1
|
Ranga U, Panchapakesan A, Saini C. HIV-1 subtypes and latent reservoirs. Curr Opin HIV AIDS 2024; 19:87-92. [PMID: 38169308 DOI: 10.1097/coh.0000000000000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW We explore the current status of research on HIV-1 subtype-specific variations and their impact on HIV-1 latency. We also briefly address the controversy surrounding the decision-making process governing the ON/OFF states of HIV-1 transcription, specifically focusing on the regulatory elements, the long terminal repeat (LTR), and Tat. Understanding the decision-making process is crucial for developing effective intervention strategies, such as the 'shock-and-kill' approach, to reactivate latent HIV-1. RECENT FINDINGS Attention has been drawn to subtype-specific transcription factor binding site (TFBS) variations and the possible impact of these variations on viral latency. Further, diverse subtype-specific assays have been developed to quantify the latent viral reservoirs. One interesting observation is the relatively larger latent reservoirs in HIV-1B infection than those of other viral subtypes, which needs rigorous validation. The emergence of LTR-variant viral strains in HIV-1C demonstrating significantly higher levels of latency reversal has been reported. SUMMARY Despite persistent and substantial efforts, latent HIV-1 remains a formidable challenge to a functional cure. Determined and continued commitment is needed to understand the ON/OFF decision-making process of HIV-1 latency, develop rigorous assays for accurately quantifying the latent reservoirs, and identify potent latency-reversing agents and cocktails targeting multiple latency stages. The review emphasizes the importance of including diverse viral subtypes in future latency research.
Collapse
Affiliation(s)
- Udaykumar Ranga
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka
| | - Arun Panchapakesan
- Molecular Biology Laboratory, Y R Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, Tamil Nadu, India
| | - Chhavi Saini
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, Karnataka
| |
Collapse
|
2
|
Enhanced Transcriptional Strength of HIV-1 Subtype C Minimizes Gene Expression Noise and Confers Stability to the Viral Latent State. J Virol 2023; 97:e0137622. [PMID: 36533949 PMCID: PMC9888270 DOI: 10.1128/jvi.01376-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Stochastic fluctuations in gene expression emanating from the HIV-1 long terminal repeat (LTR), amplified by the Tat positive feedback circuit, determine the choice between viral infection fates: active transcription (ON) or transcriptional silence (OFF). The emergence of several transcription factor binding site (TFBS) variant strains in HIV-1 subtype C (HIV-1C), especially those containing the duplication of the NF-κB motif, mandates the evaluation of the effect of enhanced transcriptional strength on gene expression noise and its influence on viral fate selection switch. Using a panel of subgenomic LTR-variant strains containing different copy numbers of the NF-κB motif (ranging from 0 to 4), we used flow cytometry, mRNA quantification, and pharmacological perturbations to demonstrate an inverse correlation between promoter strength and gene expression noise in Jurkat T cells and primary CD4+ T cells. The inverse correlation is consistent in clonal cell populations at constant intracellular concentrations of Tat and when NF-κB levels were regulated pharmacologically. Further, we show that strong LTRs containing at least two copies of the NF-κB motif in the enhancer establish a more stable latent state and demonstrate more rapid latency reversal than weak LTRs containing fewer motifs. We also demonstrate a cooperative binding of NF-κB to the motif cluster in HIV-1C LTRs containing two, three, or four NF-κB motifs (Hill coefficient [H] = 2.61, 3.56, and 3.75, respectively). The present work alludes to a possible evolution of the HIV-1C LTR toward gaining transcriptional strength associated with attenuated gene expression noise with implications for viral latency. IMPORTANCE Over the past two consecutive decades, HIV-1 subtype C (HIV-1C) has been undergoing directional evolution toward augmenting the transcriptional strength of the long terminal repeat (LTR) by adding more copies of the existing transcription factor binding site (TFBS) by sequence duplication. Additionally, the duplicated elements are genetically diverse, suggesting broader-range signal receptivity by variant LTRs. The HIV-1 promoter is inherently noisy, and the stochastic fluctuations in gene expression of variant LTRs may influence the active transcription (ON)/transcriptional silence (OFF) latency decisions. The evolving NF-κB motif variations of HIV-1C offer a powerful opportunity to examine how the transcriptional strength of the LTR might influence gene expression noise. Our work here shows that the augmented transcriptional strength of the HIV-1C LTR leads to concomitantly reduced gene expression noise, consequently leading to stabler latency maintenance and rapid latency reversal. The present work offers a novel lead toward appreciating the molecular mechanisms governing HIV-1 latency.
