1
|
Wang D, Jin M, Zhao X, Zhao T, Lin W, He Z, Fan M, Jin W, Zhou J, Jin L, Zheng C, Jin H, Zhao Y, Li X, Ying L, Wang Y, Zhu G, Huang Z. FGF1 ΔHBS ameliorates chronic kidney disease via PI3K/AKT mediated suppression of oxidative stress and inflammation. Cell Death Dis 2019; 10:464. [PMID: 31189876 PMCID: PMC6561918 DOI: 10.1038/s41419-019-1696-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
Currently, there is a lack of effective therapeutic approaches to the treatment of chronic kidney disease (CKD) with irreversible deterioration of renal function. This study aimed to investigate the ability of mutant FGF1 (FGF1ΔHBS, which has reduced mitogenic activity) to alleviate CKD and to study its associated mechanisms. We found that FGF1ΔHBS exhibited much weaker mitogenic activity than wild-type FGF1 (FGF1WT) in renal tissues. RNA-seq analysis revealed that FGF1ΔHBS inhibited oxidative stress and inflammatory signals in mouse podocytes challenged with high glucose. These antioxidative stress and anti-inflammatory activities of FGF1ΔHBS prevented CKD in two mouse models: a diabetic nephropathy model and an adriamycin-induced nephropathy model. Further mechanistic analyses suggested that the inhibitory effects of FGF1ΔHBS on oxidative stress and inflammation were mediated by activation of the GSK-3β/Nrf2 pathway and inhibition of the ASK1/JNK signaling pathway, respectively. An in-depth study demonstrated that both pathways are under control of PI3K/AKT signaling activated by FGF1ΔHBS. This finding expands the potential uses of FGF1ΔHBS for the treatment of various kinds of CKD associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Dezhong Wang
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Mengyun Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xinyu Zhao
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Tianyang Zhao
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Wei Lin
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhengle He
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Miaojuan Fan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Wei Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jie Zhou
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lingwei Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Chao Zheng
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hui Jin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yushuo Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Lei Ying
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yang Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Guanghui Zhu
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. .,The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Zhifeng Huang
- School of Pharmaceutical Sciences & Center for Structural Biology, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
2
|
Ying C, Wang S, Lu Y, Chen L, Mao Y, Ling H, Cheng X, Zhou X. Glucose fluctuation increased mesangial cell apoptosis related to AKT signal pathway. Arch Med Sci 2019; 15:730-737. [PMID: 31110541 PMCID: PMC6524177 DOI: 10.5114/aoms.2019.84739] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/22/2017] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Blood glucose fluctuation is an important factor for the development of diabetic complications. Glucose fluctuation aggravated the renal injury in diabetic nephropathy. In the present study, our aim was to investigate the effects of blood glucose fluctuation on the glomerular mesangal cells and its related mechanism. MATERIAL AND METHODS Mesangial cells were divided into four groups: the normal glucose group (NG) cells were incubated in normal glucose conditions (5.6 mmol/l); the high glucose group (HG) cells were treated with 25 mmol/l; the glucose fluctuation (FG) group received 5.6 mmol/l and 25 mmol/l glucose repeated 3 times; the mannitol group (MG) received 5.6 mmol/l glucose plus 24.4 mmol/l mannitol as a control. Cell viability and apoptosis were detected, reactive oxygen species (ROS) level, superoxide dismutase (SOD) activity and malonaldehyde (MDA) levels were measured. Phosphorylated ser/thr protein kinase (P-AKT, phosphor-Ser473), phosphorylated glycogen synthase kinase-3β (P-GSK-3β, phosphor-Ser9) and cleaved cysteinyl aspartate-specific proteinase-3 (cleaved caspase-3) levels were assessed using western blot. RESULTS Data suggested that mesangial cells in the FG group show higher cell viability in 12 h, and lower cell viability from 48 h. The FG group showed cell apoptosis accompanied by a significant MDA level increase and SOD activity decrease in 48 h. More importantly, glucose fluctuation could aggravate oxidative stress in glomerular mesangial cells. Furthermore, the P-AKT level was lower, and increased P-GSK-3β and cleaved caspase-3 levels were higher in the FG group than in the HG group. CONCLUSIONS Glucose fluctuation aggravates mesangial cell apoptosis, which may be partly induced by activating oxidative stress and inhibiting the AKT signaling pathway.
