1
|
Gupta A, Madhyastha H, Kumar A, Singh S. Osteo-modulatory potential of biologically synthesized cis-resveratrol passivated gold nanoparticles. Int J Pharm 2024; 664:124637. [PMID: 39182744 DOI: 10.1016/j.ijpharm.2024.124637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Resveratrol, a stilbene, particularly trans-isomer, shows significant osteogenic potential but experiences high instability and poor bioavailability. However, cis-isomer (cRes) is not explored yet due to its instability. Our study investigates the osteoinductive potential of cRes for the first time by stabilizing it onto the surface of gold nanoparticles. cRes capped GNPs (cRGNPs) presented no toxic effects on the MC3T3-E1 cells with increased levels of alkaline phosphatase and calcium deposition. The nanoparticles presented a 2.6-fold increase in cell number compared to the control. The pro-migratory effect of the cRGNPs was also significantly higher (97.21 ± 0.99 % migration) in 4 days. The osteoinductivity was further confirmed by enhanced expression of osteoblastic genes like RUNX2, OPN, OCN, BMP, OPG, and Col1A. The stability provided to cRes upon conjugating to GNPs allowed exploration of its potential in aiding proliferation, migration, and differentiation of the pre-osteoblasts, which will be beneficial in repairing bone defects.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Ashok Kumar
- Department of Biological Science and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India; Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India; Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
2
|
Fu Y, Zhou J, Schroyen M, Zhang H, Wu S, Qi G, Wang J. Decreased eggshell strength caused by impairment of uterine calcium transport coincide with higher bone minerals and quality in aged laying hens. J Anim Sci Biotechnol 2024; 15:37. [PMID: 38439110 PMCID: PMC10910863 DOI: 10.1186/s40104-023-00986-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/28/2023] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Deteriorations in eggshell and bone quality are major challenges in aged laying hens. This study compared the differences of eggshell quality, bone parameters and their correlations as well as uterine physiological characteristics and the bone remodeling processes of hens laying eggs of different eggshell breaking strength to explore the mechanism of eggshell and bone quality reduction and their interaction. A total of 240 74-week-old Hy-line Brown laying hens were selected and allocated to a high (HBS, 44.83 ± 1.31 N) or low (LBS, 24.43 ± 0.57 N) eggshell breaking strength group. RESULTS A decreased thickness, weight and weight ratio of eggshells were observed in the LBS, accompanied with ultrastructural deterioration and total Ca reduction. Bone quality was negatively correlated with eggshell quality, marked with enhanced structures and increased components in the LBS. In the LBS, the mammillary knobs and effective layer grew slowly. At the initiation stage of eggshell calcification, a total of 130 differentially expressed genes (DEGs, 122 upregulated and 8 downregulated) were identified in the uterus of hens in the LBS relative to those in the HBS. These DEGs were relevant to apoptosis due to the cellular Ca overload. Higher values of p62 protein level, caspase-8 activity, Bax protein expression and lower values of Bcl protein expression and Bcl/Bax ratio were seen in the LBS. TUNEL assay and hematoxylin-eosin staining showed a significant increase in TUNEL-positive cells and tissue damages in the uterus of the LBS. Although few DEGs were identified at the growth stage, similar uterine tissue damages were also observed in the LBS. The expressions of runt-related transcription factor 2 and osteocalcin were upregulated in humeri of the LBS. Enlarged diameter and more structural damages of endocortical bones and decreased ash were observed in femurs of the HBS. CONCLUSION The lower eggshell breaking strength may be attributed to a declined Ca transport due to uterine tissue damages, which could affect eggshell calcification and lead to a weak ultrastructure. Impaired uterine Ca transport may result in reduced femoral bone resorption and increased humeral bone formation to maintain a higher mineral and bone quality in the LBS.
