1
|
Gleeson TA, Kaiser C, Lawrence CB, Brough D, Allan SM, Green JP. The NLRP3 inflammasome is essential for IL-18 production in a murine model of macrophage activation syndrome. Dis Model Mech 2024; 17:dmm050762. [PMID: 38775430 PMCID: PMC11317095 DOI: 10.1242/dmm.050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
Hyperinflammatory disease is associated with an aberrant immune response resulting in cytokine storm. One such instance of hyperinflammatory disease is known as macrophage activation syndrome (MAS). The pathology of MAS can be characterised by significantly elevated serum levels of interleukin-18 (IL-18) and interferon gamma (IFNγ). Given the role for IL-18 in MAS, we sought to establish the role of inflammasomes in the disease process. Using a murine model of CpG-oligonucleotide-induced MAS, we discovered that the expression of the NLRP3 inflammasome was increased and correlated with IL-18 production. Inhibition of the NLRP3 inflammasome or the downstream caspase-1 prevented MAS-mediated upregulation of IL-18 in the plasma but, interestingly, did not alleviate key features of hyperinflammatory disease including hyperferritinaemia and splenomegaly. Furthermore blockade of IL-1 receptor with its antagonist IL-1Ra did not prevent the development of CpG-induced MAS, despite being clinically effective in the treatment of MAS. These data demonstrate that, during the development of MAS, the NLRP3 inflammasome was essential for the elevation in plasma IL-18 - a key cytokine in clinical cases of MAS - but was not a driving factor in the pathogenesis of CpG-induced MAS.
Collapse
Affiliation(s)
- Tara A. Gleeson
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | | | - Catherine B. Lawrence
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | - Stuart M. Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| | - Jack P. Green
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
2
|
Hu S, Meng K, Wang T, Qu R, Wang B, Xi Y, Yu T, Yuan Z, Cai Z, Tian Y, Zeng C, Wang X, Zou W, Fu X, Li L. Lung cancer cell-intrinsic IL-15 promotes cell migration and sensitizes murine lung tumors to anti-PD-L1 therapy. Biomark Res 2024; 12:40. [PMID: 38637902 PMCID: PMC11027539 DOI: 10.1186/s40364-024-00586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND IL-15 plays a vital role in enhancing NK cell- and T-cell-mediated antitumor immune responses; however, the direct effect of IL-15 on tumor cells has not been fully elucidated. Herein, we investigated the effect of IL-15 on lung adenocarcinoma cells. METHODS Silencing and overexpression techniques were used to modify endogenous IL-15 expression in tumor cells. Transwell assays were used to assess tumor cell migration and invasion; a live-cell analysis system was used to evaluate cell motility; cellular morphological changes were quantified by confocal fluorescence microscopy; the molecular mechanisms underlying the effect of IL-15 on tumor cells were analyzed by western blotting; and RhoA and Cdc42 activities were evaluated by a pulldown assay. NCG and C57BL/6 mouse models were used to evaluate the functions of IL-15 in vivo. RESULTS Cancer cell-intrinsic IL-15 promoted cell motility and migration in vitro and metastasis in vivo via activation of the AKT-mTORC1 pathway; however, exogenous IL-15 inhibited cell motility and migration via suppression of the RhoA-MLC2 axis. Mechanistic analysis revealed that both the intracellular and extracellular IL-15-mediated effects required the expression of IL-15Rα by tumor cells. Detailed analyses revealed that the IL-2/IL-15Rβ and IL-2Rγ chains were undetected in the complex formed by intracellular IL-15 and IL-15Rα. However, when exogenous IL-15 engaged tumor cells, a complex containing the IL-15Rα, IL-2/IL-15Rβ, and IL-2Rγ chains was formed, indicating that the differential actions of intracellular and extracellular IL-15 on tumor cells might be caused by their distinctive modes of IL-15 receptor engagement. Using a Lewis lung carcinoma (LLC) metastasis model, we showed that although IL-15 overexpression facilitated the lung metastasis of LLC cells, IL-15-overexpressing LLC tumors were more sensitive to anti-PD-L1 therapy than were IL-15-wild-type LLC tumors via an enhanced antitumor immune response, as evidenced by their increased CD8+ T-cell infiltration compared to that of their counterparts. CONCLUSIONS Cancer cell-intrinsic IL-15 and exogenous IL-15 differentially regulate cell motility and migration. Thus, cancer cell-intrinsic IL-15 acts as a double-edged sword in tumor progression. Additionally, high levels of IL-15 expressed by tumor cells might improve the responsiveness of tumors to immunotherapies.