Collapse
Affiliation(s)
- Changjiang Ying
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shanshan Wang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Lu
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lei Chen
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhen Mao
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongwei Ling
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xingbo Cheng
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoyan Zhou
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Ren W, Zhao C, Wang Y, Fang Y, Huang Z, Chen W, Wang L, Hu W, Wang K, Ni L. Ramipril can alleviate the accumulation of renal mesangial matrix in rats with diabetic nephropathy by inhibiting insulin-like growth factor-1. Acta Cir Bras 2019; 34:e20190010000007. [PMID: 30785508 PMCID: PMC6585927 DOI: 10.1590/s0102-865020190010000007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/11/2018] [Indexed: 01/19/2023] Open
Abstract
Purpose To investigate the impact of Ramipril (RAM) on the expressions of
insulin-like growth factor-1 (IGF-1) and renal mesangial matrix (RMM) in
rats with diabetic nephropathy (DN). Methods The Sprague Dawley rats were divided into normal control (NC) group (n =
12), DN group (n = 11), and DN+RAM group (n = 12). The ratio of renal weight
to body weight (RBT), fasting blood glucose (FBG), HbA1c, 24-h urine protein
(TPU), blood urea nitrogen (BUN), creatinine (Cr), renal pathological
changes, the levels of IGF-1, fibronectin (FN), type IV collagen (Col-IV),
and matrix metalloproteinases (MMP)-2 were compared among the groups. Results Compared with NC group, the RBT, FBG, HbA1c, TPU, BUN, Cr, and RMM in DN
group were significantly increased (P < 0.05), the IGF-1, FN, and Col-IV
were significantly upregulated (P < 0.05), while MMP was significantly
downregulated (P < 0.05). Compared with DN group, the indexes except for
the FBG and HbA1c in DN+RAM group were significantly improved (P < 0.05),
among which IGF-1 exhibited significant positive correlation with
TPU(r=0.937), FN(r=0.896) and Col-IV(r=0.871), while significant negative
correlation with MMP-2 (r=-0.826) (P<0.05). Conclusion RAM may protect the kidneys by suppressing IGF-1 and mitigating the
accumulation of RMM.
Collapse
Affiliation(s)
- Wei Ren
- Master, Department of Nephrology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China. Intellectual, scientific, conception and design of the study; acquisition, analysis and interpretation of data; technical procedures; statistical analysis; manuscript preparation; final approval
| | - Chen Zhao
- MD, Department of Nephrology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China. Acquisition, analysis and interpretation of data; technical procedures; statistical analysis; manuscript writing
| | - Yan Wang
- Master, Department of Nephrology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China. Acquisition of data, technical procedures
| | - Yuan Fang
- MD, Department of Nephrology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China. Acquisition of data, technical procedures
| | - Zhenzhen Huang
- Master, Department of Nephrology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China. Acquisition of data, technical procedures
| | - Wei Chen
- MD, Department of Nephrology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China. Acquisition of data
| | - Lihua Wang
- Master, Department of Nephrology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China. Acquisition of data
| | - Wen Hu
- Master, Department of Pathology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China. Acquisition, analysis and interpretation of data; technical procedures
| | - Ke Wang
- Master, Department of Nephrology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China. Acquisition of data
| | - Lijun Ni
- Master, Department of Nephrology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, China. Acquisition of data
| |
Collapse
|
4
|
Jing D, Bai H, Yin S. Renoprotective effects of emodin against diabetic nephropathy in rat models are mediated via PI3K/Akt/GSK-3β and Bax/caspase-3 signaling pathways. Exp Ther Med 2017; 14:5163-5169. [PMID: 29201232 DOI: 10.3892/etm.2017.5131] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 03/10/2017] [Indexed: 12/20/2022] Open
Abstract
