1
|
Lopes LO, Cury SS, de Moraes D, Oliveira JS, de Oliveira G, Cabral-Marques O, Fernandez GJ, Hirata MH, Wang DZ, Dal-Pai-Silva M, Carvalho RF, Freire PP. The Impact of miR-155-5p on Myotube Differentiation: Elucidating Molecular Targets in Skeletal Muscle Disorders. Int J Mol Sci 2024; 25:1777. [PMID: 38339055 PMCID: PMC10855706 DOI: 10.3390/ijms25031777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 02/12/2024] Open
Abstract
MicroRNAs are small regulatory molecules that control gene expression. An emerging property of muscle miRNAs is the cooperative regulation of transcriptional and epitranscriptional events controlling muscle phenotype. miR-155 has been related to muscular dystrophy and muscle cell atrophy. However, the function of miR-155 and its molecular targets in muscular dystrophies remain poorly understood. Through in silico and in vitro approaches, we identify distinct transcriptional profiles induced by miR-155-5p in muscle cells. The treated myotubes changed the expression of 359 genes (166 upregulated and 193 downregulated). We reanalyzed muscle transcriptomic data from dystrophin-deficient patients and detected overlap with gene expression patterns in miR-155-treated myotubes. Our analysis indicated that miR-155 regulates a set of transcripts, including Aldh1l, Nek2, Bub1b, Ramp3, Slc16a4, Plce1, Dync1i1, and Nr1h3. Enrichment analysis demonstrates 20 targets involved in metabolism, cell cycle regulation, muscle cell maintenance, and the immune system. Moreover, digital cytometry confirmed a significant increase in M2 macrophages, indicating miR-155's effects on immune response in dystrophic muscles. We highlight a critical miR-155 associated with disease-related pathways in skeletal muscle disorders.
Collapse
Affiliation(s)
- Letícia Oliveira Lopes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (O.C.-M.); (M.H.H.)
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Diogo de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Jakeline Santos Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Grasieli de Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Otavio Cabral-Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (O.C.-M.); (M.H.H.)
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo 05508-000, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo 05403-010, Brazil
- Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo 05403-010, Brazil
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo, São Paulo 05508-090, Brazil
| | - Geysson Javier Fernandez
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
- College of Medicine, University of Antioquia, UdeA, Medellín 53-108, Colombia
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (O.C.-M.); (M.H.H.)
| | - Da-Zhi Wang
- Health Heart Institute, Center for Regenerative Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
| | - Paula Paccielli Freire
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.O.L.); (S.S.C.); (D.d.M.); (J.S.O.); (G.d.O.); (G.J.F.); (M.D.-P.-S.)
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (O.C.-M.); (M.H.H.)
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
2
|
Listyarini K, Sumantri C, Rahayu S, Islam MA, Akter SH, Uddin MJ, Gunawan A. Hepatic Transcriptome Analysis Reveals Genes, Polymorphisms, and Molecules Related to Lamb Tenderness. Animals (Basel) 2023; 13:ani13040674. [PMID: 36830461 PMCID: PMC9951696 DOI: 10.3390/ani13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Tenderness is a key meat quality trait that determines the public acceptance of lamb consumption, so genetic improvement toward lamb with higher tenderness is pivotal for a sustainable sheep industry. However, unravelling the genomics controlling the tenderness is the first step. Therefore, this study aimed to identify the transcriptome signatures and polymorphisms related to divergent lamb tenderness using RNA deep sequencing. Since the molecules and enzymes that control muscle growth and tenderness are metabolized and synthesized in the liver, hepatic tissues of ten sheep with divergent phenotypes: five high- and five low-lamb tenderness samples were applied for deep sequencing. Sequence analysis identified the number of reads ranged from 21.37 to 25.37 million bases with a mean value of 22.90 million bases. In total, 328 genes are detected as differentially expressed (DEGs) including 110 and 218 genes that were up- and down-regulated, respectively. Pathway analysis showed steroid hormone biosynthesis as the dominant pathway behind the lamb tenderness. Gene expression analysis identified the top high (such as TP53INP1, CYP2E1, HSD17B13, ADH1C, and LPIN1) and low (such as ANGPTL2, IGFBP7, FABP5, OLFML3, and THOC5) expressed candidate genes. Polymorphism and association analysis revealed that mutation in OLFML3, ANGPTL2, and THOC5 genes could be potential candidate markers for tenderness in sheep. The genes and pathways identified in this study cause variation in tenderness, thus could be potential genetic markers to improve meat quality in sheep. However, further validation is needed to confirm the effect of these markers in different sheep populations so that these could be used in a selection program for lamb with high tenderness.
Collapse
Affiliation(s)
- Kasita Listyarini
- Graduate School of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Cece Sumantri
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Sri Rahayu
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Md. Aminul Islam
- Immunogenomics and Alternative Medicine (IAM) Laboratory, Department of Medicine, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Syeda Hasina Akter
- Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Muhammad Jasim Uddin
- School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia
- Center for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (M.J.U.); (A.G.)
| | - Asep Gunawan
- Department of Animal Production and Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
- Correspondence: (M.J.U.); (A.G.)
| |
Collapse
|
3
|
Handel AE, Cheuk S, Dhalla F, Maio S, Hübscher T, Rota I, Deadman ME, Ekwall O, Lütolf M, Weinberg K, Holländer G. Developmental dynamics of the neural crest-mesenchymal axis in creating the thymic microenvironment. SCIENCE ADVANCES 2022; 8:eabm9844. [PMID: 35559672 PMCID: PMC9106291 DOI: 10.1126/sciadv.abm9844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
The thymic stroma is composed of epithelial and nonepithelial cells providing separate microenvironments controlling homing, differentiation, and selection of hematopoietic precursor cells to functional T cells. Here, we explore at single-cell resolution the complex composition and dynamic changes of the nonepithelial stromal compartment across different developmental stages in the human and mouse thymus, and in an experimental model of the DiGeorge syndrome, the most common form of human thymic hypoplasia. The detected gene expression signatures identify previously unknown stromal subtypes and relate their individual molecular profiles to separate differentiation trajectories and functions, revealing an unprecedented heterogeneity of different cell types that emerge at discrete developmental stages and vary in their expression of key regulatory signaling circuits and extracellular matrix components. Together, these findings highlight the dynamic complexity of the nonepithelial thymus stroma and link this to separate instructive roles essential for normal thymus organogenesis and tissue maintenance.