Collapse
Affiliation(s)
- Yu Fu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Precision Livestock and Nutrition Laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, B-5030, Belgium
| | - Jianmin Zhou
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, B-5030, Belgium
| | - Haijun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shugeng Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanghai Qi
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Gupta A, Kumar Mehta S, Qayoom I, Gupta S, Singh S, Kumar A. Biofunctionalization with Cissus quadrangularis Phytobioactives Accentuates Nano-Hydroxyapatite Based Ceramic Nano-Cement for Neo-Bone Formation in Critical Sized Bone Defect. Int J Pharm 2023:123110. [PMID: 37302672 DOI: 10.1016/j.ijpharm.2023.123110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Developing biofunctionalized ceramic bone substitutes with phytobioactives for their sustained delivery is highly desired to enhance the osteo-active potential of ceramic bone substitutes, reduce the systemic toxicity of synthetic drugs, and increase the bioavailability of phytobioactives. The present work highlights the local delivery of phytobioactives of Cissus quadrangularis (CQ) through nano-hydroxyapatite (nHAP) based ceramic nano-cement. The phytoconstituent profiling represented the optimized CQ fraction to be rich in osteogenic polyphenols and flavonoids like quercetin, resveratrol, and their glucosides. Further, CQ phytobioactives-based formulation was biocompatible, increased bone formation, calcium deposition, proliferation, and migration of cells with simultaneous alleviation of cellular oxidative stress. In the in vivo critical-sized bone defect model, enhanced formation of highly mineralized tissue (BV mm3) in CQ phytobioactives functionalized nano-cement (10.5 ± 2 mm3) were observed compared to the control group (6.5 ± 1.2 mm3). Moreover, the addition of CQ phytobioactives to the bone nano-cement increased the fractional bone volume (BV/TV%) to 21 ± 4.2% compared to 13.1 ± 2.5% in non-functionalized nano-cement. The results demonstrated nHAP-based nano-cement as a carrier for phytobioactives which could be a promising approach for neo-bone formation in different bone defect conditions.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India
| | - Sanjay Kumar Mehta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India
| | - Irfan Qayoom
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur- 208016, Uttar Pradesh, India
| | - Sneha Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur- 208016, Uttar Pradesh, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India.
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur- 208016, Uttar Pradesh, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur- 208016, Uttar Pradesh, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur- 208016, Uttar Pradesh, India; Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur- 208016, Uttar Pradesh, India.
| |
Collapse
|
4
|
Shi W, Wang Z, Bian L, Wu Y, HuiYa M, Zhou Y, Zhang Z, Wang Q, Zhao P, Lu X. Periodic Heat Stress Licenses EMSC Differentiation into Osteoblasts via YAP Signaling Pathway Activation. Stem Cells Int 2022; 2022:3715471. [PMID: 35355590 PMCID: PMC8960005 DOI: 10.1155/2022/3715471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/16/2021] [Accepted: 01/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background The repair and regeneration of large bone defects represent highly challenging tasks in bone tissue engineering. Although recent studies have shown that osteogenesis is stimulated by periodic heat stress, the thermal regulation of osteogenic differentiation in ectomesenchymal stem cells (EMSCs) is not well studied. Methods and Results In this study, the direct effects of periodic heat stress on the differentiation of EMSCs into osteoblasts were investigated. EMSCs derived from rat nasal respiratory mucosa were seeded onto culture plates, followed by 1 h of heat stress at 41°C every 7 days during osteogenic differentiation. Based on the results of the present study, periodic heating increases alkaline phosphatase (ALP) activity, upregulates osteogenic-related proteins, and promotes EMSC mineralization. In particular, increased YAP nuclear translocation and YAP knockdown inhibited osteogenic differentiation induced by heat stress. Furthermore, the expression and activity of transglutaminase 2 (TG2) were significantly increased after YAP nuclear translocation. Conclusion Together, these results indicate that YAP plays a key role in regulating cellular proteostasis under stressful cellular conditions by modulating the TG2 response.