Emodin is the main active component of the Chinese medicine rhubarb, which has a variety of pharmacological effects and a high clinical value. Its anti-inflammatory and antitumor effects have been widely studied. The aim of the present study was to determine whether emodin has renoprotective effects, and to identify the potential underlying mechanisms in a rat model of diabetic nephropathy (DN). The changes in mean blood glucose levels, normalized kidney weight, urinary albumin excretion, serum creatinine levels and tubulointerstitial injury index (TII) scores of the rats with DN were significantly attenuated by emodin. Furthermore, treatment with emodin significantly inhibited inflammation-related factors and oxidative stress, suppressed the expression of intercellular adhesion molecule 1 (ICAM-1) and B-cell lymphoma 2-associated X protein (Bax), increased phosphorylated Akt and phosphorylated-glycogen synthase kinase 3 (p-GSK-3β) expression and inhibited caspase-3 activity in diabetic rats. These data suggest that emodin protects against DN and that the underlying mechanism may involve the suppression of inflammation, ICAM-1 and Bax, and activation of the PI3K/Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Danqing Jing
- Department of Endocrinology, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Hua Bai
- Department of Endocrinology, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| | - Shinan Yin
- Department of Endocrinology, The First Affiliated Hospital of PLA General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
5
|
Aluksanasuwan S, Khamchun S, Thongboonkerd V. Targeted functional investigations guided by integrative proteome network analysis revealed significant perturbations of renal tubular cell functions induced by high glucose. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/09/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Siripat Aluksanasuwan
- Medical Proteomics Unit, Office for Research and Development; and Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science; Mahidol University; Bangkok Thailand
| | - Supaporn Khamchun
- Medical Proteomics Unit, Office for Research and Development; and Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science; Mahidol University; Bangkok Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development; and Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science; Mahidol University; Bangkok Thailand
| |
Collapse
|
6
|
Yang F, Li B, Dong X, Cui W, Luo P. The beneficial effects of zinc on diabetes-induced kidney damage in murine rodent model of type 1 diabetes mellitus. J Trace Elem Med Biol 2017; 42:1-10. [PMID: 28595780 DOI: 10.1016/j.jtemb.2017.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is a chronic multi-factorial metabolic disorder resulting from impaired glucose homeostasis. Zinc is a key co-factor for the correct functioning of anti-oxidant enzymes. Zinc deficiency therefore, impairs their synthesis, leading to increased oxidative stress within cells. Zinc deficiency occurs commonly in diabetic patients. The aim of this study is to investigate the effects of varying concentrations of zinc on diabetic nephropathy (DN) and the underlying mechanisms involved. FVB male mice aged 8 weeks were injected intraperitoneally with multiple low-dose streptozotocin at a concentration of 50mg/kg body weight daily for 5 days. Diabetic and age-matched control mice were treated with special diets supplemented with zinc at varying concentrations (0.85mg/kg, 30mg/kg, 150mg/kg) for 3 months. The mice were fed with zinc diets to mimic the process of oral administration of zinc in human. Zinc deficiency to some extent aggravated the damage of diabetic kidney. Feeding with normal (30mg/kg zinc/kg diet) and especially high (150mg/kg zinc/kg diet) concentration zinc could protect the kidney against diabetes-induced damage. The beneficial effects of zinc on DN are achieved most likely due to the upregulation of Nrf2 and its downstream factors NQO1, SOD1, SOD2. Zinc upregulated the expression of Akt phosphorylation and GSK-3β phosphorylation, resulting in a reduction in Fyn nuclear translocation and export of Nrf2 to the cytosol. Thus, regular monitoring and maintaining of adequate levels of zinc are recommended in diabetic individuals in order to delay the development of DN.
