1
|
Feng D, Gao J, Liu R, Liu W, Gao T, Yang Y, Zhang D, Yang T, Yin X, Yu H, Huang W, Wang Y. CARM1 drives triple-negative breast cancer progression by coordinating with HIF1A. Protein Cell 2024; 15:744-765. [PMID: 38476024 PMCID: PMC11443453 DOI: 10.1093/procel/pwae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 03/14/2024] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) promotes the development and metastasis of estrogen receptor alpha (ERα)-positive breast cancer. The function of CARM1 in triple-negative breast cancer (TNBC) is still unclear and requires further exploration. Here, we report that CARM1 promotes proliferation, epithelial-mesenchymal transition, and stemness in TNBC. CARM1 is upregulated in multiple cancers and its expression correlates with breast cancer progression. Genome-wide analysis of CARM1 showed that CARM1 is recruited by hypoxia-inducible factor-1 subunit alpha (HIF1A) and occupy the promoters of CDK4, Cyclin D1, β-Catenin, HIF1A, MALAT1, and SIX1 critically involved in cell cycle, HIF-1 signaling pathway, Wnt signaling pathway, VEGF signaling pathway, thereby modulating the proliferation and invasion of TNBC cells. We demonstrated that CARM1 is physically associated with and directly interacts with HIF1A. Moreover, we found that ellagic acid, an inhibitor of CARM1, can suppress the proliferation and invasion of TNBC by directly inhibiting CDK4 expression. Our research has determined the molecular basis of CARM1 carcinogenesis in TNBC and its effective natural inhibitor, which may provide new ideas and drugs for cancer therapy.
Collapse
Affiliation(s)
- Dandan Feng
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, China
| | - Ruiqiong Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, China
- Department of Cancer Center, The Second Hospital of Shandong University, Jinan 250033, China
| | - Wei Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Tianyang Gao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yunkai Yang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Die Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianshu Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xin Yin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
2
|
Xie Z, Tian Y, Guo X, Xie N. The emerging role of CARM1 in cancer. Cell Oncol (Dordr) 2024; 47:1503-1522. [PMID: 38619752 PMCID: PMC11466993 DOI: 10.1007/s13402-024-00943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/16/2024] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), pivotal for catalyzing arginine methylation of histone and non-histone proteins, plays a crucial role in developing various cancers. CARM1 was initially recognized as a transcriptional coregulator by orchestrating chromatin remodeling, transcription regulation, mRNA splicing and stability. This diverse functionality contributes to the recruitment of transcription factors that foster malignancies. Going beyond its established involvement in transcriptional control, CARM1-mediated methylation influences a spectrum of biological processes, including the cell cycle, metabolism, autophagy, redox homeostasis, and inflammation. By manipulating these physiological functions, CARM1 becomes essential in critical processes such as tumorigenesis, metastasis, and therapeutic resistance. Consequently, it emerges as a viable target for therapeutic intervention and a possible biomarker for medication response in specific cancer types. This review provides a comprehensive exploration of the various physiological functions of CARM1 in the context of cancer. Furthermore, we discuss potential CARM1-targeting pharmaceutical interventions for cancer therapy.
Collapse
Affiliation(s)
- Zizhuo Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yuan Tian
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
3
|
Wu Y, Shen Y. Research Progress on CARM1 and its Relationship with Colorectal Cancer. Cancer Invest 2024; 42:435-442. [PMID: 38813691 DOI: 10.1080/07357907.2024.2354798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) is significant as a key member of the PRMT family, crucial for regulating arginine methylation, and its association with colorectal cancer underscores its potential as a therapeutic target. Consequently, CARM1 inhibitors have emerged as potential therapeutic agents in cancer treatment and valuable chemical tools for cancer research. Despite steady progress in CARM1 inhibitor research, challenges persist in discovering effective, isoform-selective, cell-permeable, and in vivo-active CARM1 inhibitors for colorectal cancer. This review summarizes the research progress on CARM1 and its relationship with colorectal cancer, aiming to provide a theoretical basis for the radiotherapy of colorectal cancer.
Collapse
Affiliation(s)
- Yuchen Wu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
4
|
Jiang H, Zhao X, Zang J, Wang R, Gao J, Chen J, Yu T. Establishment of a prognostic risk model for osteosarcoma and mechanistic investigation. Front Pharmacol 2024; 15:1399625. [PMID: 38720781 PMCID: PMC11076780 DOI: 10.3389/fphar.2024.1399625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Objective: To investigate the immune mechanism of osteosarcoma (OS)-specific markers to mitigate bone destruction in the aggressive OS, prone to recurrence and metastasis. Methods: Gene expression patterns from the Gene Expression Omnibus (GEO) database (GSE126209) were analyzed using weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) analysis, least absolute shrinkage and selection operator (LASSO) modeling, and survival analysis to identify charged multivesicular body protein 4C (CHMP4C). Subsequently, its role in regulating the immune system and immune cell infiltration was explored. CHMP4C expression and signaling molecules in OS were assessed in osteosarcoma cell lines (MG63, U2OS, HOS) and hFOB1.19 cells using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence staining. The impact of CHMP4C upregulation and interference on OS-related signaling molecules in MG63 cells was studied. Functional validation of CHMP4C in MG63 OS cells was confirmed through cell counting Kit-8 (CCK-8), transwell, and colony formation assays. In vivo experiments were conducted using Specific Pathogen Free (SPF)-grade male BALB/C nude mice for OS xenograft studies. Results: Based on the gene expression profiles analysis of six osteosarcoma samples and six normal tissue samples, we identified 1,511 upregulated DEGs and 5,678 downregulated DEGs in normal tissue samples. A significant positive correlation between the "yellow-green" module and OS was found through WGCNA analysis. Expression levels of CHMP4C, phosphorylated Glycogen Synthase Kinase 3β (p-GSK3β), and β-catenin were notably higher in U2OS, HOS, and MG63 OS cells than in hFOB1.19 human osteoblasts. Overexpressing CHMP4C in MG63 OS cells upregulated CHMP4C, p-GSK3β, and β-catenin while downregulating GSK3β, leading to increased proliferation and migration of MG63 cells. Conversely, interrupting CHMP4C had the opposite effect. High expression of CHMP4C significantly accelerated the growth of OS in nude mice, resulting in substantial upregulation of CHMP4C, p-GSK3β, and β-catenin expression and suppression of Glycogen Synthase Kinase 3β (GSK3β) expression in OS tissues. Conclusion: CHMP4C may serve as a specific immunomodulatory gene for OS. Its activation of the Wnt/β-catenin signaling pathway, mainly by increasing the phosphorylation echelon of GSK3β, promotes the invasion and spread of OS.