Collapse
Affiliation(s)
- Wentao Shi
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, China
| | - Zhe Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212001, China
| | - Lu Bian
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, China
| | - Yiqing Wu
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, China
| | - Mei HuiYa
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, China
| | - Yanjun Zhou
- School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Zhijian Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212001, China
| | - Qing Wang
- Affiliated Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu Province 214122, China
| | - Peng Zhao
- School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Xiaojie Lu
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, China
- School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| |
Collapse
|
5
|
Nikhil A, Kumar A. Evaluating potential of tissue-engineered cryogels and chondrocyte derived exosomes in articular cartilage repair. Biotechnol Bioeng 2021; 119:605-625. [PMID: 34723385 DOI: 10.1002/bit.27982] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/18/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Treatment of articular cartilage injuries especially osteochondral tissue requires intervention of bioengineered scaffold. In this study, we investigated the potential of the tissue-engineered cryogel scaffold fabricated using cryogelation technology. Two types of cryogels viz. chitosan-gelatin-chondroitin sulfate (CGC) for articular cartilage and nano-hydroxyapatite-gelatin (HG) for subchondral bone were fabricated. Further, novel bilayer cryogel designed using single process fabrication of two layers (CGC as top layer and HG as the lower layer) was designed to mimic osteochondral unit. CGC cryogel was tested for their biocompatibility using the enzymatically isolated chondrcoytes from goat articular cartilage while HG cryogel was tested using pre-osteoblast cell line. Extracellular vesicles, specifically exosomes were isolated from the spent media of chondrocytes to validate their effect over cell proliferation and migration which are required for defect healing and infiltration respectively. These isolated exosomes were characterized and analyzed for confirming their size distribution profile and visualized morphologically using advanced microscopy techniques. For cartilage part, CGC cryogels were examined as delivery system for delivering exosomes at defect site, where 80% of release was observed in 72 h. Release of 18.7 µg chondroitin sulfate/mg cryogel was obtained in a period of one week from CGC cryogel (termed cryogel extract) which has chondroprotective effect. Further, effect of exosome concentration (10 and 20 µg/ml), CGC extract and combination of exosome and CGC extract (Exo-Ex) were assessed over the chondrocytes. In addition, in vitro scratch wound assay was performed to analyse the migration capacity over the micro-injury when treated with exosomes, cryogel extract and Exo-Ex. The overall results thus answer key questions of therapeutic potential of chondrocyte exosomes, cryogel extract in addition to potential of CGC and HG cryogel for osteochondral repair.
Collapse
Affiliation(s)
- Aman Nikhil
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
6
|
Zhu B, Li Y, Huang F, Chen Z, Xie J, Ding C, Li J. Promotion of the osteogenic activity of an antibacterial polyaniline coating by electrical stimulation. Biomater Sci 2019; 7:4730-4737. [PMID: 31497814 DOI: 10.1039/c9bm01203f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrical stimulation (ES) exhibits a positive role in promoting the cell activity of osteoblasts. Conducting polymers have the advantages of biocompatibility, good environmental stability and easy synthesis, which have been widely used as charge carriers for electrical stimulation; moreover, considering clinical applications, biomaterial-related infection is an important issue that needs to be solved. Thus, conducting polymers with both antibacterial and osteogenic properties are highly demanded for effect repair. However, it remains a challenge to combine these two characteristics efficiently in a simple way. Herein, an Ag-loaded poly(amide-amine) dendrimer was prepared by a simple chemical reduction procedure, which acted as a dopant for the polymerization of polyaniline (PANI) on biomedical titanium (Ti) sheets. The obtained PANI coating showed outstanding antibacterial properties against Gram-negative (E. coli) and Gram-positive (S. aureus) microbes with a 1000-fold increase when compared with that of pure Ti. In addition, note that the polymer coating together with ES facilitated the proliferation and differentiation of MC3T3. The alkaline phosphatase (ALP) activity and intracellular calcium content of the cells showed a 19.09% and 24.02% increase, respectively, when compared with the case of electrically stimulated Ti after 12 days. Moreover, the existence of PAMAM facilitated mineralization. The strategy developed herein is simple and can be easily manipulated, which shows potential applications in the coating of implants for hard tissue repair.