Collapse
|
3
|
Bhange D, Prasad N, Singh S, Prajapati HK, Maurya SP, Gopalan BP, Nadig S, Chaturbhuj D, Jayaseelan B, Dinesha TR, Ahamed SF, Singh N, Brahmaiah A, Mehta K, Gohil Y, Balakrishnan P, Das BK, Dias M, Gangakhedkar R, Mehendale S, Paranjape RS, Saravanan S, Shet A, Solomon SS, Thakar M, Ranga U. The Evolution of Regulatory Elements in the Emerging Promoter-Variant Strains of HIV-1 Subtype C. Front Microbiol 2021; 12:779472. [PMID: 34899661 PMCID: PMC8660095 DOI: 10.3389/fmicb.2021.779472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
In a multicentric, observational, investigator-blinded, and longitudinal clinical study of 764 ART-naïve subjects, we identified nine different promoter variant strains of HIV-1 subtype C (HIV-1C) emerging in the Indian population, with some of these variants being reported for the first time. Unlike several previous studies, our work here focuses on the evolving viral regulatory elements, not the coding sequences. The emerging viral strains contain additional copies of the existing transcription factor binding sites (TFBS), including TCF-1α/LEF-1, RBEIII, AP-1, and NF-κB, created by sequence duplication. The additional TFBS are genetically diverse and may blur the distinction between the modulatory region of the promoter and the viral enhancer. In a follow-up analysis, we found trends, but no significant associations between any specific variant promoter and prognostic markers, probably because the emerging viral strains might not have established mono infections yet. Illumina sequencing of four clinical samples containing a coinfection indicated the domination of one strain over the other and establishing a stable ratio with the second strain at the follow-up time points. Since a single promoter regulates viral gene expression and constitutes the master regulatory circuit with Tat, the acquisition of additional and variant copies of the TFBS may significantly impact viral latency and latent reservoir characteristics. Further studies are urgently warranted to understand how the diverse TFBS profiles of the viral promoter may modulate the characteristics of the latent reservoir, especially following the initiation of antiretroviral therapy.
Collapse
Affiliation(s)
- Disha Bhange
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Nityanand Prasad
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Swati Singh
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Harshit Kumar Prajapati
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Shesh Prakash Maurya
- HIV Immunology Laboratory, Department of Microbiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Bindu Parachalil Gopalan
- Division of Microbiology/Infectious Diseases Unit, St. John's National Academy of Health Sciences, Bengaluru, India
| | - Sowmya Nadig
- Division of Microbiology/Infectious Diseases Unit, St. John's National Academy of Health Sciences, Bengaluru, India
| | - Devidas Chaturbhuj
- Department of Serology and Immunology, National AIDS Research Institute (NARI), Pune, India
| | - Boobalan Jayaseelan
- Department of Molecular Biology and Genotyping, Y. R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Thongadi Ramesh Dinesha
- Department of Molecular Biology and Genotyping, Y. R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Syed Fazil Ahamed
- Division of Microbiology/Infectious Diseases Unit, St. John's National Academy of Health Sciences, Bengaluru, India
| | - Navneet Singh
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Anangi Brahmaiah
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Kavita Mehta
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Yuvrajsinh Gohil
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Pachamuthu Balakrishnan
- Infectious Diseases Laboratory, Y. R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Bimal Kumar Das
- HIV Immunology Laboratory, Department of Microbiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Mary Dias
- Division of Microbiology/Infectious Diseases Unit, St. John's National Academy of Health Sciences, Bengaluru, India
| | - Raman Gangakhedkar
- Department of Clinical Sciences, National AIDS Research Institute (NARI), Pune, India
| | - Sanjay Mehendale
- Department of Research, P. G. Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - Ramesh S Paranjape
- Department of Clinical Sciences, National AIDS Research Institute (NARI), Pune, India
| | - Shanmugam Saravanan
- Department of Molecular Biology and Genotyping, Y. R. Gaitonde Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Anita Shet
- Division of Microbiology/Infectious Diseases Unit, St. John's National Academy of Health Sciences, Bengaluru, India
| | - Sunil Suhas Solomon