Collapse
Affiliation(s)
- Hongyuan Jiang
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xuliang Zhao
- Qingdao Medical School, Qingdao University, Qingdao, Shandong, China
| | - Jinhui Zang
- Qingdao Medical School, Qingdao University, Qingdao, Shandong, China
| | - Ruijiao Wang
- Qingdao Medical School, Qingdao University, Qingdao, Shandong, China
| | - Jiake Gao
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jinli Chen
- Department of Sports Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tengbo Yu
- Qingdao Municipal Hospital, Qingdao, Shandong, China
| |
Collapse
|
5
|
Dashti P, Lewallen EA, Gordon JAR, Montecino MA, Davie JR, Stein GS, van Leeuwen JPTM, van der Eerden BCJ, van Wijnen AJ. Epigenetic regulators controlling osteogenic lineage commitment and bone formation. Bone 2024; 181:117043. [PMID: 38341164 DOI: 10.1016/j.bone.2024.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Bone formation and homeostasis are controlled by environmental factors and endocrine regulatory cues that initiate intracellular signaling pathways capable of modulating gene expression in the nucleus. Bone-related gene expression is controlled by nucleosome-based chromatin architecture that limits the accessibility of lineage-specific gene regulatory DNA sequences and sequence-specific transcription factors. From a developmental perspective, bone-specific gene expression must be suppressed during the early stages of embryogenesis to prevent the premature mineralization of skeletal elements during fetal growth in utero. Hence, bone formation is initially inhibited by gene suppressive epigenetic regulators, while other epigenetic regulators actively support osteoblast differentiation. Prominent epigenetic regulators that stimulate or attenuate osteogenesis include lysine methyl transferases (e.g., EZH2, SMYD2, SUV420H2), lysine deacetylases (e.g., HDAC1, HDAC3, HDAC4, HDAC7, SIRT1, SIRT3), arginine methyl transferases (e.g., PRMT1, PRMT4/CARM1, PRMT5), dioxygenases (e.g., TET2), bromodomain proteins (e.g., BRD2, BRD4) and chromodomain proteins (e.g., CBX1, CBX2, CBX5). This narrative review provides a broad overview of the covalent modifications of DNA and histone proteins that involve hundreds of enzymes that add, read, or delete these epigenetic modifications that are relevant for self-renewal and differentiation of mesenchymal stem cells, skeletal stem cells and osteoblasts during osteogenesis.
Collapse
Affiliation(s)
- Parisa Dashti
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Eric A Lewallen
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | | | - Martin A Montecino
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andres Bello, Santiago, Chile; Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada; CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada.
| | - Gary S Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | | | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Andre J van Wijnen
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Biochemistry, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
6
|
Zhang Y, Li F, Han Z, Teng Z, Jin C, Yuan H, Zhang S, Sun K, Wang Y. Downregulated RBM5 Enhances CARM1 Expression and Activates the PRKACA/GSK3β Signaling Pathway through Alternative Splicing-Coupled Nonsense-Mediated Decay. Cancers (Basel) 2023; 16:139. [PMID: 38201567 PMCID: PMC10778212 DOI: 10.3390/cancers16010139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Downregulated RNA-binding motif protein 5 (RBM5) promotes the development and progression of various tumors, including bladder cancer (BC). Alternative splicing (AS) plays a crucial role in the progression of cancer by producing protein isomers with different functions or by promoting nonsense-mediated mRNA decay (NMD). However, whether RBM5 modulates the progression of BC through AS-NMD remains unexplored. In this study, we revealed that the downregulation of RBM5 expression promoted the expression of coactivator-associated arginine methyltransferase 1 (CARM1) in BC cells and tissues. Increased expression of CARM1 facilitated the activation of the Wnt/β-catenin axis and cell proliferation, which then contributed to the poor prognosis of patients with BC. Interestingly, RBM5 bound directly to CARM1 mRNA and participated in AS-NMD, downregulating the expression of CARM1. In addition, we revealed that protein kinase catalytic subunit alpha (PRKACA) functioned as a phosphorylated kinase of GSK3β, was regulated by CARM1 at the transcription level, and promoted the growth and progression of BC cells. Furthermore, in this study, we demonstrated a regulatory mechanism of Wnt/β-catenin activation through the RBM5/CARM1/PRKACA axis and identified a novel potential target for treating BC.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Fang Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Zhenwei Han
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Zhihai Teng
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Chenggen Jin
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Hao Yuan
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Sihao Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Kexin Sun
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| | - Yaxuan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang 050011, China; (Y.Z.); (Z.H.); (Z.T.); (C.J.); (H.Y.); (K.S.)