Collapse
Affiliation(s)
- Bengao Zhu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuhan Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Fuhui Huang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhuoxin Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jing Xie
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Chunmei Ding
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
7
|
Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109855. [PMID: 31500067 DOI: 10.1016/j.msec.2019.109855] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/20/2019] [Accepted: 06/01/2019] [Indexed: 02/04/2023]
Abstract
Identification of key components in the chemical and physical milieu for directing osteogenesis is a requirement in the investigation of tissue engineering scaffolds for advancement of bone regeneration. In this study, we engineered different gelatin-based cryogels and studied the effect of nanohydroxyapatite (nHAP) and crosslinking agents on scaffold properties and its osteogenic response towards bone marrow stem cells (BMSCs). The cryogels examined are 5% gelatin and 5% gelatin/2.5% nHAP, crosslinked either with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) or glutaraldehyde (GA). We confirmed that nHAP or the crosslinking agent has no effects on scaffold pore size and porosity. Nonetheless, incorporation of nHAP increased mechanical strength, swelling ratio and degree of crosslinking, but decreased degradation rate. Cryogels crosslinked with EDC showed faster degradation and promoted osteogenic differentiation of BMSCs while those prepared from GA crosslinking promoted proliferation of BMSCs. Furthermore, osteogenic differentiation was always enhanced in the presence of nHAP irrespective of the culture medium (normal or osteogenic) used but osteogenic medium always provide a higher extent of osteogenic differentiation. Employing gelatin/nHAP cryogel crosslinked by EDC in a bioreactor for dynamic culture of BMSCs, cyclic compressive mechanical simulation was found to be beneficial for both cell proliferation and osteogenic differentiation. However, the optimum conditions for osteogenic differentiation and cell proliferation were found at 30% and 60% strain, respectively. We thus demonstrated that osteogenic differentiation of BMSCs could be tuned by taking advantages of chemical cues generated from scaffold chemistry or physical cues generated from dynamic cell culture in vitro. Furthermore, by combining the best cryogel preparation and in vitro cell culture condition for osteogenesis, we successfully employed in vitro cultured cryogel/BMSCs constructs for repair of rabbit critical-sized cranial bone defects.
Collapse
|
8
|
Aryal YP, Neupane S, Adhikari N, An C, Ha J, Kwon T, Yamamoto H, Jung J, Park E, Kim J, Cho S, Sohn W, Lee Y, Chae H, Kim H, Kim J. An endoplasmic reticulum stress regulator,
Tmbim6
, modulates secretory stage of mice molar. J Cell Physiol 2019; 234:20354-20365. [DOI: 10.1002/jcp.28635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR Kyungpook National University Daegu Korea
| | - Sanjiv Neupane
- Department of Biochemistry, School of Dentistry, IHBR Kyungpook National University Daegu Korea
| | - Nirpesh Adhikari
- Department of Biochemistry, School of Dentistry, IHBR Kyungpook National University Daegu Korea
| | - Chang‐Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR Kyungpook National University Daegu Korea
| | - Jung‐Hong Ha
- Department of Conservative Dentistry, School of Dentistry, IHBR Kyungpook National University Daegu Korea
| | - Tae‐Yub Kwon
- Department of Dental Biomaterials, School of Dentistry, IHBR Kyungpook National University Daegu Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology Tokyo Dental College Tokyo Japan
| | - Jae‐Kwang Jung
- Department of Oral Medicine, School of Dentistry, IHBR Kyungpook National University Daegu Korea
| | - Eui‐Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, IHBR Kyungpook National University Daegu Korea
| | - Ji‐Youn Kim
- Department of Dental Hygiene Gachon University Incheon Korea
| | - Sung‐Won Cho
- Division in Anatomy and Developmental Biology, Department of Oral Biology Yonsei University College of Dentistry Seoul Korea
| | - Wern‐Joo Sohn
- Pre‐Major of Cosmetics and Pharmaceutics Daegu Haany University Gyeongsan Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR Kyungpook National University Daegu Korea
| | - Han‐Jung Chae
- Department of Pharmacology and New Drug Development Institute Chonbuk National University Jeonju Korea
| | - Hyung‐Ryong Kim
- Institute of Tissue Regeneration Engineering (ITREN) Dankook University Cheonan Korea
| | - Jae‐Young Kim
- Department of Biochemistry, School of Dentistry, IHBR Kyungpook National University Daegu Korea
| |
Collapse
|
9
|
Memic A, Colombani T, Eggermont LJ, Rezaeeyazdi M, Steingold J, Rogers ZJ, Navare KJ, Mohammed HS, Bencherif SA. Latest Advances in Cryogel Technology for Biomedical Applications. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800114] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adnan Memic
- Center of NanotechnologyKing Abdulaziz University Jeddah 21589 Saudi Arabia
- Center for Biomedical EngineeringDepartment of MedicineBrigham and Women's HospitalHarvard Medical School Cambridge MA 02139 USA
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | - Thibault Colombani
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | - Loek J. Eggermont
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
- Department of Tumor ImmunologyOncode Institute, Radboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen 6500 The Netherlands