- YRGCARE Suniti Solomon Outpatient Clinic, Y. R. Gaitonde Center for AIDS Research and Education (YRG CARE), Chennai, India.,Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Madhuri Thakar
- Department of Serology and Immunology, National AIDS Research Institute (NARI), Pune, India
| | - Udaykumar Ranga
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| |
Collapse
|
4
|
Bosso M, Stürzel CM, Kmiec D, Badarinarayan SS, Braun E, Ito J, Sato K, Hahn BH, Sparrer KMJ, Sauter D, Kirchhoff F. An additional NF-κB site allows HIV-1 subtype C to evade restriction by nuclear PYHIN proteins. Cell Rep 2021; 36:109735. [PMID: 34551301 PMCID: PMC8505707 DOI: 10.1016/j.celrep.2021.109735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/23/2021] [Accepted: 08/26/2021] [Indexed: 10/28/2022] Open
Abstract
Subtype C is the most prevalent clade of human immunodeficiency virus type 1 (HIV-1) worldwide. The reasons for this are poorly understood. Here, we demonstrate that a characteristic additional third nuclear factor κB (NF-κB) binding site in the long terminal repeat (LTR) promoter allows subtype C HIV-1 strains to evade restriction by nuclear PYHIN proteins, which sequester the transcription factor Sp1. Further, other LTR alterations are responsible for rare PYHIN resistance of subtype B viruses. Resistance-conferring mutations generally reduce the dependency of HIV-1 on Sp1 for virus production and render LTR transcription highly responsive to stimulation by NF-κB/p65. A third NF-κB binding site increases infectious virus yield in primary CD4+ T cells in an γ-interferon-inducible protein 16 (IFI16)-dependent manner. Comprehensive sequence analyses suggest that the frequency of circulating PYHIN-resistant HIV-1 strains is increasing. Our finding that an additional NF-κB binding site in the LTR confers resistance to nuclear PYHIN proteins helps to explain the dominance of clade C HIV-1 strains.
Collapse
Affiliation(s)
- Matteo Bosso
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE5 9RS, UK
| | - Smitha Srinivasachar Badarinarayan
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Elisabeth Braun
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jumpei Ito
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | | | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
5
|
Ali H, Bhange D, Mehta K, Gohil Y, Prajapati HK, Byrareddy SN, Buch S, Ranga U. An emerging and variant viral promoter of HIV-1 subtype C exhibits low-level gene expression noise. Retrovirology 2021; 18:27. [PMID: 34538278 PMCID: PMC8451104 DOI: 10.1186/s12977-021-00572-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/27/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND We observe the emergence of several promoter-variant viral strains in India during recent years. The variant viral promoters contain additional copies of transcription factor binding sites present in the viral modulatory region or enhancer, including RBEIII, LEF-1, Ap-1 and/or NF-κB. These sites are crucial for governing viral gene expression and latency. Here, we infer that one variant viral promoter R2N3-LTR containing two copies of RBF-2 binding sites (an RBEIII site duplication) and three copies of NF-κB motifs may demonstrate low levels of gene expression noise as compared to the canonical RN3-LTR or a different variant R2N4-LTR (a duplication of an RBEIII site and an NF-κB motif). To demonstrate this, we constructed a panel of sub-genomic viral vectors of promoter-variant LTRs co-expressing two reporter proteins (mScarlet and Gaussia luciferase) under the dual-control of Tat and Rev. We established stable pools of CEM.NKR-CCR5 cells (CEM-CCR5RL reporter cells) and evaluated reporter gene expression under different conditions of cell activation. RESULTS The R2N3-LTR established stringent latency that was highly resistant to reversal by potent cell activators such as TNF-α or PMA, or even to a cocktail of activators, compared to the canonical RN3- or the variant R2N4-LTR. The R2N3-LTR exhibited low-level basal gene expression in the absence of cell activation that enhanced marginally but significantly when activated. In the presence of Tat and Rev, trans-complemented in the form of an infectious virus, the R2N3-LTR demonstrated gene expression at levels comparable to the wild-type viral promoter. The R2N3-LTR is responsive to Tat and Rev factors derived from viral strains representing diverse genetic subtypes. CONCLUSION With extremely low-level transcriptional noise, the R2N3-LTR can serve as an excellent model to examine the establishment, maintenance, and reversal of HIV-1 latency. The R2N3-LTR would also be an ideal viral promoter to develop high-throughput screening assays to identify potent latency-reversing agents since the LTR is not affected by the usual background noise of the cell.
