1
|
Zhang N, Zhou H, Xu Y, Zhang Y, Yu F, Gui L, Zhang Q, Lu Y. Liraglutide promotes UCP1 expression and lipolysis of adipocytes by promoting the secretion of irisin from skeletal muscle cells. Mol Cell Endocrinol 2024; 588:112225. [PMID: 38570133 DOI: 10.1016/j.mce.2024.112225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Although Liraglutide (Lira) increases serum irisin levels in type 2 diabetes mellitus (T2DM), it is unclear whether it induces expression of uncoupling protein 1 (UCP1) of adipocytes via promoting irisin secretion from skeletal muscle. Male T2DM rats were treated with 0.4 mg/kg/d Lira twice a day for 8 weeks, and the protein expression of phosphorylated AMP kinase (p-AMPK), phosphorylated acetyl-CoA carboxylase 1 (p-ACC1) and UCP1 in white adipose tissues were detected. Differentiated C2C12 cells were treated with palmitic acid (PA) and Lira to detect the secretion of irisin. Differentiated 3T3-L1 cells were treated with irisin, supernatant from Lira-treated C2C12 cells, Compound C or siAMPKα1, the triglyceride (TG) content and the related gene expression were measured. The transcriptome in irisin-treated differentiated 3T3-L1 cells was analyzed. Lira elevated serum irisin levels, decreased the adipocyte size and increased the protein expression of UCP1, p-AMPK and p-ACC1 in WAT. Moreover, it promoted the expression of PGC1α and FNDC5, the secretion of irisin in PA-treated differentiated C2C12 cells. The irisin and supernatant decreased TG synthesis and promoted the expression of browning- and lipolysis-related genes in differentiated 3T3-L1 cells. While Compound C and siAMPKα1 blocked AMPK activities and expression, irisin partly reversed the pathway. Finally, the transcriptome analysis indicated that differently expressed genes are mainly involved in browning and lipid metabolism. Overall, our findings showed that Lira modulated muscle-to-adipose signaling pathways in diabetes via irisin-mediated AMPKα/ACC1/UCP1/PPARα pathway. Our results suggest a new mechanism for the treatment of T2DM by Lira.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Heng Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yijing Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yi Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fangmei Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Li Gui
- The Comprehensive Laboratory, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Qiu Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Yunxia Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Anhui Medical University, Hefei, China; The Comprehensive Laboratory, School of Basic Medical Science, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
From cyclins to CDKIs: Cell cycle regulation of skeletal muscle stem cell quiescence and activation. Exp Cell Res 2022; 420:113275. [PMID: 35931143 DOI: 10.1016/j.yexcr.2022.113275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/12/2022] [Accepted: 07/03/2022] [Indexed: 11/22/2022]
Abstract
After extensive proliferation during development, the adult skeletal muscle cells remain outside the cell cycle, either as post-mitotic myofibers or as quiescent muscle stem cells (MuSCs). Despite its terminally differentiated state, adult skeletal muscle has a remarkable regeneration potential, driven by MuSCs. Upon injury, MuSC quiescence is reversed to support tissue growth and repair and it is re-established after the completion of muscle regeneration. The distinct cell cycle states and transitions observed in the different myogenic populations are orchestrated by elements of the cell cycle machinery. This consists of i) complexes of cyclins and Cyclin-Dependent Kinases (CDKs) that ensure cell cycle progression and ii) their negative regulators, the Cyclin-Dependent Kinase Inhibitors (CDKIs). In this review we discuss the roles of these factors in developmental and adult myogenesis, with a focus on CDKIs that have emerging roles in stem cell functions.
Collapse
|
3
|
Yuan S, Zheng S, Zheng K, Gao Y, Chen M, Li Y, Bai X. Sympathetic activity is correlated with satellite cell aging and myogenesis via β2-adrenoceptor. Stem Cell Res Ther 2021; 12:505. [PMID: 34530910 PMCID: PMC8447727 DOI: 10.1186/s13287-021-02571-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/26/2021] [Indexed: 02/09/2023] Open
Abstract
Background and objective Sympathetic activity plays an important role in the proliferation and differentiation of stem cells, and it changes over time, thereby exerting differential effects on various stem cell types. Aging causes sympathetic hyperactivity in aged tissues and blunts sympathetic nerves regulation, and sympathetic abnormalities play a role in aging-related diseases. Currently, the effect of sympathetic activity on skeletal muscle stem cells, namely satellite cells (SCs), is unclear. This study aimed to investigate the effects of skeletal muscle sympathetic activity on SC aging and skeletal muscle repair. Materials and methods To evaluate skeletal muscle and fibrotic areas, numbers of SCs and myonuclei per muscle fiber, β2-adrenoceptor (β2-ADR) expression, muscle repair, and sympathetic innervation in skeletal muscle, aged mice, young mice that underwent chemical sympathectomy (CS) were utilized. Mice with a tibialis anterior muscle injury were treated by barium chloride (BaCl2) and clenbuterol (CLB) in vivo. SCs or C2C12 cells were differentiated into myotubes and treated with or without CLB. Immunofluorescence, western blot, sirius red, and hematoxylin–eosin were used to evaluate SCs, myogenic repair and differentiation. Results The number of SCs, sympathetic activity, and reparability of muscle injury in aged mice were significantly decreased, compared with those in young mice. The above characteristics of young mice that underwent CS were similar to those of aged mice. While CLB promoted the repair of muscle injury in aged and CS mice and ameliorated the reduction in the SC number and sympathetic activity, the effects of CLB on the SCs and sympathetic nerves in young mice were not significant. CLB inhibited the myogenic differentiation of C2C12 cells in vitro. We further found that NF-κB and ERK1/2 signaling pathways were activated during myogenic differentiation, and this process could be inhibited by CLB. Conclusion Normal sympathetic activity promoted the stemness of SCs to thereby maintain a steady state. It also could maintain total and self-renewing number of SCs and maintain a quiescent state, which was correlated with skeletal SCs via β2-ADR. Normal sympathetic activity was also beneficial for the myogenic repair of injured skeletal muscle. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02571-8.