Collapse
Affiliation(s)
- Fan Yang
- The Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Bing Li
- The Department of Nephropathy, Jilin Province People's Hospital, Changchun China
| | - Xiaoming Dong
- The Department of Orthopaedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Wenpeng Cui
- The Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Ping Luo
- The Department of Nephropathy, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| |
Collapse
|
7
|
Ying C, Zhou X, Chang Z, Ling H, Cheng X, Li W. Blood glucose fluctuation accelerates renal injury involved to inhibit the AKT signaling pathway in diabetic rats. Endocrine 2016; 53:81-96. [PMID: 26860515 DOI: 10.1007/s12020-016-0867-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/12/2016] [Indexed: 12/20/2022]
Abstract
Blood glucose fluctuation is associated with diabetic nephropathy. However, the mechanism by which blood glucose fluctuation accelerates renal injury is not fully understood. The aim of the present study was to assess the effects of blood glucose fluctuation on diabetic nephropathy in rats and investigate its underlying mechanism. Diabetes in the rats was induced by a high sugar, high-fat diet, and a single dose of STZ (35 mg/kg)-injected intraperitoneally. Unstable blood sugar models were induced by subcutaneous insulin injection and intravenous glucose injection alternately. Body weight, glycosylated hemoglobin A1c (HbAlc), blood urea nitrogen (BUN), serum creatinine (Scr), and Creatinine clearance (Ccr) were assessed. T-SOD activity and MDA level were measured by assay kit. Change in renal tissue ultrastructure was observed by light microscopy and electron microscopy. Phosphorylated ser/thr protein kinase (p-AKT) (phosphor-Ser473), phosphorylated glycogen synthase kinase-3 beta (p-GSK-3β) (phosphor-Ser9), Bcl-2-associated X protein (BAX), B cell lymphoma/leukemia 2 (BCL-2), and cleaved-cysteinyl aspartate-specific proteinase-3 (caspase-3) levels were detected by immunohistochemistry and Western blot. We observed that BUN and Scr were increased in diabetic rats, and Ccr was decreased. Furthermore, blood glucose fluctuations could exacerbate the Ccr changes. Renal tissue ultrastructure was also seriously injured by glucose variability in diabetic rats. In addition, glucose fluctuation increased the oxidative stress of renal tissue. Moreover, fluctuating blood glucose decreased p-AKT level and BCL-2, and increased p-GSK-3β, BAX, cleaved-caspase-3 levels, and ratio of BAX/BCL-2 in the kidneys of diabetic rats. In conclusion, these results suggest that blood glucose fluctuation accelerated renal injury is due, at least in part to its oxidative stress promoting and inhibiting the AKT signaling pathway in diabetic rats.
Collapse
Affiliation(s)
- Changjiang Ying
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Xiaoyan Zhou
- Laboratory of Morphology, Xuzhou Medical College, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Zhenzhen Chang
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Hongwei Ling
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Xingbo Cheng
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, People's Republic of China.
| | - Wei Li
- Department of Endocrinology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Zhao GY, Ding JY, Lu CL, Lin ZW, Guo J. The overexpression of 14-3-3ζ and Hsp27 promotes non–small cell lung cancer progression. Cancer 2013; 120:652-63. [PMID: 24804299 DOI: 10.1002/cncr.28452] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The 14-3-3ζ protein has been identified as a putative oncoprotein in several cancers, including non–small cell lung cancer (NSCLC). However, the mechanisms underlying its functions have not been well defined. METHODS Proteins that interact with 14-3-3ζ were identified through coimmunoprecipitation and mass spectrometry in NSCLC cells. The interaction of 14-3-3ζ with these molecular partners and their roles in the invasiveness and metastasis of NSCLC cells were assayed through specific disruptions in the 14-3-3ζ signaling network. In addition, the clinical implications of this 14-3-3ζ complex were examined in samples from patients with NSCLC. RESULTS Among the identified proteins that interacted with 14-3-3ζ, there were 230 proteins in 95-D cells, 181 proteins in 95-C cells, and 203 proteins in A549 cells; and 16 interacting proteins were identified that overlapped between all cell lines. Further studies revealed 14-3-3ζ complexes within the heat shock protein 27 (Hsp27) protein and demonstrated that the interference of Hsp27 or 14-3-3ζ inhibited the invasion and metastasis of NSCLC cells. The invasive and metastatic capabilities of cells with both Hsp27 and 14-3-3ζ interference could be completely restored only by Hsp27 and 14-3-3ζ complementary DNA transfection and not by either agent alone. Clinically, the postoperative 5-year overall survival (OS) in patients who had high expression of both 14-3-3ζ and Hsp27 was significantly lower than the 5-year OS in patients who had low expression of both 14-3-3ζ and Hsp27 (26.5% vs 59.7%, respectively). Multivariate analysis revealed that the combined expression of 14-3-3ζ and Hsp27 was an independent prognostic indicator of OS(P = .036). CONCLUSIONS The current data suggest that the combined expression of 14-3-3ζ and Hsp27 may be a biomarker for predicting survival in patients with NSCLC, and this combination may have potential as a therapeutic target for NSCLC.