Collapse
Affiliation(s)
- Haider Ali
- Molecular Biology and Genetics Unit, HIV AIDS Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
| | - Disha Bhange
- Molecular Biology and Genetics Unit, HIV AIDS Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
| | - Kavita Mehta
- Molecular Biology and Genetics Unit, HIV AIDS Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
| | - Yuvrajsinh Gohil
- Molecular Biology and Genetics Unit, HIV AIDS Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
| | -
Harshit Kumar Prajapati
- Molecular Biology and Genetics Unit, HIV AIDS Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Udaykumar Ranga
- Molecular Biology and Genetics Unit, HIV AIDS Laboratory, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India
| |
Collapse
|
6
|
Cat and Mouse: HIV Transcription in Latency, Immune Evasion and Cure/Remission Strategies. Viruses 2019; 11:v11030269. [PMID: 30889861 PMCID: PMC6466452 DOI: 10.3390/v11030269] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
There is broad scientific and societal consensus that finding a cure for HIV infection must be pursued. The major barrier to achieving a cure for HIV/AIDS is the capacity of the HIV virus to avoid both immune surveillance and current antiretroviral therapy (ART) by rapidly establishing latently infected cell populations, termed latent reservoirs. Here, we provide an overview of the rapidly evolving field of HIV cure/remission research, highlighting recent progress and ongoing challenges in the understanding of HIV reservoirs, the role of HIV transcription in latency and immune evasion. We review the major approaches towards a cure that are currently being explored and further argue that small molecules that inhibit HIV transcription, and therefore uncouple HIV gene expression from signals sent by the host immune response, might be a particularly promising approach to attain a cure or remission. We emphasize that a better understanding of the game of "cat and mouse" between the host immune system and the HIV virus is a crucial knowledge gap to be filled in both cure and vaccine research.
Collapse
|
7
|
Mbondji-wonje C, Dong M, Wang X, Zhao J, Ragupathy V, Sanchez AM, Denny TN, Hewlett I. Distinctive variation in the U3R region of the 5' Long Terminal Repeat from diverse HIV-1 strains. PLoS One 2018; 13:e0195661. [PMID: 29664930 PMCID: PMC5903597 DOI: 10.1371/journal.pone.0195661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Functional mapping of the 5’LTR has shown that the U3 and the R regions (U3R) contain a cluster of regulatory elements involved in the control of HIV-1 transcription and expression. As the HIV-1 genome is characterized by extensive variability, here we aimed to describe mutations in the U3R from various HIV-1 clades and CRFs in order to highlight strain specific differences that may impact the biological properties of diverse HIV-1 strains. To achieve our purpose, the U3R sequence of plasma derived virus belonging to different clades (A1, B, C, D, F2) and recombinants (CRF02_AG, CRF01_AE and CRF22_01A1) was obtained using Illumina technology. Overall, the R region was very well conserved among and across different strains, while in the U3 region the average inter-strains nucleotide dissimilarity was up to 25%. The TAR hairpin displayed a strain-distinctive cluster of mutations affecting the bulge and the loop, but mostly the stem. Like in previous studies we found a TATAA motif in U3 promoter region from the majority of HIV-1 strains and a TAAAA motif in CRF01_AE; but also in LTRs from CRF22_01A1 isolates. Although LTRs from CRF22_01A1 specimens were assigned CRF01_AE, they contained two NF-kB sites instead of the single TFBS described in CRF01_AE. Also, as previously describe in clade C isolates, we found no C/EBP binding site directly upstream of the enhancer region in CRF22_01A1 specimens. In our study, one-third of CRF02_AG LTRs displayed three NF-kB sites which have been mainly described in clade C isolates. Overall, the number, location and binding patterns of potential regulatory elements found along the U3R might be specific to some HIV-1 strains such as clade F2, CRF02_AG, CRF01_AE and CRF22_01A1. These features may be worth consideration as they may be involved in distinctive regulation of HIV-1 transcription and replication by different and diverse infecting strains.