| |
Collapse
|
7
|
Holtz AG, Lowe TL, Aoki Y, Kubota Y, Hoffman RM, Clarke SG. Asymmetric and symmetric protein arginine methylation in methionine-addicted human cancer cells. PLoS One 2023; 18:e0296291. [PMID: 38134182 PMCID: PMC10745221 DOI: 10.1371/journal.pone.0296291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The methionine addiction of cancer cells is known as the Hoffman effect. While non-cancer cells in culture can utilize homocysteine in place of methionine for cellular growth, most cancer cells require exogenous methionine for proliferation. It has been suggested that a biochemical basis of this effect is the increased utilization of methionine for S-adenosylmethionine, the major methyl donor for a variety of cellular methyltransferases. Recent studies have pointed to the role of S-adenosylmethionine-dependent protein arginine methyltransferases (PRMTs) in cell proliferation and cancer. To further understand the biochemical basis of the methionine addiction of cancer cells, we compared protein arginine methylation in two previously described isogenic cell lines, a methionine-addicted 143B human osteosarcoma cell line and its less methionine-dependent revertant. Previous work showed that the revertant cells were significantly less malignant than the parental cells. In the present study, we utilized antibodies to detect the asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) products of PRMTs in polypeptides from cellular extracts and purified histone preparations of these cell lines fractionated by SDS-PAGE. Importantly, we observed little to no differences in the banding patterns of ADMA- and SDMA-containing species between the osteosarcoma parental and revertant cell lines. Furthermore, enzymatic activity assays using S-adenosyl-ʟ-[methyl-3H] methionine, recombinantly purified PRMT enzymes, cell lysates, and specific PRMT inhibitors revealed no major differences in radiolabeled polypeptides on SDS-PAGE gels. Taken together, these results suggest that changes in protein arginine methylation may not be major contributors to the Hoffman effect and that other consequences of methionine addiction may be more important in the metastasis and malignancy of osteosarcoma and potentially other cancers.
Collapse
Affiliation(s)
- Ashley G Holtz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Troy L Lowe
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Yusuke Aoki
- AntiCancer, Inc, San Diego, CA, United States of America
- Department of Surgery, University of California, San Diego, La Jolla, CA, United States of America
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Yutaro Kubota
- AntiCancer, Inc, San Diego, CA, United States of America
- Department of Surgery, University of California, San Diego, La Jolla, CA, United States of America
| | - Robert M Hoffman
- AntiCancer, Inc, San Diego, CA, United States of America
- Department of Surgery, University of California, San Diego, La Jolla, CA, United States of America
| | - Steven G Clarke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
8
|
Dashti P, Lewallen EA, Gordon JA, Montecino MA, van Leeuwen JP, Stein GS, van der Eerden BC, Davie JR, van Wijnen AJ. Protein arginine methyltransferases PRMT1, PRMT4/CARM1 and PRMT5 have distinct functions in control of osteoblast differentiation. Bone Rep 2023; 19:101704. [PMID: 37593409 PMCID: PMC10430181 DOI: 10.1016/j.bonr.2023.101704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Osteogenic differentiation of mesenchymal cells is controlled by epigenetic enzymes that regulate post-translational modifications of histones. Compared to acetyl or methyltransferases, the physiological functions of protein arginine methyltransferases (PRMTs) in osteoblast differentiation remain minimally understood. Therefore, we surveyed the expression and function of all nine mammalian PRMT members during osteoblast differentiation. RNA-seq gene expression profiling shows that Prmt1, Prmt4/Carm1 and Prmt5 represent the most prominently expressed PRMT subtypes in mouse calvarial bone and MC3T3 osteoblasts as well as human musculoskeletal tissues and mesenchymal stromal cells (MSCs). Based on effects of siRNA depletion, it appears that PRMT members have different functional effects: (i) loss of Prmt1 stimulates and (ii) loss of Prmt5 decreases calcium deposition of mouse MC3T3 osteoblasts, while (iii) loss of Carm1 is inconsequential for calcium deposition. Decreased Prmt5 suppresses expression of multiple genes involved in mineralization (e.g., Alpl, Ibsp, Phospho1) consistent with a positive role in osteogenesis. Depletion of Prmt1, Carm1 and Prmt5 has intricate but modest time-dependent effects on the expression of a panel of osteoblast differentiation and proliferation markers but does not change mRNA levels for select epigenetic regulators (e.g., Ezh1, Ezh2, Brd2 and Brd4). Treatment with the Class I PRMT inhibitor GSK715 enhances extracellular matrix mineralization of MC3T3 cells, while blocking formation of H3R17me2a but not H4R3me2a marks. In sum, Prmt1, Carm1 and Prmt5 have distinct biological roles during osteoblast differentiation, and different types histone H3 and H4 arginine methylation may contribute to the chromatin landscape during osteoblast differentiation.
Collapse
Affiliation(s)
- Parisa Dashti
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Eric A. Lewallen
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | | | - Martin A. Montecino
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | | | - Gary S. Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Bram C.J. van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - James R. Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
- CancerCare Manitoba Research Institute, CancerCare Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | - Andre J. van Wijnen
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| |
Collapse
|
9
|
Yang L, Ma L, Gong Q, Chen J, Huang Q. Inhibition of CARM1 suppresses proliferation of multiple myeloma cells through activation of p53 signaling pathway. Mol Biol Rep 2023; 50:7457-7469. [PMID: 37477799 PMCID: PMC10460731 DOI: 10.1007/s11033-023-08645-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Multiple myeloma (MM) is a malignant proliferative disease of plasma cells, the incidence of which is increasing every year and remains incurable. The enzyme co-activator-associated arginine methyltransferase 1 (CARM1) is highly expressed in a variety of cancers, such as Hodgkin's lymphoma and acute myeloid leukemia, and CARM1 is closely associated with tumor cell proliferation. However, the role of CARM1 in MM has not been elucidated. METHODS AND RESULTS In this study, we found that CARM1 is overexpressed in MM and closely associated with poor prognosis in MM. CCK-8 and colony formation assays showed that the proliferation of MM cell lines was downregulated when CARM1 expression was knockdown by specific shRNA. Knockdown of CARM1 reduced the proportion of MM cell lines in the S phase and increased the proportion in G0/G1 phase. RNA-seq analysis of the CARM1-KD cell line revealed that it was closely associated with apoptosis and activated the p53 pathway. CCK-8 and apoptosis results showed that CARM1 knockdown made MM cells more sensitive to standard-of-care drugs. CONCLUSION This study provides an experimental basis for elucidating the pathogenesis of multiple myeloma and searching for potential therapeutic targets.
Collapse
Affiliation(s)
- Lan Yang
- Medical College of Guizhou University, Guiyang City, 550025, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University), Third Military Medical University, Chongqing, 400038, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Road Street, Shapingba District, 400038, China.
| | - JiePing Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Gaotanyan Road Street, Shapingba District, 400038, China.
| | - Qilin Huang
- Medical College of Guizhou University, Guiyang City, 550025, China.
