
- Department of Entomology, Rutgers University, New Brunswick, 08901, New Jersey, USA
| | - Bingjian Sun
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| | - Honglian Li
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
- Collaborative Innovation Center of Henan Grain Crops, Zhengzhou, 450002, Henan, China.
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
22
|
Molecular Cloning, Recombinant Expression and Antifungal Activity of BnCPI, a Cystatin in Ramie (Boehmeria nivea L.). Genes (Basel) 2017; 8:genes8100265. [PMID: 29019965 PMCID: PMC5664115 DOI: 10.3390/genes8100265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 11/24/2022] Open
Abstract
Phytocystatins play multiple roles in plant growth, development and resistance to pests and other environmental stresses. A ramie (Boehmeria nivea L.) phytocystatin gene, designated as BnCPI, was isolated from a ramie cDNA library and its full-length cDNA was obtained by rapid amplification of cDNA ends (RACE). The full-length cDNA sequence (691 bp) consisted of a 303 bp open reading frame (ORF) encoding a protein of 100 amino acids with deduced molecular mass of 11.06 kDa and a theoretical isoelectric point (pI) of 6.0. The alignment of genome DNA (accession No. MF153097) and cDNA sequences of BnCPI showed that an intron (~104 bp) exists in the coding region. The BnCPI protein contains most of the highly conserved blocks including Gly5-Gly6 at the N-terminal, the reactive site motif QxVxG (Q49V50V51S52G53), the L79-W80 block and the [LVI]-[AGT]-[RKE]-[FY]-[AS]-[VI]-x-[EDQV]-[HYFQ]-N (L22G23R24 F25A26V27 D28D29H30 N31) block that is common among plant cystatins. BLAST analysis indicated that BnCPI is similar to cystatins from Glycine max (77%), Glycine soja (76%), Hevea brasiliensis (75%) and Ricinus communis (75%). The BnCPI was subcloned into expression vector pSmart-I and then overexpressed in Escherichia coli BL21 (DE3) as a His-tagged recombinant protein. The purified reBnCPI has a molecular mass of 11.4 kDa determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). Purified reBnCPI can efficiently inhibit the protease activity of papain and ficin toward BANA (Nα-benzoyl-L-arginine-2-naphthyamide), as well as the mycelium growth of some important plant pathogenic fungi. The data further contribute to our understanding of the molecular functions of BnCPI.
Collapse
|
23
|
Huang X, Xu CL, Chen WZ, Chen C, Xie H. Cloning and characterization of the first serine carboxypeptidase from a plant parasitic nematode, Radopholus similis. Sci Rep 2017; 7:4815. [PMID: 28684768 PMCID: PMC5500496 DOI: 10.1038/s41598-017-05093-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/24/2017] [Indexed: 11/09/2022] Open
Abstract
Radopholus similis is an important parasitic nematode of plants. Serine carboxypeptidases (SCPs) are peptidases that hydrolyse peptides and proteins and play critical roles in the development, invasion, and pathogenesis of certain parasitic nematodes and other animal pathogens. In this study, we obtained the full-length sequence of the SCP gene from R. similis (Rs-scp-1), which is 1665 bp long and includes a 1461-bp open reading frames encoding 486 amino acids with an 18-aa signal peptide. This gene is a double-copy gene in R. similis. Rs-scp-1 was expressed in the procorpus, esophageal glands and intestines of females and in the esophageal glands and intestines of juveniles. Rs-scp-1 expression levels were highest in females, followed by juveniles and males, and lowest in eggs. Rs-scp-1 expression levels were significantly suppressed after R. similis was soaked in Rs-scp-1 dsRNA for 12 h. Nematodes were then inoculated into Anthurium andraeanum after RNAi treatment. Compared with water treatment, R. similis treated with RNAi were reduced in number and pathogenicity. In summary, we obtained the first SCP gene from a plant parasitic nematode and confirmed its role in the parasitic process.