Collapse
Affiliation(s)
- Adam E. Handel
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stanley Cheuk
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Fatima Dhalla
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stefano Maio
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tania Hübscher
- Laboratory of Stem Cell Bioengineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Ioanna Rota
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mary E. Deadman
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, University of Gothenburg, Gothenburg, Sweden
| | - Matthias Lütolf
- Laboratory of Stem Cell Bioengineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Kenneth Weinberg
- Division of Stem Cell Transplantation and Regenerative Medicine Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Georg Holländer
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
4
|
Listyarini K, Sumantri C, Rahayu S, Uddin MJ, Gunawan A. Association study and expression analysis of olfactomedin like 3 gene related to meat quality, carcass characteristics, retail meat cut, and fatty acid composition in sheep. Anim Biosci 2022; 35:1489-1498. [PMID: 35507851 PMCID: PMC9449389 DOI: 10.5713/ab.21.0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/30/2022] [Indexed: 11/27/2022] Open
Abstract
Objective The objective of this study was to identify polymorphism in olfactomedin like 3 (OLFML3) gene, and association analysis with meat quality, carcass characteristics, retail meat cut, and fatty acid composition in sheep, and expression quantification of OLFML3 gene in phenotypically divergent sheep. Methods A total of 328 rams at the age of 10 to 12 months with an average body weight of 26.13 kg were used. A novel polymorphism was identified using high-throughput sequencing in sheep and genotyping of OLFML3 polymorphism was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Among 328 rams, 100 rams representing various sheep genotypes were used for association study and proc general linear model was used to analyse association between genotypes and phenotypic traits. Quantitative real-time polymerase chain reaction (qRT-PCR) was used for the expression analysis of OLFML3 mRNA in phenotypically divergent sheep population. Results The findings revealed a novel polymorphism in the OLFML3 gene (g.90317673 C>T). The OLFML3 gene revealed three genotypes: CC, CT, and TT. The single nucleotide polymorphism (SNP) was found to be significantly (p<0.05) associated with meat quality traits such as tenderness and cooking loss; carcass characteristics such as carcass length; retail meat cut such as pelvic fat in leg, intramuscular fat in loin and tenderloin, muscle in flank and shank; fatty acids composition such as tridecanoic acid (C13:0), palmitoleic acid (C16:1), heptadecanoic acid (C17:0), ginkgolic acid (C17:1), linolenic acid (C18:3n3), arachidic acid (C20:0), eicosenoic acid (C20:1), arachidonic acid (C20:4n6), heneicosylic acid (C21:0), and nervonic acid (C24:1). The TT genotype was associated with higher level of meat quality, carcass characteristics, retail meat cut, and some fatty acids composition. However, the mRNA expression analysis was not different among genotypes. Conclusion The OLFML3 gene could be a potential putative candidate for selecting higher quality sheep meat, carcass characteristics, retail meat cuts, and fatty acid composition in sheep.
Collapse
|
5
|
Barrón-Gallardo CA, Garcia-Chagollán M, Morán-Mendoza AJ, Delgadillo-Cristerna R, Martínez-Silva MG, Aguilar-Lemarroy A, Jave-Suárez LF. Transcriptomic Analysis of Breast Cancer Patients Sensitive and Resistant to Chemotherapy: Looking for Overall Survival and Drug Resistance Biomarkers. Technol Cancer Res Treat 2022; 21:15330338211068965. [PMID: 34981997 PMCID: PMC8733364 DOI: 10.1177/15330338211068965] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Worldwide breast cancer ranks first in mortality and incidence rates in women over 20 years old. Rather than one disease, breast cancer is a heterogeneous group of diseases that express distinct molecular profiles. Neoadjuvant chemotherapy is an important therapeutic strategy for breast cancer patients independently of their molecular subtype, with the drawback of resistance development. In addition, chemotherapy has adverse effects that combined with resistance could contribute to lower overall survival. Although great efforts have been made to find diagnostic and prognostic biomarkers for breast cancer and for response to targeted and immune therapy for this pathology, little has been explored regarding biomarkers of response to anthracyclines and taxanes based neoadjuvant chemotherapy. This work aimed to evaluate the molecular profile of patients who received neoadjuvant chemotherapy to identify differentially expressed genes (DEGs) that could be used as biomarkers of chemotherapy response and overall survival. Breast cancer patients who were candidates for neoadjuvant chemotherapy were enrolled in this study. After treatment and according to their pathological response, they were assigned as sensitive or resistant. To evaluate DEGs, Gene Ontology, Kyoto Encyclopedia Gene and Genome (KEGG), and protein–protein interactions, RNA-seq information from all patients was obtained by next-generation sequencing. A total of 1985 DEGs were found, and KEGG analysis indicated a great number of DEGs in metabolic pathways, pathways in cancer, cytokine–cytokine receptor interactions, and neuroactive ligand-receptor interactions. A selection of 73 DEGs was used further for an analysis of overall survival using the METABRIC study and the ductal carcinoma dataset of The Cancer Genome Atlas (TCGA) database. Nine DEGs correlated with overall survival, of which the subexpression of C1QTNF3, CTF1, OLFML3, PLA2R1, PODN, KRT15, HLA-A, and the overexpression of TUBB and TCP1 were found in resistant patients and related to patients with lower overall survival.