- Department of Neurosurgery, Guiqian International General Hospital, Changpo Road, Wudang District, Guiyang City, 550000, China.
| |
Collapse
|
10
|
Jin W, Zhang J, Chen X, Yin S, Yu H, Gao F, Yao D. Unraveling the complexity of histone-arginine methyltransferase CARM1 in cancer: From underlying mechanisms to targeted therapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188916. [PMID: 37196782 DOI: 10.1016/j.bbcan.2023.188916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), a type I protein arginine methyltransferase (PRMT), has been widely reported to catalyze arginine methylation of histone and non-histone substrates, which is closely associated with the occurrence and progression of cancer. Recently, accumulating studies have demonstrated the oncogenic role of CARM1 in many types of human cancers. More importantly, CARM1 has been emerging as an attractive therapeutic target for discovery of new candidate anti-tumor drugs. Therefore, in this review, we summarize the molecular structure of CARM1 and its key regulatory pathways, as well as further discuss the rapid progress in better understanding of the oncogenic functions of CARM1. Moreover, we further demonstrate several representative targeted CARM1 inhibitors, especially focusing on demonstrating their designing strategies and potential therapeutic applications. Together, these inspiring findings would shed new light on elucidating the underlying mechanisms of CARM1 and provide a clue on discovery of more potent and selective CARM1 inhibitors for the future targeted cancer therapy.
Collapse
Affiliation(s)
- Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Siwen Yin
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
11
|
Li H, Hu X, Cheng C, Lu M, Huang L, Dou H, Zhang Y, Wang T. Ribosome production factor 2 homolog promotes migration and invasion of colorectal cancer cells by inducing epithelial-mesenchymal transition via AKT/Gsk-3β signaling pathway. Biochem Biophys Res Commun 2022; 597:52-57. [PMID: 35123266 DOI: 10.1016/j.bbrc.2022.01.090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies of the gastrointestinal tract, and its prognosis is closely related to the degree of tumor invasion and metastasis. Ribosome production factor 2 homolog (RPF2) plays an important role in the process of ribosome biogenesis; however, its biological function in the progression of malignant tumors including CRC remains unknown. It was found that RPF2 expression was significantly higher in CRC tissues than in the adjacent normal tissue, using mRNA chip technology. This study aimed to explore the role of RPF2 in the invasion and migration of CRC cells and investigate its probable molecular mechanism. The results demonstrated that RPF2 is not only highly expressed in CRC tissues and cell lines but can also activate the AKT/GSK-3β signaling pathway through direct interaction with CARM1, promoting epithelial-mesenchymal transition, and consequently enhancing the migration and invasion abilities of CRC cells in vitro and in vivo. Thus, we speculated that RPF2 may become a novel therapeutic target for suppression of local invasion and distant metastasis of CRC.
Collapse
Affiliation(s)
- Hang Li
- Department of Anorectal Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, 215000, China; Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, 214023, China
| | - Xingqian Hu
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, 214023, China
| | - Cong Cheng
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, 214023, China
| | - Macheng Lu
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, 214023, China
| | - Longchang Huang
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, 214023, China
| | - Huiqiang Dou
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, 214023, China
| | - Ye Zhang
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, 214023, China.
| | - Tong Wang
- Department of General Surgery, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu Province, 214023, China.
| |
Collapse
|
12
|
Chen Z, Gan J, Wei Z, Zhang M, Du Y, Xu C, Zhao H. The Emerging Role of PRMT6 in Cancer. Front Oncol 2022; 12:841381. [PMID: 35311114 PMCID: PMC8931394 DOI: 10.3389/fonc.2022.841381] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Protein arginine methyltransferase 6 (PRMT6) is a type I PRMT that is involved in epigenetic regulation of gene expression through methylating histone or non-histone proteins, and other processes such as alternative splicing, DNA repair, cell proliferation and senescence, and cell signaling. In addition, PRMT6 also plays different roles in various cancers via influencing cell growth, migration, invasion, apoptosis, and drug resistant, which make PRMT6 an anti-tumor therapeutic target for a variety of cancers. As a result, many PRMT6 inhibitors are being utilized to explore their efficacy as potential drugs for various cancers. In this review, we summarize the current knowledge on the function and structure of PRMT6. At the same time, we highlight the role of PRMT6 in different cancers, including the differentiation of its promotive or inhibitory effects and the underlying mechanisms. Apart from the above, current research progress and the potential mechanisms of PRMT6 behind them were also summarized.
Collapse
Affiliation(s)
- Zhixian Chen
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Jianfeng Gan
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhi Wei
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Mo Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Yan Du
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
| | - Congjian Xu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
- *Correspondence: Hongbo Zhao, ; Congjian Xu,
| | - Hongbo Zhao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, China
- *Correspondence: Hongbo Zhao, ; Congjian Xu,
| |
Collapse
|
13
|
Yang S, Zhang J, Chen D, Cao J, Zheng Y, Han Y, Jin Y, Wang S, Wang T, Ma L, Luo T, Wang Y, Qin W, Dong L. CARM1 promotes gastric cancer progression by regulating TFE3 mediated autophagy enhancement through the cytoplasmic AMPK-mTOR and nuclear AMPK-CARM1-TFE3 signaling pathways. Cancer Cell Int 2022; 22:102. [PMID: 35246137 PMCID: PMC8895580 DOI: 10.1186/s12935-022-02522-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The role of CARM1 in tumors is inconsistent. It acts as an oncogene in most cancers but it inhibits the progression of liver and pancreatic cancers. CARM1 has recently been reported to regulate autophagy, but this function is also context-dependent. However, the effect of CARM1 on gastric cancer (GC) has not been studied. We aimed to explore whether CARM1 was involved in the progression of GC by regulating autophagy. METHODS The clinical values of CARM1 and autophagy in GC were evaluated by immunohistochemistry and qRT-PCR. Transmission electron microscopy, immunofluorescence and western blotting were employed to identify autophagy. The role of CARM1 in GC was investigated by CCK-8, colony formation and flow cytometry assays in vitro and a xenograft model in vivo. Immunoprecipitation assays were performed to determine the interaction of CARM1 and TFE3. RESULTS CARM1 was upregulated in clinical GC tissues and cell lines, and higher CARM1 expression predicted worse prognosis. CARM1 enhanced GC cell proliferation, facilitated G1-S transition and inhibited ER stress-induced apoptosis by regulating autophagy. Importantly, treatment with a CARM1 inhibitor rescued the tumor-promoting effects of CARM1 both in vitro and in vivo. Furthermore, we demonstrated that CARM1 promoted TFE3 nuclear translocation to induce autophagy through the cytoplasmic AMPK-mTOR and nuclear AMPK-CARM1-TFE3 signaling pathways. CONCLUSION CARM1 promoted GC cell proliferation, accelerated G1-S transition and reduced ER stress-induced apoptosis by regulating autophagy. Mechanistically, CARM1 triggered autophagy by facilitating TFE3 nuclear translocation through the AMPK-mTOR and AMPK-CARM1-TFE3 signaling pathways.