Collapse
Affiliation(s)
- Xin Huang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Chun-Ling Xu
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Wan-Zhu Chen
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Chun Chen
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Hui Xie
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China.
| |
Collapse
|
24
|
Banerjee S, Banerjee A, Gill SS, Gupta OP, Dahuja A, Jain PK, Sirohi A. RNA Interference: A Novel Source of Resistance to Combat Plant Parasitic Nematodes. FRONTIERS IN PLANT SCIENCE 2017; 8:834. [PMID: 28580003 PMCID: PMC5437379 DOI: 10.3389/fpls.2017.00834] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/04/2017] [Indexed: 05/20/2023]
Abstract
Plant parasitic nematodes cause severe damage and yield loss in major crops all over the world. Available control strategies include use of insecticides/nematicides but these have proved detrimental to the environment, while other strategies like crop rotation and resistant cultivars have serious limitations. This scenario provides an opportunity for the utilization of technological advances like RNA interference (RNAi) to engineer resistance against these devastating parasites. First demonstrated in the model free living nematode, Caenorhabtidis elegans; the phenomenon of RNAi has been successfully used to suppress essential genes of plant parasitic nematodes involved in parasitism, nematode development and mRNA metabolism. Synthetic neurotransmitants mixed with dsRNA solutions are used for in vitro RNAi in plant parasitic nematodes with significant success. However, host delivered in planta RNAi has proved to be a pioneering phenomenon to deliver dsRNAs to feeding nematodes and silence the target genes to achieve resistance. Highly enriched genomic databases are exploited to limit off target effects and ensure sequence specific silencing. Technological advances like gene stacking and use of nematode inducible and tissue specific promoters can further enhance the utility of RNAi based transgenics against plant parasitic nematodes.
Collapse
Affiliation(s)
- Sagar Banerjee
- Division of Nematology, Indian Agricultural Research Institute (ICAR)New Delhi, India
- Centre for Biotechnology, Maharshi Dayanand UniversityRohtak, India
- Division of Biochemistry, Indian Agricultural Research Institute (ICAR)New Delhi, India
| | - Anamika Banerjee
- Division of Nematology, Indian Agricultural Research Institute (ICAR)New Delhi, India
| | | | - Om P. Gupta
- Division of Biochemistry, Indian Agricultural Research Institute (ICAR)New Delhi, India
| | - Anil Dahuja
- Division of Biochemistry, Indian Agricultural Research Institute (ICAR)New Delhi, India
| | - Pradeep K. Jain
- National Research Centre on Plant Biotechnology (ICAR)New Delhi, India
| | - Anil Sirohi
- Division of Nematology, Indian Agricultural Research Institute (ICAR)New Delhi, India
| |
Collapse
|
25
|
Tripathi L, Atkinson H, Roderick H, Kubiriba J, Tripathi JN. Genetically engineered bananas resistant to Xanthomonas wilt disease and nematodes. Food Energy Secur 2017; 6:37-47. [PMID: 28713567 PMCID: PMC5488630 DOI: 10.1002/fes3.101] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/12/2017] [Accepted: 02/16/2017] [Indexed: 11/08/2022] Open
Abstract
Banana is an important staple food crop feeding more than 100 million Africans, but is subject to severe productivity constraints due to a range of pests and diseases. Banana Xanthomonas wilt caused by Xanthomonas campestris pv. musacearum is capable of entirely destroying a plantation while nematodes can cause losses up to 50% and increase susceptibility to other pests and diseases. Development of improved varieties of banana is fundamental in order to tackle these challenges. However, the sterile nature of the crop and the lack of resistance in Musa germplasm make improvement by traditional breeding techniques either impossible or extremely slow. Recent developments using genetic engineering have begun to address these problems. Transgenic banana expressing sweet pepper Hrap and Pflp genes have demonstrated complete resistance against X. campestris pv. musacearum in the field. Transgenic plantains expressing a cysteine proteinase inhibitors and/or synthetic peptide showed enhanced resistance to a mixed species population of nematodes in the field. Here, we review the genetic engineering technologies which have potential to improve agriculture and food security in Africa.