Collapse
Affiliation(s)
- Shaojie Hu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Kelin Meng
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Tianlai Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Rirong Qu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Boyu Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Yu Xi
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Taiyan Yu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Zhiwei Yuan
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Zihao Cai
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Yitao Tian
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Chenxi Zeng
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Xue Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Wenbin Zou
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Xiangning Fu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China.
| | - Lequn Li
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Battistoni A, Lantier L, di Tommaso A, Ducournau C, Lajoie L, Samimi M, Coënon L, Rivière C, Epardaud M, Hertereau L, Poupée-Beaugé A, Rieu J, Mévélec MN, Lee GS, Moiré N, Germon S, Dimier-Poisson I. Nasal administration of recombinant Neospora caninum secreting IL-15/IL-15Rα inhibits metastatic melanoma development in lung. J Immunother Cancer 2023; 11:jitc-2023-006683. [PMID: 37192784 DOI: 10.1136/jitc-2023-006683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Metastases are the leading cause of mortality in many cancer types and lungs are one of the most common sites of metastasis alongside the liver, brain, and bones. In melanoma, 85% of late-stage patients harbor lung metastases. A local administration could enhance the targeting of metastases while limiting the systemic cytotoxicity. Therefore, intranasal administration of immunotherapeutic agents seems to be a promising approach to preferentially target lung metastases and decrease their burden on cancer mortality. From observations that certain microorganisms induce an acute infection of the tumor microenvironment leading to a local reactivating immune response, microbial-mediated immunotherapy is a next-generation field of investigation in which immunotherapies are engineered to overcome immune surveillance and escape from microenvironmental cancer defenses. METHODS The goal of our study is to evaluate the potential of the intranasal administration of Neospora caninum in a syngeneic C57BL6 mouse model of B16F10 melanoma lung metastases. It also compares the antitumoral properties of a wild-type N. caninum versus N. caninum secreting human interleukin (IL)-15 fused to the sushi domain of the IL-15 receptor α chain, a potent activator of cellular immune responses. RESULTS The treatment of murine lung metastases by intranasal administration of an N. caninum engineered to secrete human IL-15 impairs lung metastases from further progression with only 0,08% of lung surface harboring metastases versus 4,4% in wild-type N. caninum treated mice and 36% in untreated mice. The control of tumor development is associated with a strong increase in numbers, within the lung, of natural killer cells, CD8+ T cells and macrophages, up to twofold, fivefold and sixfold, respectively. Analysis of expression levels of CD86 and CD206 on macrophages surface revealed a polarization of these macrophages towards an antitumoral M1 phenotype. CONCLUSION Administration of IL-15/IL-15Rα-secreting N. caninum through intranasal administration, a non-invasive route, lend further support to N. caninum-demonstrated clear potential as an effective and safe immunotherapeutic approach for the treatment of metastatic solid cancers, whose existing therapeutic options are scarce. Combination of this armed protozoa with an intranasal route could reinforce the existing therapeutic arsenal against cancer and narrow the spectrum of incurable cancers.
Collapse
Affiliation(s)
- Arthur Battistoni
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Louis Lantier
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
- Kymeris Santé SA, Tours, France
| | - Anne di Tommaso
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Céline Ducournau
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Laurie Lajoie
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Mahtab Samimi
- Department de Dermatologie, CHRU de Tours, Tours, France
| | - Loïs Coënon
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | - Clément Rivière
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | | | - Leslie Hertereau
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | | | - Juliette Rieu
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | | | | | - Nathalie Moiré
- INRAE, Université de Tours, ISP, F-37380, Nouzilly, France
| | - Stephanie Germon
- Université de Tours, INRAE, ISP, F-37000, Faculté de pharmacie, Tours, France
| | | |
Collapse
|
4
|
Alopecia Areata: A Review of the Role of Oxidative Stress, Possible Biomarkers, and Potential Novel Therapeutic Approaches. Antioxidants (Basel) 2023; 12:antiox12010135. [PMID: 36670997 PMCID: PMC9854963 DOI: 10.3390/antiox12010135] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Alopecia areata (AA) is a dermatological condition characterized by non-scarring hair loss. Exact etiopathogenesis of AA is still unknown although it is known that several factors contribute to the collapse of the hair-follicle (HF)-immune-privileged (IP) site. Oxidative stress (OS) plays an important role in skin diseases. The aim of this review was to clarify the role of OS in AA pathogenesis and diagnosis, and to discuss potential treatment options. Oxidative-stress markers are altered in serum and skin samples of patients with AA, confirming a general pro-oxidative status in patients with AA. OS induces MHC class I chain-related A (MICA) expression in HF keratinocytes that activates the receptor NKG2D, expressed in NK cells and CD8+ T cytotoxic cells leading to destabilization of the HF immune-privileged site through the production of IFN-γ that stimulates JAK1 and JAK2 pathways. OS also activates the KEAP1-NRF2 pathway, an antioxidant system that contributes to skin homeostasis. In addition, a decrease of ATG5 and LC3B in the hair matrix and an increase in p62 levels indicates a reduction of intrafollicular autophagy during the evolution of AA. Potential biomarkers of OS in AA could be: malondialdehyde (MDA), advanced glycation end-products (AGEs), and ischemic-modified albumin (IMA). JAK inhibitors are the new frontier in treatment of AA and the use of nutraceuticals that modulate the OS balance, in combination with standard treatments, represent promising therapeutic tools.