Collapse
Affiliation(s)
- Suzhen Yang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.,State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jing Zhang
- Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Di Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jiayi Cao
- Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi Province, People's Republic of China
| | - Ying Zheng
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yuying Han
- Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi Province, People's Republic of China
| | - Yirong Jin
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shuhui Wang
- Department of Infectious Diseases, Shenzhen Shekou People's Hospital, Shenzhen, 518067, People's Republic of China
| | - Ting Wang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lin Ma
- Shaanxi Provincial People's Hospital, Xi'an, 710043, Shaanxi, People's Republic of China
| | - Tingting Luo
- Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, 710069, Shaanxi Province, People's Republic of China
| | - Yan Wang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| | - Wen Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Lei Dong
- Department of Digestive Disease and Gastrointestinal Motility Research Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
14
|
Systematic pan-cancer landscape identifies CARM1 as a potential prognostic and immunological biomarker. BMC Genom Data 2022; 23:7. [PMID: 35033016 PMCID: PMC8761291 DOI: 10.1186/s12863-021-01022-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/23/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Belonging to the protein arginine methyltransferase (PRMT) family, the enzyme encoded by coactivator associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of protein arginine residues, especially acts on histones and other chromatin related proteins, which is essential in regulating gene expression. Beyond its well-established involvement in the regulation of transcription, recent studies have revealed a novel role of CARM1 in tumorigenesis and development, but there is still a lack of systematic understanding of CARM1 in human cancers. An integrated analysis of CARM1 in pan-cancer may contribute to further explore its prognostic value and potential immunological function in tumor therapy. RESULTS Based on systematic analysis of data in multiple databases, we firstly verified that CARM1 is highly expressed in most tumors compared with corresponding normal tissues, and is bound up with poor prognosis in some tumors. Subsequently, relevance between CARM1 expression level and tumor immune microenvironment is analyzed from the perspectives of tumor mutation burden, microsatellite instability, mismatch repair genes, methyltransferases genes, immune checkpoint genes and immune cells infiltration, indicating a potential relationship between CARM1 expression and tumor microenvironment. A gene enrichment analysis followed shortly, which implied that the role of CARM1 in tumor pathogenesis may be related to transcriptional imbalance and viral carcinogenesis. CONCLUSIONS Our first comprehensive bioinformatics analysis provides a broad molecular perspective on the role of CARM1 in various tumors, highlights its value in clinical prognosis and potential association with tumor immune microenvironment, which may furnish an immune based antitumor strategy to provide a reference for more accurate and personalized immunotherapy in the future.
Collapse
|
15
|
Lyu XY, Shui YS, Wang L, Jiang QS, Meng LX, Zhan HY, Yang R. WDR5 promotes the tumorigenesis of oral squamous cell carcinoma via CARM1/β-catenin axis. Odontology 2021; 110:138-147. [PMID: 34398317 DOI: 10.1007/s10266-021-00649-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is a malignancy all over the world. WD repeat domain 5 (WDR5) is involved in cancer progression. In addition, it was reported that WDR5 is upregulated in head and neck cancer, while its role in OSCC is unknown. First, the expression of WDR5 in oral cancer tissues and cells was examined by qRT-PCR, IHF and western blot. CCK-8 assay was performed to test the cell viability. Cell migration was assessed by transwell assay. Knocking down WDR5 or CARM1 in oral cancer cells to detect its function on cancer growth, WDR5 and CARM1 were significantly upregulated in OSCC. Silencing WDR5 suppressed OSCC cell viability and migration. CARM1 level in OSCC cells was significantly inhibited by WDR5 downregulation, and CARM1 elevation could rescue the effect of WDR5 knockdown on tumorigenesis of OSCC. Moreover, silencing of WDR5 notably inactivated β-catenin signaling pathway, while this phenomenon was restored by CARM1 overexpression. Silencing of WDR5 attenuated the tumorigenesis of OSCC via CARM1/β-catenin axis. Thus, WDR5 might be a target for OSCC treatment.