Collapse
Affiliation(s)
- Carlos A Barrón-Gallardo
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Mariel Garcia-Chagollán
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | | | | | - Luis F Jave-Suárez
- 37767Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| |
Collapse
|
6
|
Iqbal A, Ping J, Ali S, Zhen G, Juan L, Kang JZ, Ziyi P, Huixian L, Zhihui Z. Role of microRNAs in myogenesis and their effects on meat quality in pig - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1873-1884. [PMID: 32819078 PMCID: PMC7649413 DOI: 10.5713/ajas.20.0324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2020] [Accepted: 08/16/2020] [Indexed: 02/02/2023]
Abstract
The demand for food is increasing day by day because of the increasing global population. Therefore, meat, the easiest and largely available source of protein, needs to be produced in large amounts with good quality. The pork industry is a significant shareholder in fulfilling the global meat demands. Notably, myogenesis- development of muscles during embryogenesis- is a complex mechanism which culminates in meat production. But the molecular mechanisms which govern the myogenesis are less known. The involvement of miRNAs in myogenesis and meat quality, which depends on factors such as myofiber composition and intramuscular fat contents which determine the meat color, flavor, juiciness, and water holding capacity, are being extrapolated to increase both the quantity and quality of pork. Various kinds of microRNAs (miRNAs), miR-1, miR-21, miR22, miR-27, miR-34, miR-127, miR-133, miR-143, miR-155, miR-199, miR-206, miR-208, miR-378, and miR-432 play important roles in pig skeletal muscle development. Further, the quality of meat also depends upon myofiber which is developed through the expression of different kinds of miRNAs at different stages. This review will focus on the mechanism of myogenesis, the role of miRNAs in myogenesis, and meat quality with a focus on the pig.
Collapse
Affiliation(s)
- Ambreen Iqbal
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jiang Ping
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Shaokat Ali
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Gao Zhen
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Liu Juan
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jin Zi Kang
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Pan Ziyi
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Lu Huixian
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Zhao Zhihui
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| |
Collapse
|
7
|
Xu S, Chang Y, Wu G, Zhang W, Man C. Potential role of miR-155-5p in fat deposition and skeletal muscle development of chicken. Biosci Rep 2020; 40:BSR20193796. [PMID: 32441300 PMCID: PMC7269915 DOI: 10.1042/bsr20193796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 11/17/2022] Open
Abstract
miR-155 has multiple functions in many physiological and pathological processes. However, little is known about the expression characteristics of avian miR-155. In the present study, partial pri-miR-155 sequences were cloned from AA+ broiler, Sanhuang broiler and Hy-Line Brown layer, respectively. Stem-loop qRT-PCR was performed to detect the miR-155-5p spatiotemporal expression profiles of each chicken breed, and the target genes of miR-155-5p were predicted in Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The results showed that the partial pri-miR-155 sequences of different breeds of chicken were high conserved. The expression patterns of miR-155-5p between broiler and layer were basically similar, and miR-155-5p was expressed highly in immune related tissues (spleen, thymus and bursa). In the same old chicken (14 days old), miR-155-5p expression activity of fat tissue all had higher level in the three chicken breeds, but the expression activities in skeletal muscle of broilers were significantly lower than that of layer (P<0.05). In different development stages of Hy-Line Brown layer, miR-155-5p expression activities in skeletal muscle of 14-day-old and 10-month-old layers were significantly lower than that of 24-month-old layer (P<0.05). Fat related target genes (ACOX1, ACOT7, FADS1, SCD and HSD17B12) and skeletal muscle related target genes (CCNT2, DMD, CFL2, MAPK14, FLNB, ZBTB18 and CDK5) of miR-155-5p were predicted, respectively. The results indicate that miR-155-5p may be an important factor inhibiting the fat deposition and skeletal muscle development in chicken.
Collapse
Affiliation(s)
- Sifan Xu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, P. R. China
| | - Yang Chang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, P. R. China
| | - Guanxian Wu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, P. R. China
| | - Wanting Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, P. R. China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, P. R. China
| |
Collapse
|
8
|
Abstract
Objective: Modern medical research has proven that human diseases are directly or indirectly related to genes. At the same time, genetic research has also brought updates to diagnostic techniques. Olfactomedin-like 3 (OLFML3) gene is a novel and clinically valuable gene. In order to better understand the role of OLFML3 in human diseases, we discuss and analyze the characteristics, function, and regulation mechanism of the OLFML3 gene in this review. Data sources: A comprehensive search in PubMed and ScienceDirect database for English up to March 2019, with the keywords of “Olfactomedin-like 3,” “Olfactomedin,” “extracellular matrix,” “Transforming Growth Factor β1,” “anoikis-resistance,” and “microRNA-155.” Study selection: Careful review of all relevant literature, the references of the retrieved articles were also screened to search for potentially relevant papers. Results: OLFML3 is a secreted glycoprotein with 406 amino acid residues, belonging to the Olfactomedin (OLF) family. Due to the particularity of its structure and differential expression, OLFML3 has unique biological functions that could be distinct from other members in the OLF family. The currently known functions include embryonic development function and tumorigenesis. The regulation mechanism is still under investigation. It is directly related to many human diseases. Conclusions: OLFML3 is a multifunctional glycoprotein that is closely involved in embryonic development, tumor invasion, and metastasis. Unfortunately, current research on this important molecule is still very limited. Further investigations on the possible mechanism of OLFML3 biological functions and modulation will help us develop better diagnostics and treatments.
Collapse
|
9
|
Braz CU, Taylor JF, Bresolin T, Espigolan R, Feitosa FLB, Carvalheiro R, Baldi F, de Albuquerque LG, de Oliveira HN. Sliding window haplotype approaches overcome single SNP analysis limitations in identifying genes for meat tenderness in Nelore cattle. BMC Genet 2019; 20:8. [PMID: 30642245 PMCID: PMC6332854 DOI: 10.1186/s12863-019-0713-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/02/2019] [Indexed: 12/30/2022] Open
Abstract
Background Traditional single nucleotide polymorphism (SNP) genome-wide association analysis (GWAA) can be inefficient because single SNPs provide limited genetic information about genomic regions. On the other hand, using haplotypes in the statistical analysis may increase the extent of linkage disequilibrium (LD) between haplotypes and causal variants and may also potentially capture epistastic interactions between variants within a haplotyped locus, providing an increase in the power and robustness of the association studies. We performed GWAA (413,355 SNP markers) using haplotypes based on variable-sized sliding windows and compared the results to a single-SNP GWAA using Warner-Bratzler shear force measured in the longissimus thorasis muscle of 3161 Nelore bulls to ascertain the optimal window size for identifying the genomic regions that influence meat tenderness. Results The GWAA using single SNPs identified eight variants influencing meat tenderness on BTA 3, 4, 9, 10 and 11. However, thirty-three putative meat tenderness QTL were detected on BTA 1, 3, 4, 5, 8, 9, 10, 11, 15, 17, 18, 24, 25, 26 and 29 using variable-sized sliding haplotype windows. Analyses using sliding window haplotypes of 3, 5, 7, 9 and 11 SNPs identified 57, 61, 42, 39, and 21% of all thirty-three putative QTL regions, respectively; however, the analyses using the 3 and 5 SNP haplotypes, cumulatively detected 88% of the putative QTL. The genes associated with variation in meat tenderness participate in myogenesis, neurogenesis, lipid and fatty acid metabolism and skeletal muscle structure or composition processes. Conclusions GWAA using haplotypes based on variable-sized sliding windows allowed the detection of more QTL than traditional single-SNP GWAA. Analyses using smaller haplotypes (3 and 5 SNPs) detected a higher proportion of the putative QTL. Electronic supplementary material The online version of this article (10.1186/s12863-019-0713-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camila U Braz
- Animal Science Department, São Paulo State University (Unesp), Jaboticabal, SP, 144884-900, Brazil.