Collapse
Affiliation(s)
- Shiguo Yuan
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Center for Orthopaedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China.,Department of Orthopaedic Surgery, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, 570203, China
| | - Sheng Zheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Kai Zheng
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, 533000, China
| | - Yanping Gao
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Center for Orthopaedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Meixiong Chen
- Department of Orthopaedic Surgery, Hainan Province Hospital of Traditional Chinese Medicine, Haikou, 570203, China
| | - Yikai Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Center for Orthopaedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
4
|
Liu C, Li L, Ge M, Gu L, Zhang K, Su Y, Zhang Y, Liu C, Lan M, Yu Y, Wang T, Zhang B, Zhou G, Meng Q. MiR-29ab1 Cluster Resists Muscle Atrophy Through Inhibiting MuRF1. DNA Cell Biol 2021; 40:1167-1176. [PMID: 34255539 DOI: 10.1089/dna.2021.0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Skeletal muscle has great plasticity. An increase in protein degradation can cause muscle atrophy. Atrogin-1 and muscle ring finger-1 (MuRF1) are dramatically upregulated in various muscle atrophy. Inhibition of Atrogin-1 and MuRF1 protects against muscle atrophy. MiR-29 plays an important regulatory role in skeletal muscle development. However, the function of miR-29 in skeletal muscle protein metabolism is not clear. To investigate the function of miR-29, we generated miR-29 knockout mice and the miR-29ab1 cluster overexpression mice. The disruption of miR-29 led to severe atrophy of skeletal muscle during puberty, and the muscle-specific overexpression of the miR-29ab1 cluster protected against denervation-induced and fasting-induced muscle atrophy. Furthermore, the overexpression of miR-29a, b mimics in myotubes resisted the muscle atrophy. MuRF1 was the direct target gene of miR-29a, b. These results demonstrate that miR-29ab1 cluster plays a critical role in the maintenance of skeletal muscle. MiR-29ab1 cluster is the excellent inhibitor of MuRF1, ultimately indicating that miR-29ab1 cluster is good therapeutic molecule candidate for adulthood.
Collapse
Affiliation(s)
- Chuncheng Liu
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Lei Li
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mengxu Ge
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lijie Gu
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kuo Zhang
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yang Su
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuying Zhang
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chang Liu
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Miaomiao Lan
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingying Yu
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tongtong Wang
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Bing Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Guangbin Zhou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qingyong Meng
- The State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Science, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Flavie Ouali BE, Wang HV. Beta-agonist drugs modulate the proliferation and differentiation of skeletal muscle cells in vitro. Biochem Biophys Rep 2021; 26:101019. [PMID: 34041371 PMCID: PMC8144337 DOI: 10.1016/j.bbrep.2021.101019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 02/04/2023] Open
Abstract
Essentially employed for the treatment of airway obstructions in humans, β-agonists are also known to have an anabolic effect in animals’ skeletal muscle. In vivo and in vitro studies have attested the increase in animal body mass and the hypertrophy of muscle cells following the administration of specific β-agonists. However, the contribution of β-agonists to C2C12 myoblasts growth remains obscure. We therefore aimed to investigate the impact of β1-and β2-agonist drugs on the proliferation and differentiation of skeletal muscle cells. Direct observations and cytotoxicity assay showed that clenbuterol, salbutamol, cimaterol and ractopamine enhanced muscle cell growth and viability during the proliferation stage. Structural examinations coupled to Western blot analysis indicated that salbutamol and cimaterol triggered a decrease in myotube formation. A better comprehension of the effect of β-agonists on myogenic regulatory genes in the muscle cells is crucial to establish a specific role of β-agonists in muscle development, growth, and regeneration. Clenbuterol, salbutamol, cimaterol, and ractopamine induce molecular responses in C2C12. Beta-agonists promote cell's attachment, viability, and proliferation during muscle cell proliferation stage. Salbutamol and cimaterol inhibit the formation of myotubes during differentiation stage.
Collapse
Affiliation(s)
- Boimpoundi Eunice Flavie Ouali
- Department of Life Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan City, 701, Taiwan, ROC
| | - Hao-Ven Wang
- Department of Life Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan City, 701, Taiwan, ROC.,Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan City, 701, Taiwan, ROC.,Marine Biology and Cetacean Research Center, National Cheng Kung University, Tainan City, 701, Taiwan, ROC
| |
Collapse
|