Collapse
Affiliation(s)
- Xiao-Ying Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 Renmin South Road, Chengdu, 610065, People's Republic of China
| | - Yu-Sen Shui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 Renmin South Road, Chengdu, 610065, People's Republic of China
| | - Liang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 Renmin South Road, Chengdu, 610065, People's Republic of China
| | - Qing-Song Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 Renmin South Road, Chengdu, 610065, People's Republic of China
| | - Ling-Xi Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 Renmin South Road, Chengdu, 610065, People's Republic of China
| | - Hao-Yuan Zhan
- Sichuan University, Chengdu, 610065, People's Republic of China
| | - Ran Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14 Renmin South Road, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
16
|
Janisiak J, Kopytko P, Tarnowski M. Dysregulation of protein argininemethyltransferase in the pathogenesis of cancerpy. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arginine methylation is considered to be one of the most permanent and one of the most frequent post-translational modifications. The reaction of transferring a methyl group from S-adenosylmethionine to arginine residue is catalyzed by aginine methyltransferase (PRMT). In humans there are nine members of the PRMT family, named in order of discovery of PRMT1- PRMT9. Arginine methyltransferases were divided into three classes: I, II, III, with regard to the product of the catalyzed reaction. The products of their activity are, respectively, the following: asymmetric dimethylarginine (ADMA), symmetrical dimethylarginine (SDMA) and monomethylarginine (MMA). These modifications significantly affect the chromatin functions; therefore, they can act as co-activators or suppressors of the transcription process. Arginine methylation plays a crucial role in many biological processes in a human organism. Among others, it participates in signal transduction control, mRNA splicing and the regulation of basic cellular processes such as proliferation, differentiation, migration and apoptosis. There is increasing evidence that dysregulation of PRMT levels may lead to the cancer transformation of cells. The correlation between increased PRMT level and cancer has been demonstrated in the following: breast, ovary, lung and colorectal cancer. The activity of arginine methyltransferase can be regulated by small molecule PRMT inhibitors. To date, three substances that inhibit PRMT activity have been evaluated in clinical trials and exhibit anti-tumor activity against hematological cancer. It is believed that the use of specific PRMT inhibitors may become a new, effective and safe treatment of oncological diseases.
Collapse
Affiliation(s)
- Joanna Janisiak
- Katedra i Zakład Fizjologii, Pomorski Uniwersytet Medyczny w Szczecinie
| | - Patrycja Kopytko
- Katedra i Zakład Fizjologii, Pomorski Uniwersytet Medyczny w Szczecinie
| | - Maciej Tarnowski
- Katedra i Zakład Fizjologii, Pomorski Uniwersytet Medyczny w Szczecinie
| |
Collapse
|
17
|
Zhang S, Yu T. Regulator of Ribosome Synthesis 1 Influences the Proliferation, Migration, and Invasion of Ovarian Cancer Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated the effects of silencing the regulator of ribosome synthesis 1 (RRS1) gene on the proliferation, migration, and invasion of ovarian carcinoma cells, and its possible role in modulating signal transduction in these cells. Normal ovarian epithelial cell line IOSE80 was
used as a control. We examined the mRNA and protein level of RRS1 using qRT-PCR and western blot in control and ovarian carcinoma cells (SKOV-3, SW626, and CAOV3). RNA interference technology was used to knockdown RRS1 expression in CAOV3 cells. MTT was used to examine the proliferation of
these cells, while a Transwell assay was used to assay the cells’ migration and invasion abilities. Western blot was used to measure the levels of CyclinD1, P21, MMP-2, MMP-9, p-JAK2 and p-STAT3 proteins. In comparison with normal ovarian epithelial cells (IOSE80), RRS1 mRNA and protein
levels were increased in ovarian carcinoma cells (SKOV-3, SW626 and CAOV3) (P < 0.05). Because RRS1 levels were highest in CAOV3 cells, these cells were used for subsequent experiments. RRS1 gene expression was knocked down in CAOV3 cells, and in comparison with the negative control
group, siRNA-RRS1 cells exhibited decreased proliferation in the MTT assay after 48 h and 72 h (P < 0.05). These cells also exhibited reduced migration and invasion (P < 0.05). Further, siRNA-RRS1 cells exhibited reduced expression of CyclinD1, MMP-2, MMP-9, P-JAK2 and
P-STAT3 proteins (P < 0.05), while P21 protein levels were increased (P < 0.05). Silencing RRS1 expression inhibits the proliferation, migration, and invasion of ovarian carcinoma cells. This effect may be mediated by the inhibition of the STAT3 signaling pathway in these
cells.
Collapse
Affiliation(s)
- Shenhua Zhang
- Department of Obstetrics and Gynecology, The First People’s Hospital of Tianmen City, Tianmen 431700, Hubei, PR China
| | - Ting Yu
- Department of Obstetrics and Gynecology, The Third People’s Hospital of Hefei, Anhui Province, Hefei 230000, Anhui, PR China
| |
Collapse
|
18
|
Suresh S, Huard S, Dubois T. CARM1/PRMT4: Making Its Mark beyond Its Function as a Transcriptional Coactivator. Trends Cell Biol 2021; 31:402-417. [PMID: 33485722 DOI: 10.1016/j.tcb.2020.12.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), identified 20 years ago as a coregulator of transcription, is an enzyme that catalyzes arginine methylation of proteins. Beyond its well-established involvement in the regulation of transcription, the physiological functions of CARM1 are still poorly understood. However, recent studies have revealed novel roles of CARM1 in autophagy, metabolism, paraspeckles, and early development. In addition, CARM1 is emerging as an attractive therapeutic target and a drug response biomarker for certain types of cancer. Here, we provide a comprehensive overview of the structure of CARM1 and its post-translational modifications, its various functions, apart from transcriptional coactivation, and its involvement in cancer.
Collapse
Affiliation(s)
- Samyuktha Suresh
- Institut Curie - PSL Research University, Translational Research Department, Breast Cancer Biology Group, 75005 Paris, France
| | - Solène Huard
- Institut Curie - PSL Research University, Translational Research Department, Breast Cancer Biology Group, 75005 Paris, France
| | - Thierry Dubois
- Institut Curie - PSL Research University, Translational Research Department, Breast Cancer Biology Group, 75005 Paris, France.