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Tiago Bresolin
- Animal Science Department, São Paulo State University (Unesp), Jaboticabal, SP, 144884-900, Brazil
| | - Rafael Espigolan
- Animal Science Department, São Paulo State University (Unesp), Jaboticabal, SP, 144884-900, Brazil
| | - Fabieli L B Feitosa
- Animal Science Department, São Paulo State University (Unesp), Jaboticabal, SP, 144884-900, Brazil
| | - Roberto Carvalheiro
- Animal Science Department, São Paulo State University (Unesp), Jaboticabal, SP, 144884-900, Brazil
| | - Fernando Baldi
- Animal Science Department, São Paulo State University (Unesp), Jaboticabal, SP, 144884-900, Brazil
| | - Lucia G de Albuquerque
- Animal Science Department, São Paulo State University (Unesp), Jaboticabal, SP, 144884-900, Brazil
| | - Henrique N de Oliveira
- Animal Science Department, São Paulo State University (Unesp), Jaboticabal, SP, 144884-900, Brazil.
| |
Collapse
|
10
|
Peshdary V, Atlas E. Dexamethasone induced miR-155 up-regulation in differentiating 3T3-L1 preadipocytes does not affect adipogenesis. Sci Rep 2018; 8:1264. [PMID: 29352275 PMCID: PMC5775309 DOI: 10.1038/s41598-018-19704-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/20/2017] [Indexed: 11/20/2022] Open
Abstract
Dexamethasone is a synthetic glucocorticoid that is widely used as an adipogenic inducer in both murine and human in vitro models. Glucocorticoids have been shown to regulate early transcriptional events in adipogenesis. MicroRNAs (miRNAs) have been also implicated in the regulation of preadipocyte differentiation; however, the effects of glucocorticoids on miRNA expression levels during this process have not been studied. In this study we investigated the effects of glucocorticoids on the expression levels of miR-155 in differentiating 3T3-L1 preadipocytes. We found that miR-155 levels were up-regulated (2.4-fold) by glucocorticoids in differentiating 3T3-L1 preadipocytes, and this enhancement was abolished in the presence of RU486, a glucocorticoid receptor antagonist. In contrast, treatment with rosiglitazone, another adipogenic inducer decreased the expression levels of miR-155 in these cells. Further, our data show that endogenous miR-155 is unlikely to be involved in adipogenesis as we show that both dexamethasone and rosiglitazone induced adipogenesis to similar levels. Furthermore, using miR-155 inhibitor, we showed that the dexamethasone mediated miR-155 enhancement did not alter adipogenesis. Our data show that dexamethasone but not rosiglitazone increases miR-155 expression and that the increased expression of miR-155 is not involved in the dexamethasone-mediated adipogenesis in the 3T3-L1 model.
Collapse
Affiliation(s)
- Vian Peshdary
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ella Atlas
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Ontario, Canada. .,Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
11
|
Hua C, Wang Z, Zhang J, Peng X, Hou X, Yang Y, Li K, Tang Z. SMAD7, an antagonist of TGF-beta signaling, is a candidate of prenatal skeletal muscle development and weaning weight in pigs. Mol Biol Rep 2016; 43:241-51. [DOI: 10.1007/s11033-016-3960-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/17/2016] [Indexed: 12/22/2022]
|
12
|
Tang Z, Yang Y, Wang Z, Zhao S, Mu Y, Li K. Integrated analysis of miRNA and mRNA paired expression profiling of prenatal skeletal muscle development in three genotype pigs. Sci Rep 2015; 5:15544. [PMID: 26496978 PMCID: PMC4620456 DOI: 10.1038/srep15544] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/28/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) play a vital role in muscle development by binding to messenger RNAs (mRNAs). Based on prenatal skeletal muscle at 33, 65 and 90 days post-coitus (dpc) from Landrace, Tongcheng and Wuzhishan pigs, we carried out integrated analysis of miRNA and mRNA expression profiling. We identified 33, 18 and 67 differentially expressed miRNAs and 290, 91 and 502 mRNA targets in Landrace, Tongcheng and Wuzhishan pigs, respectively. Subsequently, 12 mRNAs and 3 miRNAs differentially expressed were validated using quantitative real-time PCR (qPCR), and 5 predicted miRNA targets were confirmed via dual luciferase reporter or western blot assays. We identified a set of miRNAs and mRNA genes differentially expressed in muscle development. Gene ontology (GO) enrichment analysis suggests that the miRNA targets are primarily involved in muscle contraction, muscle development and negative regulation of cell proliferation. Our data indicated that more mRNAs are regulated by miRNAs at earlier stages than at later stages of muscle development. Landrace and Tongcheng pigs also had longer phases of myoblast proliferation than Wuzhishan pigs. This study will be helpful to further explore miRNA-mRNA interactions in myogenesis and aid to uncover the molecular mechanisms of muscle development and phenotype variance in pigs.