Collapse
|
9
|
Yu M, Guo HX, Hui-Chen, Wang XH, Li CY, Zhan YQ, Ge CH, Yang XM. 14-3-3ζ interacts with hepatocyte nuclear factor 1α and enhances its DNA binding and transcriptional activation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:970-9. [PMID: 23603156 DOI: 10.1016/j.bbagrm.2013.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/31/2013] [Accepted: 04/08/2013] [Indexed: 11/28/2022]
Abstract
14-3-3 proteins regulate numerous cellular processes through interaction with a variety of proteins, and have been identified as HNF1α binding partner by mass spectrometry analysis in our previous study. In the present study, the interaction between 14-3-3ζ and HNF1α has been further validated by in vivo and in vitro assays. Moreover, we have found that overexpression of 14-3-3ζ potentiated the transcriptional activity of HNF1α in cultured cells, and silencing of 14-3-3ζ by RNA interference in HepG2 cells specifically affected the HNF1α-dependent gene expression. Furthermore, we have demonstrated that 14-3-3ζ is recruited to endogenous HNF1α responsive promoters and enhances HNF1α binding to its cognate DNA sequences. In addition, we have also provided evidence that the association between HNF1α and 14-3-3ζ is phosphorylation-dependent. Taken together, these results suggest that 14-3-3ζ may be an endogenous physiologic regulator of HNF1α.
Collapse
Affiliation(s)
- Miao Yu
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Chronic hyperglycemia (HG)-associated reactive oxygen/nitrogen species (ROS/RNS) stress and low grade inflammation are considered to play critical roles in the development of diabetic retinopathy (DR). Excess glucose metabolic flux through the aldose reductase/polyol pathway, advanced glycation end product (AGE) formation, elevated hexosamine biosynthesis pathway (HBP), diacyl glycerol/PKC activation, and mitochondrial ROS generation are all implicated in DR. In addition, endoplasmic reticulum stress/unfolded protein response (er-UPR) and deregulation of mitochondrial quality control by autophagy/mitophagy are observed causing cellular bioenergetic deficiency and injury. Recently, a pro-oxidant and pro-apoptotic thioredoxin interacting protein (TXNIP) was shown to be highly upregulated in DR and by HG in retinal cells in culture. TXNIP binds to thioredoxin (Trx) inhibiting its oxidant scavenging and thiolreducing capacity. Hence, prolonged overexpression of TXNIP causes ROS/RNS stress, mitochondrial dysfunction, inflammation and premature cell death in DR. Initially, DR was considered as microvascular complications of endothelial dysfunction and pericyte loss characterized by capillary basement membrane thickening, pericyte ghost, blood retinal barrier leakage, acellular capillary and neovascularization. However, it is currently acknowledged that neuro-glia are also affected by HG in diabetes and that neuronal injury, glial activation, innate immunity/sterile inflammation, and ganglion apoptosis occur early in DR. In addition, retinal pigment epithelium (RPE) becomes dysfunctional in DR. Since TXNIP is induced by HG in most cells, its effects are not restricted to a particular cell type in DR. However, depending on the metabolic activity and anti-oxidant capacity, some cells may be affected earlier by TXNIP than others. Identification of TXNIP sensitive cells and elucidating the underlying mechanism(s) will be critical for preventing pre-mature cell death and progression of DR.
Collapse
Affiliation(s)
- Lalit P Singh
- Departments of Anatomy and Cell Biology and Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
11
|
TXNIP links innate host defense mechanisms to oxidative stress and inflammation in retinal Muller glia under chronic hyperglycemia: implications for diabetic retinopathy. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:438238. [PMID: 22474421 PMCID: PMC3313582 DOI: 10.1155/2012/438238] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 11/27/2011] [Indexed: 12/16/2022]
Abstract
Thioredoxin Interacting Protein (TXNIP) mediates retinal inflammation, gliosis, and apoptosis in experimental diabetes. Here, we investigate the temporal response of Muller glia to high glucose (HG) and TXNIP expression using a rat Muller cell line (rMC1) in culture. We examined if HG-induced TXNIP expression evokes host defense mechanisms in rMC1 in response to metabolic abnormalities. HG causes sustained up-regulation of TXNIP (2 h to 5 days), ROS generation, ATP depletion, ER stress, and inflammation. Various cellular defense mechanisms are activated by HG: (i) NLRP3 inflammasome, (ii) ER stress response (sXBP1), (iii) hypoxic-like HIF-1α induction, (iv) autophagy/mitophagy, and (v) apoptosis. We also found in vivo that streptozocin-induced diabetic rats have higher retinal TXNIP and innate immune response gene expression than normal rats. Knock down of TXNIP by intravitreal siRNA reduces inflammation (IL-1β) and gliosis (GFAP) in the diabetic retina. TXNIP ablation in vitro prevents ROS generation, restores ATP level and autophagic LC3B induction in rMC1. Thus, our results show that HG sustains TXNIP up-regulation in Muller glia and evokes a program of cellular defense/survival mechanisms that ultimately lead to oxidative stress, ER stress/inflammation, autophagy and apoptosis. TXNIP is a potential target to ameliorate blinding ocular complications of diabetic retinopathy.