| | | | - Joseph Steingold
- Department of Pharmaceutical SciencesNortheastern University Boston MA 02115 USA
| | - Zach J. Rogers
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | | | | | - Sidi A. Bencherif
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
- Department of BioengineeringNortheastern University Boston MA 02115 USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard University Cambridge MA 02138 USA
- Sorbonne UniversityUTC CNRS UMR 7338Biomechanics and Bioengineering (BMBI)University of Technology of Compiègne Compiègne 60159 France
| |
Collapse
|
10
|
Abstract
The application of interconnected supermacroporous cryogels as support matrices for the purification, separation and immobilization of whole cells and different biological macromolecules has been well reported in literature. Cryogels have advantages over traditional gel carriers in the field of biochromatography and related biomedical applications. These matrices nearly mimic the three-dimensional structure of native tissue extracellular matrix. In addition, mechanical, osmotic and chemical stability of cryogels make them attractive polymeric materials for the construction of scaffolds in tissue engineering applications and in vitro cell culture, separation materials for many different processes such as immobilization of biomolecules, capturing of target molecules, and controlled drug delivery. The low mass transfer resistance of cryogel matrices makes them useful in chromatographic applications with the immobilization of different affinity ligands to these materials. Cryogels have been introduced as gel matrices prepared using partially frozen monomer or polymer solutions at temperature below zero. These materials can be produced with different shapes and are of interest in the therapeutic area. This review highlights the recent advances in cryogelation technologies by emphasizing their biomedical applications to supply an overview of their rising stars day to day.
Collapse
|
11
|
Wubneh A, Tsekoura EK, Ayranci C, Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater 2018; 80:1-30. [PMID: 30248515 DOI: 10.1016/j.actbio.2018.09.031] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair has been on the rise. This quest, accompanied by the advent of functionally tailored, biocompatible, and biodegradable materials, has garnered an enormous research interest in bone TE. As a result, different materials and fabrication methods have been investigated towards this end, leading to a deeper understanding of the geometrical, mechanical and biological requirements associated with bone scaffolds. As our understanding of the scaffold requirements expands, so do the capability requirements of the fabrication processes. The goal of this review is to provide a broad examination of existing scaffold fabrication processes and highlight future trends in their development. To appreciate the clinical requirements of bone scaffolds, a brief review of the biological process by which bone regenerates itself is presented first. This is followed by a summary and comparisons of commonly used implant techniques to highlight the advantages of TE-based approaches over traditional grafting methods. A detailed discussion on the clinical and mechanical requirements of bone scaffolds then follows. The remainder of the manuscript is dedicated to current scaffold fabrication methods, their unique capabilities and perceived shortcomings. The range of biomaterials employed in each fabrication method is summarized. Selected traditional and non-traditional fabrication methods are discussed with a highlight on their future potential from the authors' perspective. This study is motivated by the rapidly growing demand for effective scaffold fabrication processes capable of economically producing constructs with intricate and precisely controlled internal and external architectures. STATEMENT OF SIGNIFICANCE: The manuscript summarizes the current state of fabrication technologies and materials used for creating scaffolds in bone tissue engineering applications. A comprehensive analysis of different fabrication methods (traditional and free-form) were summarized in this review paper, with emphasis on recent developments in the field. The fabrication techniques suitable for creating scaffolds for tissue engineering was particularly targeted and their use in bone tissue engineering were articulated. Along with the fabrication techniques, we emphasized the choice of materials in these processes. Considering the limitations of each process, we highlighted the materials and the material properties critical in that particular process and provided a brief rational for the choice of the materials. The functional performance for bone tissue engineering are summarized for different fabrication processes and the choice of biomaterials. Finally, we provide a perspective on the future of the field, highlighting the knowledge gaps and promising avenues in pursuit of effective scaffolds for bone tissue engineering. This extensive review of the field will provide research community with a reference source for current approaches to scaffold preparation. We hope to encourage the researchers to generate next generation biomaterials to be used in these fabrication processes. By providing both advantages and disadvantage of each fabrication method in detail, new fabrication techniques might be devised that will overcome the limitations of the current approaches. These studies should facilitate the efforts of researchers interested in generating ideal scaffolds, and should have applications beyond the repair of bone tissue.