Collapse
Affiliation(s)
- Zhonglin Tang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yalan Yang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Zishuai Wang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuanping Zhao
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Institute of Animal Science, Anhui Academy of Agricultural Sciences, Hefei, 230031, P. R. China
| | - Yulian Mu
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kui Li
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| |
Collapse
|
13
|
Hou X, Yang Y, Zhu S, Hua C, Zhou R, Mu Y, Tang Z, Li K. Comparison of skeletal muscle miRNA and mRNA profiles among three pig breeds. Mol Genet Genomics 2015; 291:559-73. [PMID: 26458558 DOI: 10.1007/s00438-015-1126-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022]
Abstract
The pig is an important source of animal protein, and is also an ideal model for human disease. There are significant differences in growth rate, muscle mass, and meat quality between different breeds. To understand the molecular mechanisms underlying porcine skeletal muscle phenotypes, we performed mRNA and miRNA profiling of muscle from three different breeds of pig, Landrace (lean-type), Tongcheng (obese-type), and Wuzhishan (mini-type) by Solexa sequencing. Forty-three genes and 106 miRNAs were differentially expressed between Landrace and Tongcheng pigs, 92 genes and 151 miRNAs were differentially expressed between Tongcheng and Wuzhishan pigs, and 145 genes and 156 miRNAs were differential expressed between Landrace and Wuzhishan pigs. Gene ontology analysis suggested that genes differentially expressed between Landrace and Tongcheng pigs were mainly involved in the biological processes of oxidative stress and muscle organ development. Meanwhile, for Tongcheng vs Wuzhishan and Landrace vs Wuzhishan pigs, the differentially expressed genes were involved in fatty acid metabolism, oxidative stress, muscle contraction, and muscle organ development, processes that are closely related to meat quality. To investigate the molecular mechanisms underlying meat quality diversity based on differentially expressed genes and miRNAs, interaction networks were constructed, according to target prediction results and integration analysis of up-regulated genes with down-regulated miRNAs or down-regulated genes with up-regulated miRNAs. Our findings identify candidate genes and miRNAs associated with muscle development and indicate their potential roles in muscle phenotype variance between different pig breeds. These results serve as a foundation for further studies on muscle development and molecular breeding.
Collapse
Affiliation(s)
- Xinhua Hou
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yalan Yang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, People's Republic of China
| | - Shiyun Zhu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Chaoju Hua
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Rong Zhou
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yulian Mu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Zhonglin Tang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China. .,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, People's Republic of China.
| | - Kui Li
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| |
Collapse
|
14
|
Ouyang H, He X, Li G, Xu H, Jia X, Nie Q, Zhang X. Deep Sequencing Analysis of miRNA Expression in Breast Muscle of Fast-Growing and Slow-Growing Broilers. Int J Mol Sci 2015; 16:16242-62. [PMID: 26193261 PMCID: PMC4519947 DOI: 10.3390/ijms160716242] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/03/2015] [Accepted: 07/10/2015] [Indexed: 01/17/2023] Open
Abstract
Growth performance is an important economic trait in chicken. MicroRNAs (miRNAs) have been shown to play important roles in various biological processes, but their functions in chicken growth are not yet clear. To investigate the function of miRNAs in chicken growth, breast muscle tissues of the two-tail samples (highest and lowest body weight) from Recessive White Rock (WRR) and Xinghua Chickens (XH) were performed on high throughput small RNA deep sequencing. In this study, a total of 921 miRNAs were identified, including 733 known mature miRNAs and 188 novel miRNAs. There were 200, 279, 257 and 297 differentially expressed miRNAs in the comparisons of WRRh vs. WRRl, WRRh vs. XHh, WRRl vs. XHl, and XHh vs. XHl group, respectively. A total of 22 highly differentially expressed miRNAs (fold change > 2 or < 0.5; p-value < 0.05; q-value < 0.01), which also have abundant expression (read counts > 1000) were found in our comparisons. As far as two analyses (WRRh vs. WRRl, and XHh vs. XHl) are concerned, we found 80 common differentially expressed miRNAs, while 110 miRNAs were found in WRRh vs. XHh and WRRl vs. XHl. Furthermore, 26 common miRNAs were identified among all four comparisons. Four differentially expressed miRNAs (miR-223, miR-16, miR-205a and miR-222b-5p) were validated by quantitative real-time RT-PCR (qRT-PCR). Regulatory networks of interactions among miRNAs and their targets were constructed using integrative miRNA target-prediction and network-analysis. Growth hormone receptor (GHR) was confirmed as a target of miR-146b-3p by dual-luciferase assay and qPCR, indicating that miR-34c, miR-223, miR-146b-3p, miR-21 and miR-205a are key growth-related target genes in the network. These miRNAs are proposed as candidate miRNAs for future studies concerning miRNA-target function on regulation of chicken growth.
Collapse
Affiliation(s)
- Hongjia Ouyang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| | - Xiaomei He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| | - Guihuan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| | - Xinzheng Jia
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China.
| |
Collapse
|
15
|
Tao C, Huang S, Wang Y, Wei G, Zhang Y, Qi D, Wang Y, Li K. Changes in white and brown adipose tissue microRNA expression in cold-induced mice. Biochem Biophys Res Commun 2015; 463:193-9. [DOI: 10.1016/j.bbrc.2015.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/06/2015] [Indexed: 12/18/2022]
|
16
|
Bai L, Liang R, Yang Y, Hou X, Wang Z, Zhu S, Wang C, Tang Z, Li K. MicroRNA-21 Regulates PI3K/Akt/mTOR Signaling by Targeting TGFβI during Skeletal Muscle Development in Pigs. PLoS One 2015; 10:e0119396. [PMID: 25950587 PMCID: PMC4423774 DOI: 10.1371/journal.pone.0119396] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/12/2015] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs), which are short (22–24 base pairs), non-coding RNAs, play critical roles in myogenesis. Using Solexa deep sequencing, we detected the expression levels of 229 and 209 miRNAs in swine skeletal muscle at 90 days post-coitus (E90) and 100 days postnatal (D100), respectively. A total of 138 miRNAs were up-regulated on E90, and 31 were up-regulated on D100. Of these, 9 miRNAs were selected for the validation of the small RNA libraries by quantitative RT-PCR (RT-qPCR). We found that miRNA-21 was down-regulated by 17-fold on D100 (P<0.001). Bioinformatics analysis suggested that the transforming growth factor beta-induced (TGFβI) gene was a potential target of miRNA-21. Both dual luciferase reporter assays and western blotting demonstrated that the TGFβI gene was regulated by miRNA-21. Co-expression analysis revealed that the mRNA expression levels of miRNA-21 and TGFβI were negatively correlated (r = -0.421, P = 0.026) in skeletal muscle during the 28 developmental stages. Our results revealed that more miRNAs are expressed in prenatal than in postnatal skeletal muscle. The miRNA-21 is a novel myogenic miRNA that is involved in skeletal muscle development and regulates PI3K/Akt/mTOR signaling by targeting the TGFβI gene.