Collapse
|
12
|
Troib A, Landau D, Youngren JF, Kachko L, Rabkin R, Segev Y. The effects of type 1 IGF receptor inhibition in a mouse model of diabetic kidney disease. Growth Horm IGF Res 2011; 21:285-291. [PMID: 21865067 PMCID: PMC4238882 DOI: 10.1016/j.ghir.2011.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/26/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
OBJECTIVE We have recently shown increased sensitivity to IGF-I induced signal transduction in kidneys of diabetic mice. Accordingly we investigated the effects of PQ401, a novel diarylurea compound that inhibits IGF1R autophosphorylation in type I diabetes. METHODS Control (C) and Diabetic (D) mice were administered PQ401 (CP, DP) or vehicle (C, D) for 3weeks. RESULTS CP animals showed a decrease in renal phosphorylated (p-)AKT and p-IGF1R. However, PQ401 had no effect on diabetic state (hyperglycemia, weight loss) or renal disease parameters (hypertrophy, hyperfiltration and albuminuria). Type IV collagen as well as TGF-β mRNA increased in DP and D compared to C. In the CP group renal hypertrophy with fat accumulation in proximal tubuli and increased renal IGF-I, collagen IV and TGF-β mRNA were seen. CONCLUSIONS IGF1R inhibition by PQ401 exerted no significant effects on diabetic kidney disease parameters, arguing against a role for IGF-I in the pathogenesis of diabetic kidney disease. However, PQ401 affects normal kidneys, inducing renal hypertrophy as well as collagen and fat accumulation, with increased renal IGF-I mRNA, suggestive of a damage-regeneration process. Therefore, this diarylurea compound is not beneficial in early diabetic kidney disease. Its potential deleterious effects on kidney tissue need to be further investigated.
Collapse
Affiliation(s)
- Ariel Troib
- Shraga Segal Department of Microbiology and Immunology, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | |
Collapse
|
13
|
Li L, Fan D, Wang C, Wang JY, Cui XB, Wu D, Zhou Y, Wu LL. Angiotensin II increases periostin expression via Ras/p38 MAPK/CREB and ERK1/2/TGF-β1 pathways in cardiac fibroblasts. Cardiovasc Res 2011; 91:80-9. [PMID: 21367774 DOI: 10.1093/cvr/cvr067] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIMS Angiotensin II (AngII) is involved in extracellular matrix (ECM) accumulation contributing to heart failure. Periostin, a 90 kDa ECM protein, is a key regulator of cardiac fibrosis, and its expression is significantly higher in failing hearts. We determined the modulatory effect of AngII on periostin level and explored the possible signal transduction mechanism. METHODS AND RESULTS AngII (400 ng/kg/min) or normal saline was infused subcutaneously for 28 days into rats; AngII antagonism was with losartan (10 mg/kg/day orally). AngII infusion induced cardiac fibrosis and increased periostin expression, which was attenuated by losartan. In cultured adult rat cardiac fibroblasts, AngII promoted the mRNA and protein expression of periostin. AngII provoked activation of cAMP response element-binding protein (CREB), and CREB small interfering RNA (siRNA) suppressed AngII-induced periostin expression. Inhibition of p38 mitogen-activated protein kinase (p38 MAPK) with SB202190 attenuated AngII-induced CREB activation and periostin expression. Transfection with Ras guanyl-releasing protein 1 siRNA or RasN17 dominant-negative plasmid prevented AngII-induced p38 MAPK phosphorylation and periostin expression. Transforming growth factor (TGF)-β1 antibody decreased the stimulatory effect of AngII on periostin expression. The extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor PD98059 attenuated AngII-induced TGF-β1 expression, Smad2/3 nuclear accumulation, and periostin expression. CONCLUSION The activation of the Ras/p38 MAPK/CREB pathway is required for AngII-induced periostin expression. ERK1/2 also participates in AngII-induced periostin expression by regulating TGF-β1/Smad signalling.