Collapse
Affiliation(s)
- Christelle Mbondji-wonje
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- Department of Molecular Biology, Faculty of Medicine, Pharmacy and Biomedical sciences, University of Douala, Douala, Cameroon
- * E-mail: (CM); (IH)
| | - Ming Dong
- U.S. Military HIV Research Program, Silver Spring, Maryland United States of America
| | - Xue Wang
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Viswanath Ragupathy
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ana M. Sanchez
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Thomas N. Denny
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Indira Hewlett
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (CM); (IH)
| |
Collapse
|
8
|
Bachu M, Yalla S, Asokan M, Verma A, Neogi U, Sharma S, Murali RV, Mukthey AB, Bhatt R, Chatterjee S, Rajan RE, Cheedarla N, Yadavalli VS, Mahadevan A, Shankar SK, Rajagopalan N, Shet A, Saravanan S, Balakrishnan P, Solomon S, Vajpayee M, Satish KS, Kundu TK, Jeang KT, Ranga U. Multiple NF-κB sites in HIV-1 subtype C long terminal repeat confer superior magnitude of transcription and thereby the enhanced viral predominance. J Biol Chem 2012; 287:44714-35. [PMID: 23132857 DOI: 10.1074/jbc.m112.397158] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We demonstrate that at least three different promoter variant strains of HIV-1 subtype C have been gradually expanding and replacing the standard subtype C viruses in India, and possibly in South Africa and other global regions, over the past decade. The new viral strains contain an additional NF-κB, NF-κB-like, or RBEIII site in the viral promoter. Although the acquisition of an additional RBEIII site is a property shared by all the HIV-1 subtypes, acquiring an additional NF-κB site remains an exclusive property of subtype C. The acquired κB site is genetically distinct, binds the p50-p65 heterodimer, and strengthens the viral promoter at the levels of transcription initiation and elongation. The 4-κB viruses dominate the 3-κB "isogenic" viral strains in pairwise competition assays in T-cell lines, primary cells, and the ecotropic human immunodeficiency virus mouse model. The dominance of the 4-κB viral strains is also evident in the natural context when the subjects are coinfected with κB-variant viral strains. The mean plasma viral loads, but not CD4 counts, are significantly different in 4-κB infection suggesting that these newly emerging strains are probably more infectious. It is possible that higher plasma viral loads underlie selective transmission of the 4-κB viral strains. Several publications previously reported duplication or deletion of diverse transcription factor-binding sites in the viral promoter. Unlike previous reports, our study provides experimental evidence that the new viral strains gained a potential selective advantage as a consequence of the acquired transcription factor-binding sites and importantly that these strains have been expanding at the population level.
Collapse
Affiliation(s)
- Mahesh Bachu
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru 560064, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bachu M, Mukthey AB, Murali RV, Cheedarla N, Mahadevan A, Shankar SK, Satish KS, Kundu TK, Ranga U. Sequence insertions in the HIV type 1 subtype C viral promoter predominantly generate an additional NF-κB binding site. AIDS Res Hum Retroviruses 2012; 28:1362-8. [PMID: 22332607 DOI: 10.1089/aid.2011.0388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
After screening a large number of clinical samples of HIV-1 subtype C in India, a subset of viral strains containing sequence insertions upstream of the viral enhancer has been identified. The sequence insertions contained binding sites for at least two different transcription factors NF-κB and RBEIII, importantly, in a mutually exclusive fashion. Furthermore, while some of the viral strains contained insertions of κB-like sites, a few others contained dual insertions of the RBEIII and κB sites together but only one of the two was intact. NF-κB acquisition appears to be the most common phenotype unique for subtype C with nearly half of the variant strains containing such insertions. Given that subtype C already contains three functional NF-κB sites in the viral enhancer, acquisition of a fourth NF-κB motif in some variant viral strains is intriguing. Further investigation is warranted to examine the significance of the sequence insertions for the replicative fitness of the variant viral strains.
Collapse
Affiliation(s)
- Mahesh Bachu
- HIV-AIDS Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | | | | | | | | | | | | | | | | |
Collapse
|