Collapse
Affiliation(s)
- Lijing Bai
- State Key Laboratory for Animal Nutrition, Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ruyi Liang
- State Key Laboratory for Animal Nutrition, Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Yang
- State Key Laboratory for Animal Nutrition, Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhua Hou
- State Key Laboratory for Animal Nutrition, Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zishuai Wang
- State Key Laboratory for Animal Nutrition, Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shiyun Zhu
- State Key Laboratory for Animal Nutrition, Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chuduan Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Agricultural Animal Genetics and Breeding, Department of Animal Breeding and Genetics, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Zhonglin Tang
- State Key Laboratory for Animal Nutrition, Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- * E-mail: ,
| | - Kui Li
- State Key Laboratory for Animal Nutrition, Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Yang Y, Sun W, Wang R, Lei C, Zhou R, Tang Z, Li K. Wnt antagonist, secreted frizzled-related protein 1, is involved in prenatal skeletal muscle development and is a target of miRNA-1/206 in pigs. BMC Mol Biol 2015; 16:4. [PMID: 25888412 PMCID: PMC4359577 DOI: 10.1186/s12867-015-0035-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/19/2015] [Indexed: 11/10/2022] Open
Abstract
Background The Wnt signaling pathway is involved in the control of cell proliferation and differentiation during skeletal muscle development. Secreted frizzled-related proteins (SFRPs), such as SFRP1, function as inhibitors of Wnt signaling. MicroRNA-1/206(miRNA-1/206) is specifically expressed in skeletal muscle and play a critical role in myogenesis. The miRNA-mRNA profiles and bioinformatics study suggested that the SFRP1 gene was potentially regulated by miRNA-1/206 during porcine skeletal muscle development. Methods To understand the function of SFRP1 and miRNA-1/206 in swine myogenesis, we first predicted the targets of miRNA-1/206 with the TargetScan and PicTar programs, and analyzed the molecular characterization of the porcine SFRP1 gene. We performed a temporal-spatial expression analysis of SFRP1 mRNA and miRNA-206 in Tongcheng pigs (a Chinese indigenous breed) by quantitative real-time polymerase chain reaction, and conducted the co-expression analyses of SFRP1 and miRNA-1/206. Subsequently, the interaction between SFRP1 and miRNA-1/206 was validated via dual luciferase and Western blot assays. Results The bioinformatics analysis predicted SFRP1 to be a target of miRNA-1/206. The expression level of the SFRP1 was highly varied across numerous pig tissues and it was down-regulated during porcine skeletal muscle development. The expression level of the SFRP1 was significantly higher in the embryonic skeletal compared with postnatal skeletal muscle, whereas miR-206 showed the inverse pattern of expression. A significant negative correlation was observed between the expression of miR-1/206 and SFRP1 during porcine skeletal muscle development (p <0.05). Dual luciferase assay and Western-blot results demonstrated that SFRP1 was a target of miR-1/206 in porcine iliac endothelial cells. Conclusions Our results indicate that the SFRP1 gene is regulated by miR-1/206 and potentially affects skeletal muscle development. These findings increase understanding of the biological functions and the regulation of the SFRP1 gene in mammals.
Collapse
Affiliation(s)
- Yalan Yang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China. .,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R. China.
| | - Wei Sun
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China. .,College of Animal Science and Technology, Northwest A & F University, No. 22 Xinong Road, 712100, Yangling, Shanxi, P.R. China.
| | - Ruiqi Wang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China.
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A & F University, No. 22 Xinong Road, 712100, Yangling, Shanxi, P.R. China.
| | - Rong Zhou
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China.
| | - Zhonglin Tang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China. .,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R. China.
| | - Kui Li
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, P.R. China. .,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, P.R. China.
| |
Collapse
|
18
|
Cai Z, Zhang L, Jiang X, Sheng Y, Xu N. Differential miRNA expression profiles in the longissimus dorsi muscle between intact and castrated male pigs. Res Vet Sci 2014; 99:99-104. [PMID: 25591995 DOI: 10.1016/j.rvsc.2014.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 12/14/2014] [Accepted: 12/17/2014] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are important modulators of skeletal muscle development in multiple mammalian species, but their role in skeletal muscle growth in castrated male pigs has not been well studied. The aim of the present study was to determine the role of miRNAs in longissimus dorsi muscle under castration. Our results showed that castration caused a significant decrease in serum testosterone levels as well as carcass lean mass, but led to an increase in carcass fat mass. Moreover, miRNA expression profiles in skeletal muscle were significantly altered by castration, and seven differentially expressed miRNAs were discovered. More importantly, functional analysis suggested that these differentially expressed miRNAs and their targets are involved in the regulation of skeletal muscle contractile function and fat metabolism. Taken together, these results demonstrate altered miRNA expression in skeletal muscle of castrated male pigs, and suggest a potential mechanism underlying the effects of castration on porcine skeletal muscle growth.