Collapse
|
5
|
Abstract
Mucosal associated invariant T (MAIT) cells are innate T cells that recognize bacterial metabolites and secrete cytokines and cytolytic enzymes to destroy infected target cells. This makes MAIT cells promising targets for immunotherapy to combat bacterial infections. Here, we analyzed the effects of an immunotherapeutic agent, the IL-15 superagonist N-803, on MAIT cell activation, trafficking, and cytolytic function in macaques. We found that N-803 could activate MAIT cells in vitro and increase their ability to produce IFN-γ in response to bacterial stimulation. To expand upon this, we examined the phenotypes and functions of MAIT cells present in samples collected from PBMC, airways (bronchoalveolar lavage [BAL] fluid), and lymph nodes (LN) from rhesus macaques that were treated in vivo with N-803. N-803 treatment led to a transient 6 to 7-fold decrease in the total number of MAIT cells in the peripheral blood, relative to pre N-803 time points. Concurrent with the decrease in cells in the peripheral blood, we observed a rapid decline in the frequency of CXCR3+CCR6+ MAITs. This corresponded with an increase in the frequency of CCR6+ MAITs in the BAL fluid, and higher frequencies of ki-67+ and granzyme B+ MAITs in the blood, LN, and BAL fluid. Finally, N-803 improved the ability of MAIT cells collected from PBMC and airways to produce IFN-γ in response to bacterial stimulation. Overall, N-803 shows the potential to transiently alter the phenotypes and functions of MAIT cells, which could be combined with other strategies to combat bacterial infections.
Collapse
|
6
|
Chu TH, Vo MC, Lakshmi TJ, Ahn SY, Kim M, Song GY, Yang DH, Ahn JS, Kim HJ, Jung SH, Lee JJ. Novel IL-15 dendritic cells have a potent immunomodulatory effect in immunotherapy of multiple myeloma. Transl Oncol 2022; 20:101413. [PMID: 35413499 PMCID: PMC9006865 DOI: 10.1016/j.tranon.2022.101413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Culture DCs with GM-CSF + IL-4 + IL-15 (IL-15 DCs) can be shortened for 6 days. IL-15 DCs showed high expression levels of costimulatory receptors, IFN-γ and IL-12p70. IL-15 DCs showed strong stimulation toward T, CIK and NK cells. The activated lymphocytes showed high cytotoxicity against myeloma cells.
Dendritic cells (DCs) are the most potent antigen-presenting cells, and have thus been used in clinical cancer vaccines. However, the effects of DC vaccines are still limited, leading researchers to explore novel ways to make them effective. In this study, we investigated whether human monocyte-derived DCs generated via the addition of interleukin 15 (IL-15) had a higher capacity to induce antigen-specific T cells compared to conventional DCs. We isolated CD14+ monocytes from peripheral blood from multiple myeloma (MM) patients, and induced immature DCs with granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4 in the presence or absence of IL-15 for 4–6 days. Then we generated mature DCs (mDCs) with lipopolysaccharide for another 2 days [IL-15 mDCs (6 days), IL-15 mDCs (8 days), and conventional mDCs (8 days)]. IL-15 mDCs (6 days) showed higher expression of MHC I and II, CD40, CD86, and CCR7, and the secretion of IFN-γ was significantly higher compared to conventional mDCs. IL-15 mDCs (6 days) showed superior polarization of naïve T cells toward Th1 cells and a higher proportion of activated T cells, cytokine-induced killer (CIK) cells, and natural killer (NK) cells for inducing strong cytotoxicity against myeloma cells, and lower proportion of regulatory T cells compared to conventional mDCs. These data imply that novel multipotent mDCs generated by the addition of IL-15, which can be cultivated in 6 days, resulted in outstanding activation of T cells, CIK cells and NK cells, and may facilitate cellular immunotherapy for cancer patients.