Collapse
Affiliation(s)
- Leena Tripathi
- International Institute of Tropical AgricultureNairobiKenya
| | | | | | - Jerome Kubiriba
- National Agricultural Research LaboratoriesPO Box 7084KampalaUganda
| | | |
Collapse
|
26
|
Monteiro KM, Lorenzatto KR, de Lima JC, Dos Santos GB, Förster S, Paludo GP, Carvalho PC, Brehm K, Ferreira HB. Comparative proteomics of hydatid fluids from two Echinococcus multilocularis isolates. J Proteomics 2017; 162:40-51. [PMID: 28442449 DOI: 10.1016/j.jprot.2017.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/21/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
Abstract
The hydatid fluid (HF) that fills Echinococcus multilocularis metacestode vesicles is a complex mixture of proteins from both parasite and host origin. Here, a LC-MS/MS approach was used to compare the HF composition of E. multilocularis H95 and G8065 isolates (EmH95 and EmG8065, respectively), which present differences in terms of growth and fertility. Overall, 446 unique proteins were identified, 392 of which (88%) were from parasite origin and 54 from culture medium. At least 256 of parasite proteins were sample exclusive, and 82 of the 136 shared proteins presented differential abundance between E. multilocularis isolates. The parasite's protein repertoires in EmH95 and EmG8065 HF samples presented qualitative and quantitative differences involving antigens, signaling proteins, proteolytic enzymes, protease inhibitors and chaperones, highlighting intraspecific singularities that could be correlated to biological features of each isolate. The repertoire of medium proteins found in the HF was also differential between isolates, and the relevance of the HF exogenous protein content for the parasite's biology is discussed. The repertoires of identified proteins also provided potential molecular markers for important biological features, such as parasite growth rate and fertility, as well potential protein targets for the development of novel diagnostic and treatment strategies for alveolar echinococcosis. BIOLOGICAL SIGNIFICANCE E. multilocularis metacestode infection of mammal hosts involve complex interactions mediated by excretory/secretory (ES) products. The hydatid fluid (HF) that fills the E. multilocularis metacestode vesicles contains complex repertoires of parasite ES products and host proteins that mediate important molecular interactions determinant for parasite survival and development, and, consequently, to the infection outcome. HF has been also extensively reported as the main source of proteins for the immunodiagnosis of echinococcosis. The performed proteomic analysis provided a comprehensive profiling of the HF protein composition of two E. multilocularis isolates. This allowed us to identify proteins of both parasite and exogenous (medium) origin, many of which present significant differential abundances between parasite isolates and may correlate to their differential biological features, including fertility and growth rate.
Collapse
Affiliation(s)
- Karina M Monteiro
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Biologia Molecular e Celular, Instituto de Biociências, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Karina R Lorenzatto
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Jeferson C de Lima
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Guilherme B Dos Santos
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Sabine Förster
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Gabriela P Paludo
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Paulo C Carvalho
- Laboratório de Proteômica e Engenharia de Proteínas, Instituto Carlos Chagas, FIOCRUZ, Curitiba, PR, Brazil
| | - Klaus Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Henrique B Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Departamento de Biologia Molecular e Celular, Instituto de Biociências, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
27
|
Wang K, Li Y, Huang X, Wang DW, Xu CL, Xie H. The cathepsin S cysteine proteinase of the burrowing nematode Radopholus similis is essential for the reproduction and invasion. Cell Biosci 2016; 6:39. [PMID: 27293544 PMCID: PMC4901441 DOI: 10.1186/s13578-016-0107-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nematode Radopholus similis is an important migratory endoparasite of plants. Cysteine proteinases such as cathepsin S (CPS) play key roles during embryonic development, invasion, and pathogenesis in nematodes and many other animal parasites. This study was designed to investigate the molecular characterization and functions of a cathepsin S protease in R. similis and to find new targets for its control. RESULTS Rs-CPS of R. similis, Hg-CPS of Heterodera glycines and Ha-CPS of H. avenae are closely genetically related and share the same branch of the phylogenetic tree. Rs-cps is a multi-copy gene that is expressed in the esophageal glands, ovaries, testes, vas deferens, and eggs of R. similis. Rs-cps mRNA transcripts are expressed at varying levels during all developmental stages of R. similis. Rs-cps expression was highest in females. The neurostimulant octopamine did not significantly enhance the ingestion of the dsRNA soaking solution by R. similis but instead had a detrimental effect on nematode activity. The dsRNA soaking solution diffused into the body of R. similis not only through the esophageal lumen but also through the amphids, excretory duct, vagina, anus and cloacal orifice. We confirmed that RNAi significantly suppressed the expression level of Rs-cps and reproductive capability and pathogenicity of R. similis. CONCLUSIONS Our results demonstrate that Rs-cps plays important roles in the reproduction, parasitism and pathogenesis of R. similis and could be used as a new potential target for controlling plant parasitic nematodes.
Collapse
Affiliation(s)
- Ke Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Yu Li
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China.,Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002 China
| | - Xin Huang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Dong-Wei Wang
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Chun-Ling Xu
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Hui Xie
- Laboratory of Plant Nematology and Research Center of Nematodes of Plant Quarantine, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|