Collapse
Affiliation(s)
- Zhaowei Cai
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoling Jiang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yifei Sheng
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Ningying Xu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Butovsky O, Jedrychowski MP, Cialic R, Krasemann S, Murugaiyan G, Fanek Z, Greco DJ, Wu PM, Doykan CE, Kiner O, Lawson RJ, Frosch MP, Pochet N, Fatimy RE, Krichevsky AM, Gygi SP, Lassmann H, Berry J, Cudkowicz ME, Weiner HL. Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann Neurol 2014; 77:75-99. [PMID: 25381879 DOI: 10.1002/ana.24304] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 10/06/2014] [Accepted: 10/22/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate miR-155 in the SOD1 mouse model and human sporadic and familial amyotrophic lateral sclerosis (ALS). METHODS NanoString microRNA, microglia and immune gene profiles, protein mass spectrometry, and RNA-seq analyses were measured in spinal cord microglia, splenic monocytes, and spinal cord tissue from SOD1 mice and in spinal cord tissue of familial and sporadic ALS. miR-155 was targeted by genetic ablation or by peripheral or centrally administered anti-miR-155 inhibitor in SOD1 mice. RESULTS In SOD1 mice, we found loss of the molecular signature that characterizes homeostatic microglia and increased expression of miR-155. There was loss of the microglial molecules P2ry12, Tmem119, Olfml3, transcription factors Egr1, Atf3, Jun, Fos, and Mafb, and the upstream regulators Csf1r, Tgfb1, and Tgfbr1, which are essential for microglial survival. Microglia biological functions were suppressed including phagocytosis. Genetic ablation of miR-155 increased survival in SOD1 mice by 51 days in females and 27 days in males and restored the abnormal microglia and monocyte molecular signatures. Disease severity in SOD1 males was associated with early upregulation of inflammatory genes, including Apoe in microglia. Treatment of adult microglia with apolipoprotein E suppressed the M0-homeostatic unique microglia signature and induced an M1-like phenotype. miR-155 expression was increased in the spinal cord of both familial and sporadic ALS. Dysregulated proteins that we identified in human ALS spinal cord were restored in SOD1(G93A) /miR-155(-/-) mice. Intraventricular anti-miR-155 treatment derepressed microglial miR-155 targeted genes, and peripheral anti-miR-155 treatment prolonged survival. INTERPRETATION We found overexpression of miR-155 in the SOD1 mouse and in both sporadic and familial human ALS. Targeting miR-155 in SOD1 mice restores dysfunctional microglia and ameliorates disease. These findings identify miR-155 as a therapeutic target for the treatment of ALS.
Collapse
Affiliation(s)
- Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02112
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tang Z, Liang R, Zhao S, Wang R, Huang R, Li K. CNN3 is regulated by microRNA-1 during muscle development in pigs. Int J Biol Sci 2014; 10:377-85. [PMID: 24719555 PMCID: PMC3979990 DOI: 10.7150/ijbs.8015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 02/01/2014] [Indexed: 12/17/2022] Open
Abstract
The calponin 3 (CNN3) gene has important functions involved in skeletal muscle development. MicroRNAs (miRNAs) play critical role in myogenesis by influencing the mRNA stability or protein translation of target gene. Based on paired microRNA and mRNA profiling in the prenatal skeletal muscle of pigs, our previous study suggested that CNN3 was differentially expressed and a potential target for miR-1. To further understand the biological function and regulation mechanism of CNN3, we performed co-expression analysis of CNN3 and miR-1 in developmental skeletal muscle tissues (16 stages) from Tongcheng (a Chinese domestic breed, obese-type) and Landrace (a Western, lean-type) pigs, respectively. Subsequently, dual luciferase and western blot assays were carried out. During skeletal muscle development, we observe a significantly negative expression correlation between the miR-1 and CNN3 at mRNA level. Our dual luciferase and western blot results suggested that the CNN3 gene was regulated by miR-1. We identified four single nucleotide polymorphisms (SNPs) contained within the CNN3 gene. Association analysis indicated that these CNN3 SNPs are significantly associated with birth weight (BW) and the 21-day weaning weight of the piglets examined. These facts indicate that CNN3 is a candidate gene associated with growth traits and regulated by miR-1 during skeletal muscle development in pigs.
Collapse
Affiliation(s)
- Zhonglin Tang
- 1. Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Ruyi Liang
- 1. Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
- 2. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R.China
| | - Shuanping Zhao
- 1. Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Ruiqi Wang
- 1. Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| | - Ruihua Huang
- 2. Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R.China
| | - Kui Li
- 1. Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
| |
Collapse
|
21
|
Fontanesi L, Schiavo G, Galimberti G, Calò DG, Russo V. A genomewide association study for average daily gain in Italian Large White pigs. J Anim Sci 2014; 92:1385-94. [PMID: 24663154 DOI: 10.2527/jas.2013-7059] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Average daily gain is an important target trait in pig breeding programs. In this study we performed a genomewide association study for ADG in Italian Large White pigs using a selective genotyping approach. Two extreme and divergent groups of Italian Large White pigs (number 190 + 190) were selected among a population of about 10,000 performance tested gilts (EBV for ADG in the 2 groups were -30 ± 14 g and 81 ± 12 g, respectively) and genotyped with the Illumina PorcineSNP60 BeadChip. Association analysis was performed treating the pigs of the 2 extreme groups as cases and controls after correction for family-based stratification. A total of 127 SNP resulted significantly associated with ADG (P nominal value [P(raw)] < 2.0 × 10(-7), P < 0.01 Bonferroni corrected [P(Bonferroni)] < 0.01, false discovery rate < 7.76 × 10(-5)). Another 102 SNP were suggestively associated with the target trait (P(raw) between 2.0 × 10(-7) and 2.02 × 10(-6), P(Bonferroni) < 0.10, false discovery rate < 4.19 × 10(-4)). These SNP were located on all autosomes and on porcine chromosome (SSC) X. The largest number of SNP within this list was on SSC5 (n = 42), SSC7 (34), SSC6 (30), SSC4 (23), and SSC16 (16). These chromosomes were richer in significant or suggestively significant markers than expected (P < 0.001). A quite high number of these SNP (n = 23) were associated with backfat thickness in a previous genomewide association study performed in the same pig population, confirming the negative correlation between the 2 traits. Two or more SNP targeted the same gene: IGSF3 and HS2ST1 (SSC4), OTOGL (SSC5), FTO region (SSC6), and MYLK4 and MCUR1 (SSC7). Other regions that were associated with ADG in previous candidate gene studies (e.g., MC4R on SSC1, IGF2 and LDHA on SSC2, MUC4 on SSC13) 1) included markers with P(raw) < 0.01 that, however, did not pass the stringent threshold of significance adopted in this study or 2) could not be tested because not assigned to the Sscrofa10.2 genome version. Functional annotation of the significant regions using Gene Ontology suggested that many and complex processes at different levels are involved in affecting ADG, indicating the complexity of the genetic factors controlling this ultimate phenotype. The obtained results may contribute to understand the genetic mechanisms determining ADG that could open new perspectives to improve selection efficiency in this breed.