Collapse
Affiliation(s)
- Li Li
- Department of Physiology and Pathophysiology, Peking University Health Science Center, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Devi TS, Singh LP, Hosoya KI, Terasaki T. GSK-3β/CREB axis mediates IGF-1-induced ECM/adhesion molecule expression, cell cycle progression and monolayer permeability in retinal capillary endothelial cells: Implications for diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1080-8. [PMID: 21549192 DOI: 10.1016/j.bbadis.2011.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/07/2011] [Accepted: 04/11/2011] [Indexed: 01/11/2023]
Abstract
Various growth factors and cytokines are implicated in endothelial dysfunction and blood-retinal barrier (BRB) breakdown in early diabetic retinopathy (DR). However, cellular and molecular mechanisms that may underlie the pathology of DR are not fully understood yet. We therefore examined the effect of insulin-like growth factor (IGF)-1 on ECM/adhesion molecule expression, cell cycle regulation and monolayer permeability in an endothelial cell line (TR-iBRB2). We investigate whether the action of IGF-1 (1) involves glycogen synthase kinase 3beta (GSK-3β) and cAMP responsive transcription factor (CREB) and (2) alters ECM/adhesion molecule gene expression. Treatment of TR-iBRB2 cell with IGF-1 (100ng/ml for 0-24h) increases phosphorylation of (i) Akt Thr308, and its substrates including GSK-3β at Ser9, which inactivates its kinase function, and (ii) CREB at Ser133 (activation). These phosphorylations correlate positively with enhanced expression of CREB targets such as ECM protein fibronectin and cell cycle progression factor cyclin D1. However, stable transfection of a mutant GSK3β(S9A) or a dominant negative K-CREB in TR-iBRB2 prevents IGF-1-induced fibronectin and cyclin D1 expression. Furthermore, IGF-1 reduces the level of intercellular adherence molecule VE-cadherin and increases monolayer permeability in TR-iBRB2 cells when measured by FITC-dextran leakage. The effect of IGF-1 on VE-cadherin and membrane permeability is absent in TR-iBRB2 cells expressing the GSK-3β(S9A). Similarly, K-CREB reverses IGF-1 down-regulation of VE-cadherin and up-regulation of fibronectin. These results indicate that GSK-3β/CREB axis alters ECM/adhesion molecule expression and cell cycle progression in retinal endothelial cells, and may potentially contribute to endothelial dysfunction and BRB leakage in DR.
Collapse
Affiliation(s)
- Takhellambam S Devi
- Departments of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
15
|
Lin M, Morrison CD, Jones S, Mohamed N, Bacher J, Plass C. Copy number gain and oncogenic activity of YWHAZ/14-3-3zeta in head and neck squamous cell carcinoma. Int J Cancer 2009; 125:603-11. [PMID: 19405126 DOI: 10.1002/ijc.24346] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gene amplification, a common mechanism for oncogene activation in cancers, has been used in the discovery of novel oncogenes. Low-level copy number gains are frequently observed in head and neck squamous cell carcinomas (HNSCCs) where numerous amplification events and potential oncogenes have already been reported. Recently, we applied restriction landmark genome scanning to study gene amplifications in HNSCC and located novel and uncharacterized regions in primary tumor samples. Gain on chromosome 8q22.3, the location of YWHAZ (14-3-3zeta), is found in 30-40% HNSCC cases. Data obtained from fluorescence in situ hybridization and immunohistochemistry on HNSCC tissue microarrays confirmed frequent low-level YWHAZ copy number gain and protein overexpression. YWHAZ mRNA was frequently upregulated in patients' tumor tissues. Furthermore, YWHAZ RNAi significantly suppressed the growth rate of HNSCC cell lines, and overexpression of YWHAZ in HaCaT immortalized human skin keratinocytes promotes overgrowth, as well as morphological changes. Reduced YWHAZ levels increased the G1/G0-phase proportion, decreased the S-phase proportion and the rate of DNA synthesis. Based on this evidence, we suggest that YWHAZ is a candidate proto-oncogene and deserves further investigation into its role in HNSCC carcinogenesis.