| |
Collapse
|
19
|
Liu Y, Xi Y, Chen G, Wu X, He M. URG4 mediates cell proliferation and cell cycle in osteosarcoma via GSK3β/β-catenin/cyclin D1 signaling pathway. J Orthop Surg Res 2020; 15:226. [PMID: 32552851 PMCID: PMC7301506 DOI: 10.1186/s13018-020-01681-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/28/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Osteosarcoma is one of the most common malignant bone tumors with the annual global incidence of approximately four per million. Upregulated gene 4 (URG4) expression in the osteosarcoma tissue is closely associated with recurrence, metastasis, and poor prognosis of osteosarcoma. However, the biological function and underlying mechanisms of URG4 in osteosarcoma have not been elucidated. This study aimed to explore the expression and underlying mechanism of URG4 in osteosarcoma. METHODS The expression level of URG4 in osteosarcoma and normal tissues was compared using immunohistochemistry (IHC). PCR and western blotting (WB) techniques are used to detect URG4 mRNA and protein levels. Wound healing and Transwell analysis to assess the effect of URG4 on osteosarcoma cell migration and invasion. Cell Counting Kit-8 assay and colony proliferation assay were performed to evaluate the effects of silencing URG4 on the inhibition of cell proliferation. The cell cycle distribution was detected by flow cytometry, and a xenograft mouse model was used to verify the function of URG4 in vivo. RESULTS URG4 was found to be highly expressed in osteosarcoma tissues and cells, and its high expression was correlated with advanced Enneking stage, large tumor size, and tumor metastasis in osteosarcoma patients. The proliferation in osteosarcoma cell lines and cell cycle in the S phase was suppressed when siRNA was used to downregulate URG4. URG4 promoted cell proliferation and tumorigenesis in vitro and in vivo. WB verified that URG4 promotes cell proliferation in osteosarcoma via pGSK3β/β-catenin/cyclinD1 signaling. CONCLUSION URG4, which is high-expressed in osteosarcoma, promotes cell cycle progression via GSK3β/β-catenin/cyclin D1 signaling pathway and may be a novel biomarker and potential target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yayun Liu
- Department of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
- Department of Orthopaedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, No. 152 Aiguo Road, Nanchang, 330006, Jiangxi, China
| | - Yizhe Xi
- Department of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Gang Chen
- Department of Orthopaedics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, No. 152 Aiguo Road, Nanchang, 330006, Jiangxi, China
| | - Xidong Wu
- Department of drug safety evaluation, Jiangxi Testing Center of Medical Device, No. 181 Nanjing East Road, Nanchang, 330000, Jiangxi, China
| | - Maolin He
- Department of Spinal Surgery, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
20
|
Yin Z, Jin H, Huang S, Qu G, Meng Q. REG γ knockdown suppresses proliferation by inducing apoptosis and cell cycle arrest in osteosarcoma. PeerJ 2020; 8:e8954. [PMID: 32328351 PMCID: PMC7166046 DOI: 10.7717/peerj.8954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/21/2020] [Indexed: 11/20/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common malignant bone tumor with high mortality in children and adolescents. REG γ is overexpressed and plays oncogenic roles in various types of human cancers. However, the expression and potential roles of REG γ in osteosarcoma are elusive. This study aims at exploring possible biological functions of REG γ in the pathogenesis of osteosarcoma and its underlying mechanism. Methods Quantitativereverse transcription-polymerase chain reaction (qRT-PCR), western blotting andimmunohistochemistry (IHC)were performed to detect the expression levels of REG γ in OS tissues and cell lines. Then, the effects of REG γ expression on OS cell proliferation in vitro were analyzed by Cell Counting Kit-8 (CCK-8), ethylene deoxyuridine (EdU), colony formation, flow cytometry. The protein levels of apoptosis and cell-cycle related proteins were evaluated using western blotting. Results In present study, we found for the first time that REG γ is overexpressed in osteosarcoma tissues and cell lines and knockdown of REG γ significantly inhibits cell proliferation and induces apoptosis and cell cycle arrest in osteosarcoma cells. Furthermore, we observed that p21, caspase-3 and cleaved caspase-3 are increased while the expression of cycinD1 and bcl-2 are decreased after REG γ depletion in osteosarcoma cells. In conclusion, REG γ may be involved in the proliferation of osteosarcoma and serve as a novel therapeutic target in patients with osteosarcoma.
Collapse
Affiliation(s)
- Zhiqiang Yin
- Department of Orthopedics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Jin
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shibo Huang
- Department of General Surgery, Heilongjiang Agricultural Reclamation General Hospital, Harbin, China
| | - Guofan Qu
- The Affiliated Tumor Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilong, China
| | - Qinggang Meng
- Department of Medical Science Institute of Harbin, The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilong, China
| |
Collapse
|
21
|
Al-Hamashi AA, Diaz K, Huang R. Non-Histone Arginine Methylation by Protein Arginine Methyltransferases. Curr Protein Pept Sci 2020; 21:699-712. [PMID: 32379587 PMCID: PMC7529871 DOI: 10.2174/1389203721666200507091952] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022]
Abstract
Protein arginine methyltransferase (PRMT) enzymes play a crucial role in RNA splicing, DNA damage repair, cell signaling, and differentiation. Arginine methylation is a prominent posttransitional modification of histones and various non-histone proteins that can either activate or repress gene expression. The aberrant expression of PRMTs has been linked to multiple abnormalities, notably cancer. Herein, we review a number of non-histone protein substrates for all nine members of human PRMTs and how PRMT-mediated non-histone arginine methylation modulates various diseases. Additionally, we highlight the most recent clinical studies for several PRMT inhibitors.