Collapse
Affiliation(s)
- L Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | | | | | | | | |
Collapse
|
22
|
Qin L, Chen Y, Liu X, Ye S, Yu K, Huang Z, Yu J, Zhou X, Chen H, Mo D. Integrative analysis of porcine microRNAome during skeletal muscle development. PLoS One 2013; 8:e72418. [PMID: 24039761 PMCID: PMC3770649 DOI: 10.1371/journal.pone.0072418] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023] Open
Abstract
Pig is an important agricultural animal for meat production and provides a valuable model for many human diseases. Functional studies have demonstrated that microRNAs (miRNAs) play critical roles in almost all aspects of skeletal muscle development and disease pathogenesis. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for porcine microRNAome (miRNAome) during 10 skeletal muscle developmental stages including 35, 49, 63, 77, 91 dpc (days post coitum) and 2, 28, 90, 120, 180 dpn (days postnatal) using Solexa sequencing technology. Our results extend the repertoire of pig miRNAome to 247 known miRNAs processed from 210 pre-miRNAs and 297 candidate novel miRNAs through comparison with known miRNAs in the miRBase. Expression analysis of the 15 most abundant miRNAs in every library indicated that functional miRNAome may be smaller and tend to be highly expressed. A series of muscle-related miRNAs summarized in our study present different patterns between myofibers formation phase and muscle maturation phase, providing valuable reference for investigation of functional miRNAs during skeletal muscle development. Analysis of temporal profiles of miRNA expression identifies 18 novel candidate myogenic miRNAs in pig, which might provide new insight into regulation mechanism mediated by miRNAs underlying muscle development.
Collapse
Affiliation(s)
- Lijun Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Sanxing Ye
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Kaifan Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Zheng Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Jingwei Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xingyu Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Hu Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| |
Collapse
|
23
|
Abstract
microRNAs (miRNAs) are a class of small noncoding RNA that bind to complementary sequences in the untranslated regions of multiple target mRNAs resulting in posttranscriptional regulation of gene expression. The recent discovery and expression-profiling studies of miRNAs in domestic livestock have revealed both their tissue-specific and temporal expression pattern. In addition, breed-dependent expression patterns as well as single nucleotide polymorphisms in either the miRNA or in the target mRNA binding site have revealed associations with traits of economic importance and highlight the potential use of miRNAs in future genomic selection programs.
Collapse
Affiliation(s)
- Attia Fatima
- Department of Bioinformatics, National University of Ireland Galway, Galway, Ireland; and
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| | - Dermot G. Morris
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland
| |
Collapse
|
24
|
Abstract
MicroRNAs (miRNAs) are a class of ~22 nucleotide-long small noncoding RNAs that target mRNAs for translational repression or degradation. miRNAs target mRNAs by base-pairing with the 3'-untranslated regions (3'-UTRs) of mRNAs. miRNAs are present in various species, from animals to plants. In this review, we summarize the identification, expression, and function of miRNAs in four important farm animal species: cattle, chicken, pig and sheep. In each of these species, hundreds of miRNAs have been identified through homology search, small RNA cloning and next generation sequencing. Real-time RT-PCR and microarray experiments reveal that many miRNAs are expressed in a tissue-specific or spatiotemporal-specific manner in farm animals. Limited functional studies suggest that miRNAs have important roles in muscle development and hypertrophy, adipose tissue growth, oocyte maturation and early embryonic development in farm animals. Increasing evidence suggests that single-nucleotide polymorphisms in miRNA target sites or miRNA gene promoters may contribute to variation in production or health traits in farm animals.
Collapse
|
25
|
Hou X, Tang Z, Liu H, Wang N, Ju H, Li K. Discovery of MicroRNAs associated with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs. PLoS One 2012; 7:e52123. [PMID: 23284895 PMCID: PMC3528764 DOI: 10.1371/journal.pone.0052123] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 11/15/2012] [Indexed: 01/20/2023] Open
Abstract
MicroRNAs (miRNAs) are short, single-stranded non-coding RNAs that repress their target genes by binding their 3′ UTRs. These RNAs play critical roles in myogenesis. To gain knowledge about miRNAs involved in the regulation of myogenesis, porcine longissimus muscles were collected from 18 developmental stages (33-, 40-, 45-, 50-, 55-, 60-, 65-, 70-, 75-, 80-, 85-, 90-, 95-, 100- and 105-day post-gestation fetuses, 0 and 10-day postnatal piglets and adult pigs) to identify miRNAs using Solexa sequencing technology. We detected 197 known miRNAs and 78 novel miRNAs according to comparison with known miRNAs in the miRBase (release 17.0) database. Moreover, variations in sequence length and single nucleotide polymorphisms were also observed in 110 known miRNAs. Expression analysis of the 11 most abundant miRNAs were conducted using quantitative PCR (qPCR) in eleven tissues (longissimus muscles, leg muscles, heart, liver, spleen, lung, kidney, stomach, small intestine and colon), and the results revealed that ssc-miR-378, ssc-miR-1 and ssc-miR-206 were abundantly expressed in skeletal muscles. During skeletal muscle development, the expression level of ssc-miR-378 was low at 33 days post-coitus (dpc), increased at 65 and 90 dpc, peaked at postnatal day 0, and finally declined and maintained a comparatively stable level. This expression profile suggested that ssc-miR-378 was a new candidate miRNA for myogenesis and participated in skeletal muscle development in pigs. Target prediction and KEGG pathway analysis suggested that bone morphogenetic protein 2 (BMP2) and mitogen-activated protein kinase 1 (MAPK1), both of which were relevant to proliferation and differentiation, might be the potential targets of miR-378. Luciferase activities of report vectors containing the 3′UTR of porcine BMP2 or MAPK1 were downregulated by miR-378, which suggested that miR-378 probably regulated myogenesis though the regulation of these two genes.
Collapse
Affiliation(s)
- Xinhua Hou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Zhonglin Tang
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
- * E-mail: (ZT); (HL)
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
- * E-mail: (ZT); (HL)
| | - Ning Wang
- College of Animal Science and Technology, Northeast Agricultural University, Haerbin, P.R. China
| | - Huiming Ju
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Kui Li
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|