Collapse
|
12
|
Biocompatibility Assessment of Conducting PANI/Chitosan Nanofibers for Wound Healing Applications. Polymers (Basel) 2017; 9:polym9120687. [PMID: 30965990 PMCID: PMC6418902 DOI: 10.3390/polym9120687] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 12/22/2022] Open
Abstract
As electroactive polymers have recently presented potential in applications in the tissue engineering and biomedical field, this study is aiming at the fabrication of composite nanofibrous membranes containing conducting polyaniline and at the evaluation of their biocompatibility. For that purpose, conducting polyaniline–chitosan (PANI/CS) defect free nanofibres of different ratios (1:3; 3:5 and 1:1) were produced with the electrospinning method. They were characterized as for their morphology, hydrophilicity and electrical conductivity. The membranes were then evaluated for their cellular biocompatibility in terms of cell attachment, morphology and cell proliferation. The effect of the PANI content on the membrane properties is discussed. Increase in PANI content resulted in membranes with higher hydrophobicity and higher electrical conductivity. It was found that none of the membranes showed any toxic effects on osteoblasts and fibroblasts, and that they all supported cell attachment and growth, even to a greater extent than tissue culture plastic. The membrane with the PANI/CS ratio 1:3 supports better cell attachment and proliferation for both cell lines due to a synergistic effect of hydrophilicity retention due to the high chitosan content and the conductivity that PANI introduced to the membrane.
Collapse
|
13
|
Hixon KR, Lu T, Sell SA. A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater 2017; 62:29-41. [PMID: 28851666 DOI: 10.1016/j.actbio.2017.08.033] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/01/2017] [Accepted: 08/25/2017] [Indexed: 02/08/2023]
Abstract
The extracellular matrix is fundamental in providing an appropriate environment for cell interaction and signaling to occur. Replicating such a matrix is advantageous in the support of tissue ingrowth and regeneration through the field of tissue engineering. While scaffolds can be fabricated in many ways, cryogels have recently become a popular approach due to their macroporous structure and durability. Produced through the crosslinking of gel precursors followed by a subsequent controlled freeze/thaw cycle, the resulting cryogel provides a unique, sponge-like structure. Therefore, cryogels have proven advantageous for many tissue engineering applications including roles in bioreactor systems, cell separation, and scaffolding. Specifically, the matrix has been demonstrated to encourage the production of various molecules, such as antibodies, and has also been used for cryopreservation. Cryogels can pose as a bioreactor for the expansion of cell lines, as well as a vehicle for cell separation. Lastly, this matrix has shown excellent potential as a tissue engineered scaffold, encouraging regrowth at numerous damaged tissue sites in vivo. This review will briefly discuss the fabrication of cryogels, with an emphasis placed on their application in various facets of tissue engineering to provide an overview of this unique scaffold's past and future roles. STATEMENT OF SIGNIFICANCE Cryogels are unique scaffolds produced through the controlled freezing and thawing of a polymer solution. There is an ever-growing body of literature that demonstrates their applicability in the realm of tissue engineering as extracellular matrix analogue scaffolds; with extensive information having been provided regarding the fabrication, porosity, and mechanical integrity of the scaffolds. Additionally, cryogels have been reviewed with respect to their role in bioseparation and as cellular incubators. This all-inclusive view of the roles that cryogels can play is critical to advancing the technology and expanding its niche within biomaterials and tissue engineering research. To the best of the authors' knowledge, this is the first comprehensive review of cryogel applications in tissue engineering that includes specific looks at their growing roles as extracellular matrix analogues, incubators, and in bioseparation processes.