Collapse
Affiliation(s)
- Ayad A. Al-Hamashi
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-almoadham, Baghdad, Iraq
| | - Krystal Diaz
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
22
|
Mirshahidi S, de Necochea-Campion R, Moretta A, Williams NL, Reeves ME, Otoukesh S, Mirshahidi HR, Khosrowpour S, Duerksen-Hughes P, Zuckerman LM. Inhibitory Effects of Indomethacin in Human MNNG/HOS Osteosarcoma Cell Line In Vitro. Cancer Invest 2019; 38:23-36. [DOI: 10.1080/07357907.2019.1698592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saied Mirshahidi
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Rosalia de Necochea-Campion
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Annie Moretta
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nadine L. Williams
- Department of Orthopaedic Surgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Mark E. Reeves
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Division of Surgical Oncology, Department of Surgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Salman Otoukesh
- Division of Hematology and Oncology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Hamid R. Mirshahidi
- Division of Hematology and Oncology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Shahrzad Khosrowpour
- Leatherby Libraries/Collection Management Division, Chapman University, Orange, CA, USA
| | | | - Lee M. Zuckerman
- Department of Orthopaedic Surgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
23
|
Qiu B, Zeng J, Zhao X, Huang L, Ma T, Zhu Y, Liu M, Tao D, Liu Y, Lu Y, Ma Y. PIWIL2 stabilizes β-catenin to promote cell cycle and proliferation in tumor cells. Biochem Biophys Res Commun 2019; 516:819-824. [DOI: 10.1016/j.bbrc.2019.06.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 01/25/2023]
|
24
|
Cui J, Hu J, Ye Z, Fan Y, Li Y, Wang G, Wang L, Wang Z. TRIM28 protects CARM1 from proteasome-mediated degradation to prevent colorectal cancer metastasis. Sci Bull (Beijing) 2019; 64:986-997. [PMID: 36659810 DOI: 10.1016/j.scib.2019.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 01/21/2023]
Abstract
TRIM28 (Tripartite motif-containing protein 28), a member of TRIM family, is aberrantly expressed and reportedly has different functions in many types of human cancer. However, the biological roles of TRIM28 and related mechanism in colorectal cancer (CRC) remain unclear. Here, we showed that TRIM28 was downregulated in colorectal cancer compared with normal mucosa, especially at advanced stages, and acted as an independent prognostic factor of favorable outcome. Functional studies demonstrated that TRIM28 restrained CRC migration and invasion in vitro and in vivo. Mechanistically, we reported that CARM1 (co-activator-associated arginine methyltransferase1) was a critical player downstream of TRIM28. TRIM28 interacted with CARM1, and protected CARM1 from proteasome-mediated degradation through physical protein-protein interaction to suppress CRC metastasis. Further, TRIM28 suppressed the migration and invasion of CRC cells through inhibiting WNT/β-catenin signaling in a CARM1-dependent manner, but independent of CARM1's methyltransferase activity. The protein expression of CARM1 was positively correlated with TRIM28 in CRC tissues. Patients with high levels of TRIM28 and CARM1 had improved prognosis, whereas patients with low TRIM28 and CARM1 expression had the poor outcomes. Thus, our study reveals an inhibitory role of TRIM28 in CRC metastasis, which was achieved through a TRIM28-CARM1-WNT/β-catenin axis. This work provides potential prognostic and therapeutic targets for CRC treatment.
Collapse
Affiliation(s)
- Jinyuan Cui
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Hu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhilan Ye
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yongli Fan
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuqin Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
25
|
Wang W, Hu S, Chang J, Ruan H, Zhi W, Wang X, Shi Q, Wang Y, Yang Y. Down-Regulated microRNA-34a Expression as a Prognostic Marker for Poor Osteosarcoma in Mice: A Systematic Review and Meta-Analysis. J Cancer 2018; 9:4179-4186. [PMID: 30519318 PMCID: PMC6277615 DOI: 10.7150/jca.27483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/21/2018] [Indexed: 12/13/2022] Open
Abstract
Background: In children and adolescents, osteosarcomais the most common malignant bone tumor with a high mortality rate. New therapeutic strategies are urgent to be explored. Studies have proven that microRNAs (miRNAs) in malignant tumors often appear dysregulation, this provides a direction for exploring the new therapeutic strategies for cancers. The aim of this meta-analysis is to summarize and analyze whethermicroRNA-34a(miRNA-34a) could be a prognostic marker for osteosarcoma in mice. Methods: We searched PubMed, Web of Science, Embase, Wan Fang Database, China Knowledge Resource Integrated Database, VIP Database, and SinoMed since their initiation date to January 24, 2018. After screening based on inclusion and exclusion criteria, eight articles were included for the final analysis. Results: Our results showed that tumor volume and tumor weight were inhibited by restoring the down-regulated expression of miRNA-34a in the xenograft mouse models. Conclusions: Down-regulated miRNA-34a expression is a prognostic marker for poor osteosarcoma. We should be more committed to investigate the clinical significance of miRNA-34a in osteosarcoma patients.
Collapse
Affiliation(s)
- Wenyi Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Shaopu Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Junli Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Hongfeng Ruan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Wenlan Zhi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Xiaobo Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Yanping Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| |
Collapse
|
26
|
R-spondin3-LGR4 signaling protects hepatocytes against DMOG-induced hypoxia/reoxygenation injury through activating β-catenin. Biochem Biophys Res Commun 2018; 499:59-65. [PMID: 29555474 DOI: 10.1016/j.bbrc.2018.03.126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND & AIMS Leucine-rich repeat G-protein-coupled receptor 4 (LGR4) and its ligands R-spondin1-4 (Rspos) have been vastly investigated in embryonic development. The biological functions of Rspos-LGR4 system in liver remains largely unknown. Here, we explored whether it protects hepatocytes against hypoxia/reoxygenation (H/R) induced damage. METHODS H/R injury was induced by dimethyloxalylglycine (DMOG) in AML12 cells and the effects of Rspo3 on cell proliferation and apoptosis were assessed. Specific shRNAs were used to interfere LGR4 or β-catenin. RESULTS DMOG caused hepatocytes damage evidenced by increase in HIF-1α, cell death and apoptosis genes p27 and Bax, with concurrent decrease of cell proliferation genes PCNA and CyclinD1. Of all the Rspos, Rspo3 is predominantly expressed in AML12 hepatocytes. Importantly, Rspo3 demonstrated an alteration in a manner similar to proliferation-related genes during H/R injury. Rspo3 pretreatment rendered hepatocytes less vulnerable to DMOG induced H/R injury. Ablation of LGR4 using shRNA attenuated the protective effects of Rspo3. Wnt3a also protected AML12 cells from damages caused by H/R, showing enhanced proliferation activity. Notably, knockdown of β-catenin in hepatocytes completely abolished the effect of Rspo3 pretreatment on the expression levels of PCNA and CyclinD1. CONCLUSION Rspo3-LGR4 axis protects hepatocytes from H/R injury via activating β-catenin.
Collapse
|