Collapse
Affiliation(s)
- Mauting Lin
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Medical Center, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
16
|
Ji L, Yin XX, Wu ZM, Wang JY, Lu Q, Gao YY. Ginkgo biloba extract prevents glucose-induced accumulation of ECM in rat mesangial cells. Phytother Res 2009; 23:477-85. [PMID: 19003945 DOI: 10.1002/ptr.2652] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pathological remodeling characterized by extracellular matrix (ECM) accumulation contributes to diabetic nephropathy (DN). This study evaluated the effects of Ginkgo biloba extract (GbE) on the metabolism of the ECM in rat mesangial cells cultured in hyperglycemic conditions. The cultured mesangial cells in high glucose conditions were allotted into six groups: normal control group, high glucose group, low concentration of GbE group, moderate concentration of GbE group, high concentration of GbE group, and captopril group. In the presence of high glucose, the levels of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and extracellular matrix metalloproteinase inducer (EMMPRIN) were decreased significantly, and the levels of tissue inhibitor of metalloproteinase-2 (TIMP-2), tissue inhibitor of metalloproteinase-1 (TIMP-1) and plasminogen activator inhibitor-1 (PAI-1) were increased significantly. These changes were reversed by GbE. GbE lowered the levels of transforming growth factor-beta(1) (TGF-beta(1)), insulin-like growth factor-1 (IGF-1) and connective tissue growth factor (CTGF) of the high glucose group. Furthermore, GbE also decreased the expressions of collagen IV and laminin of the high glucose group. In summary, the results suggest that GbE postpones the extracellular matrix accumulation by inhibiting the synthesis of ECM and promoting the degradation of ECM, and therefore, is a potential drug for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Lei Ji
- Department of Clinical Pharmacology, Faculty of Pharmacy, Xuzhou Medical College, Xuzhou 221004, China
| | | | | | | | | | | |
Collapse
|
17
|
Yamauchi K, Kurosaka A. Inhibition of glycogen synthase kinase-3 enhances the expression of alkaline phosphatase and insulin-like growth factor-1 in human primary dermal papilla cell culture and maintains mouse hair bulbs in organ culture. Arch Dermatol Res 2009; 301:357-65. [PMID: 19238412 DOI: 10.1007/s00403-009-0929-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 01/06/2009] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
Abstract
Dermal papilla (DP) at the hair follicle base is important for hair growth. Recent studies demonstrated that mouse vibrissa DP cells can be cultured in the presence of fibroblast growth factor-2 (FGF-2), but lose expression of versican and their follicle-inducing activity during the culture, and that activation of the Wnt signal, which is inhibited by glycogen synthase kinase-3 (GSK-3), in the DP cells promotes hair growth activity. We therefore investigated the influence of a GSK-3 inhibitor, (2'Z,3'E)-6-bromoindirubin-3'-oxime (BIO), on the growth of human DP cells and mouse vibrissa follicles in culture. We first demonstrated that, similarly to mouse DP cells, human DP cells were able to be cultured up to 15 passages in the presence of FGF-2, and lost the expression of alkaline phosphatase (ALP). When human DP cells later than ten passages were treated with BIO, the expression of ALP as well as insulin-like growth factor-1 (IGF-1), another DP marker, was significantly elevated. Nuclear and perinuclear translocation of beta-catenin was also observed. We then cultured mouse vibrissa follicles. In the presence of BIO, the follicles could be maintained for at least 3 days without detectable regression of the hair bulbs. The morphology and ALP expression were well preserved. BIO successfully retrieved the expression of DP marker molecules, such as ALP and IGF-1 in cultured human DP cells, and maintained mouse hair bulbs. Thus, treatment with BIO may be useful to prepare DP cells with hair follicle-inducing activity.
Collapse
Affiliation(s)
- Koichi Yamauchi
- Hair Clinic Reve-21 Corporation, 2-1-61 Shiromi, Chuo-ku, Osaka 540-6122, Japan
| | | |
Collapse
|