Collapse
|
14
|
Hixon KR, Melvin AM, Lin AY, Hall AF, Sell SA. Cryogel scaffolds from patient-specific 3D-printed molds for personalized tissue-engineered bone regeneration in pediatric cleft-craniofacial defects. J Biomater Appl 2017; 32:598-611. [DOI: 10.1177/0885328217734824] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bone defects are extremely common in children with cleft-craniofacial conditions, especially those with alveolar cleft defects and cranial defects. This study used patient-specific 3D-printed molds derived from computed tomography and cryogel scaffold fabrication as a proof of concept for the creation of site-specific implants for bone reconstruction. Cryogel scaffolds are unique tissue-engineered constructs formed at sub-zero temperatures. When thawed, the resulting structure is macroporous, sponge-like, and mechanically durable. Due to these unique properties, cryogels have excellent potential for the treatment of patient-specific bone defects; however, there is little literature on their use in cleft-craniofacial defects. While 3D-printing technology currently lacks the spatial resolution to print the microstructure necessary for bone regeneration, it can be used to create site-specific molds. Thus, it is ideal to integrate these techniques for the fabrication of scaffolds with patient-specific geometry. Overall, all cryogels possessed appropriate geometry to allow for cell infiltration after 28 days. Additionally, suitable mechanical durability was demonstrated where, despite mold geometry, all cryogels could be compressed without exhibiting crack propagation. Such a patient-specific scaffold would be ideal in pediatric cleft-craniofacial defects, as these are complex 3D defects and children have less donor bone availability.
Collapse
Affiliation(s)
- Katherine R Hixon
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA
| | - Alexa M Melvin
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA
| | - Alexander Y Lin
- Department of Surgery, Saint Louis University, St. Louis, MO, USA
| | - Andrew F Hall
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA
| | - Scott A Sell
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
15
|
Silicone Substrate with Collagen and Carbon Nanotubes Exposed to Pulsed Current for MSC Osteodifferentiation. Int J Biomater 2017; 2017:3684812. [PMID: 28912813 PMCID: PMC5587965 DOI: 10.1155/2017/3684812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/16/2017] [Accepted: 07/24/2017] [Indexed: 01/05/2023] Open
Abstract
Autologous human adipose tissue-derived mesenchymal stem cells (MSCs) have the potential for clinical translation through their induction into osteoblasts for regeneration. Bone healing can be driven by biophysical stimulation using electricity for activating quiescent adult stem cells. It is hypothesized that application of electric current will enhance their osteogenic differentiation, and addition of conductive carbon nanotubes (CNTs) to the cell substrate will provide increased efficiency in current transmission. Cultured MSCs were seeded and grown onto fabricated silicone-based composites containing collagen and CNT fibers. Chemical inducers, namely, glycerol phosphate, dexamethasone, and vitamin C, were then added to the medium, and pulsatile submilliampere electrical currents (about half mA for 5 cycles at 4 mHz, twice a week) were applied for two weeks. Calcium deposition indicative of MSC differentiation and osteoblastic activity was quantified through Alizarin Red S and spectroscopy. It was found that pulsed current significantly increased osteodifferentiation on silicone-collagen films without CNTs. Under no external current, the presence of 10% (m/m) CNTs led to a significant and almost triple upregulation of calcium deposition. Both CNTs and current parameters did not appear to be synergistic. These conditions of enhanced osteoblastic activities may further be explored ultimately towards future therapeutic use of MSCs.
Collapse
|
16
|
Kumari J, Kumar A. Development of polymer based cryogel matrix for transportation and storage of mammalian cells. Sci Rep 2017; 7:41551. [PMID: 28139669 PMCID: PMC5282502 DOI: 10.1038/srep41551] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/15/2016] [Indexed: 11/09/2022] Open
Abstract
We studied the potential of polymeric cryogel matrices such as 2-hydroxyethyl methacrylate (HEMA)-agarose (HA) and gelatin matrix as a transporting and storage material for mammalian cells. Both the HA and gelatin matrices were found to possess a homogenous distribution of pores as shown by scanning electron microscopic (SEM) images and flow rate of 8 and 5 mL/min, respectively. In the case of HA cryogel, after 5 days of simulated transportation, C2C12 cells kept in cryogel matrix showed higher percentage viability (89%) as compared to 64.5% viability of cells kept in suspension culture. The cells recovered from the HA cryogel were able to proliferate as revealed by the microscopic analysis. In the case of gelatin cryogel, it was shown that C2C12 cells seeded on the cryogel under simulated transportation condition were found to proliferate over the period of 5 days. It was also observed that the cells after simulation can be cryopreserved and the duration of cryopreservation does not affect their viability. Furthermore, gelatin cryogel was used for cryopreservation of HepG2 and HUVEC cells to extend the system for other cell types. These results show the potential of cryogels as efficient, low-cost transporting matrix at room temperature and in cryo-conditions.