Collapse
|
7
|
Elemam NM, Ramakrishnan RK, Hundt JE, Halwani R, Maghazachi AA, Hamid Q. Innate Lymphoid Cells and Natural Killer Cells in Bacterial Infections: Function, Dysregulation, and Therapeutic Targets. Front Cell Infect Microbiol 2021; 11:733564. [PMID: 34804991 PMCID: PMC8602108 DOI: 10.3389/fcimb.2021.733564] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Infectious diseases represent one of the largest medical challenges worldwide. Bacterial infections, in particular, remain a pertinent health challenge and burden. Moreover, such infections increase over time due to the continuous use of various antibiotics without medical need, thus leading to several side effects and bacterial resistance. Our innate immune system represents our first line of defense against any foreign pathogens. This system comprises the innate lymphoid cells (ILCs), including natural killer (NK) cells that are critical players in establishing homeostasis and immunity against infections. ILCs are a group of functionally heterogenous but potent innate immune effector cells that constitute tissue-resident sentinels against intracellular and extracellular bacterial infections. Being a nascent subset of innate lymphocytes, their role in bacterial infections is not clearly understood. Furthermore, these pathogens have developed methods to evade the host immune system, and hence permit infection spread and tissue damage. In this review, we highlight the role of the different ILC populations in various bacterial infections and the possible ways of immune evasion. Additionally, potential immunotherapies to manipulate ILC responses will be briefly discussed.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jennifer E Hundt
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Rabih Halwani
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Prince Abdullah Ben Khaled Celiac Disease Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Azzam A Maghazachi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Regulatory (FoxP3 +) T cells and TGF-β predict the response to anti-PD-1 immunotherapy in patients with non-small cell lung cancer. Sci Rep 2020; 10:18994. [PMID: 33149213 PMCID: PMC7642363 DOI: 10.1038/s41598-020-76130-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/01/2020] [Indexed: 01/28/2023] Open
Abstract
Antitumor immune responses induced by immune checkpoint inhibitors anti-PD-1 or anti-PD-L1 have been used as therapeutic strategies in advanced non-small cell lung cancer (NSCLC) patients over the last decade. Favorable antitumor activity to immune checkpoint inhibitors is correlated with high PD-L1 expression, increased tumor-infiltrating lymphocytes, and decreased suppressive immune cells including Treg cells, myeloid-derived suppressor cells, or tumor-associated macrophages in various cancer types. In this study, we investigated the potential correlation between clinical outcomes and peripheral blood immune cell profiles, specifically focused on FoxP3+ Treg cells, collected at baseline and one week after anti-PD-1 therapy in two independent cohorts of patients with NSCLC: a discovery cohort of 83 patients and a validation cohort of 49 patients. High frequencies of circulating Treg cells one week after anti-PD-1 therapy were correlated with a high response rate, longer progression-free survival, and overall survival. Furthermore, high levels of TGF-β and Treg cells were associated with favorable clinical outcomes. Our results suggest that higher levels of FoxP3+ Treg cells and TGF-β can predict a favorable response to anti-PD-1 immunotherapy in patients with advanced NSCLC.
Collapse
|
9
|
Cline-Smith A, Axelbaum A, Shashkova E, Chakraborty M, Sanford J, Panesar P, Peterson M, Cox L, Baldan A, Veis D, Aurora R. Ovariectomy Activates Chronic Low-Grade Inflammation Mediated by Memory T Cells, Which Promotes Osteoporosis in Mice. J Bone Miner Res 2020; 35:1174-1187. [PMID: 31995253 PMCID: PMC8061311 DOI: 10.1002/jbmr.3966] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/23/2019] [Accepted: 01/16/2020] [Indexed: 12/27/2022]
Abstract
The loss of estrogen (E2 ) initiates a rapid phase of bone loss leading to osteoporosis in one-half of postmenopausal women, but the mechanism is not fully understood. Here, we show for the first time how loss of E2 activates low-grade inflammation to promote the acute phase of bone catabolic activity in ovariectomized (OVX) mice. E2 regulates the abundance of dendritic cells (DCs) that express IL-7 and IL-15 by inducing the Fas ligand (FasL) and apoptosis of the DC. In the absence of E2 , DCs become long-lived, leading to increased IL-7 and IL-15. We find that IL-7 and IL-15 together, but not alone, induced antigen-independent production of IL-17A and TNFα in a subset of memory T cells (TMEM ). OVX of mice with T-cell-specific ablation of IL15RA showed no IL-17A and TNFα expression, and no increase in bone resorption or bone loss, confirming the role of IL-15 in activating the TMEM and the need for inflammation. Our results provide a new mechanism by which E2 regulates the immune system, and how menopause leads to osteoporosis. The low-grade inflammation is likely to cause or contribute to other comorbidities observed postmenopause. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anna Cline-Smith
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ariel Axelbaum
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Elena Shashkova
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Mousumi Chakraborty
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jessie Sanford
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Prabhjyot Panesar
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Macey Peterson
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Linda Cox
- Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Angel Baldan
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Deborah Veis
- Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Rajeev Aurora
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|