Collapse
Affiliation(s)
- Jyoti Kumari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur- 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur- 208016, UP, India
| |
Collapse
|
17
|
Raina DB, Isaksson H, Teotia AK, Lidgren L, Tägil M, Kumar A. Biocomposite macroporous cryogels as potential carrier scaffolds for bone active agents augmenting bone regeneration. J Control Release 2016; 235:365-378. [DOI: 10.1016/j.jconrel.2016.05.061] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 05/26/2016] [Accepted: 05/28/2016] [Indexed: 01/01/2023]
|
18
|
Teotia AK, Gupta A, Raina DB, Lidgren L, Kumar A. Gelatin-Modified Bone Substitute with Bioactive Molecules Enhance Cellular Interactions and Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10775-10787. [PMID: 27077816 DOI: 10.1021/acsami.6b02145] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this work, we have synthesized injectable bone cement incorporated with gelatin to enhance cellular interaction. Human osteosarcoma Saos-2 cells derived bone morphogenetic proteins (BMP's) and a bisphosphonate (zoledronic acid (0.2 mM)) were also incorporated to cement. In vitro studies conducted using Saos-2 demonstrated enhanced cell proliferation on gelatin (0.2%w/v) cement. The differentiation of C2C12 mouse myoblast cells into bone forming cells showed 6-fold increase in ALP levels on gelatin cement. Polymerase chain reaction (PCR) for bone biomarkers showed osteoinductive potential of gelatin cement. We investigated efficacy for local delivery of these bioactive molecules in enhancing bone substitution qualities of bone cements by implanting in 3.5 mm critical size defect in tibial metaphysis of wistar rats. The rats were sacrificed after 12 weeks and 16 weeks post implantation. X-ray, micro-CT, histology, and histomorphometry analysis were performed to check bone healing. The cement materials slowly resorbed from the defect site leaving HAP creating porous matrix providing surface for bone formation. The materials showed high biocompatibility and initial bridging was observed in all the animals but maximum bone formation was observed in animals implanted with cement incorporated with zoledronic acid followed by cement with BMP's compared to other groups.
Collapse
Affiliation(s)
- Arun Kumar Teotia
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Ankur Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
| | - Deepak Bushan Raina
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
- Department of Orthopedics, Clinical Sciences, Lund, Lund University , Lund 221 85, Sweden
| | - Lars Lidgren
- Department of Orthopedics, Clinical Sciences, Lund, Lund University , Lund 221 85, Sweden
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur 208016, India
| |
Collapse
|
19
|
Allahyari Z, Haghighipour N, Moztarzadeh F, Ghazizadeh L, Hamrang M, Shokrgozar MA, Gholizadeh S. Optimization of electrical stimulation parameters for MG-63 cell proliferation on chitosan/functionalized multiwalled carbon nanotube films. RSC Adv 2016; 6:109902-109915. [DOI: 10.1039/c6ra24407f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Abstract
Combination of electrical stimulation with CNT-based conductive films and obtaining optimum signal parameters for MG-63 cells.
Collapse
Affiliation(s)
- Zahra Allahyari
- Bioceramics Laboratory
- Faculty of Biomedical Engineering
- Amirkabir University of Technology
- Tehran
- Iran
| | | | - Fathollah Moztarzadeh
- Bioceramics Laboratory
- Faculty of Biomedical Engineering
- Amirkabir University of Technology
- Tehran
- Iran
| | | | | | | | - Shayan Gholizadeh
- Bioceramics Laboratory
- Faculty of Biomedical Engineering
- Amirkabir University of Technology
- Tehran
- Iran
| |
Collapse
|