1
|
Li S, Yang L, Ding X, Sun H, Dong X, Yang F, Wang M, Zhang H, Li Y, Li B, Liu C. USP32 facilitates non-small cell lung cancer progression via deubiquitinating BAG3 and activating RAF-MEK-ERK signaling pathway. Oncogenesis 2024; 13:27. [PMID: 39030175 PMCID: PMC11271578 DOI: 10.1038/s41389-024-00528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/21/2024] Open
Abstract
The regulatory significance of ubiquitin-specific peptidase 32 (USP32) in tumor is significant, nevertheless, the biological roles and regulatory mechanisms of USP32 in non-small cell lung cancer (NSCLC) remain unclear. According to our research, USP32 was strongly expressed in NSCLC cell lines and tissues and was linked to a bad prognosis for NSCLC patients. Interference with USP32 resulted in a significant inhibition of NSCLC cell proliferation, migration potential, and EMT development; on the other hand, USP32 overexpression had the opposite effect. To further elucidate the mechanism of action of USP32 in NSCLC, we screened H1299 cells for interacting proteins and found that USP32 interacts with BAG3 (Bcl2-associated athanogene 3) and deubiquitinates and stabilizes BAG3 in a deubiquitinating activity-dependent manner. Functionally, restoration of BAG3 expression abrogated the antitumor effects of USP32 silencing. Furthermore, USP32 increased the phosphorylation level of the RAF/MEK/ERK signaling pathway in NSCLC cells by stabilizing BAG3. In summary, these findings imply that USP32 is critical to the development of NSCLC and could offer a theoretical framework for the clinical diagnosis and management of NSCLC patients in the future.
Collapse
Affiliation(s)
- Shuang Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Xiaoyan Ding
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
- School of Basic Medicine, Institute of Stem Cell and Regenerative Medicine, Qingdao University, 266071, Qingdao, China
| | - Hongxiao Sun
- Heart Center, Women and Children's Hospital, Qingdao University, 6 Tongfu Road, 266034, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, 266000, Qingdao, China.
| | - Chunyan Liu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, 266071, Qingdao, China.
| |
Collapse
|
2
|
Gao H, Xi Z, Dai J, Xue J, Guan X, Zhao L, Chen Z, Xing F. Drug resistance mechanisms and treatment strategies mediated by Ubiquitin-Specific Proteases (USPs) in cancers: new directions and therapeutic options. Mol Cancer 2024; 23:88. [PMID: 38702734 PMCID: PMC11067278 DOI: 10.1186/s12943-024-02005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Drug resistance represents a significant obstacle in cancer treatment, underscoring the need for the discovery of novel therapeutic targets. Ubiquitin-specific proteases (USPs), a subclass of deubiquitinating enzymes, play a pivotal role in protein deubiquitination. As scientific research advances, USPs have been recognized as key regulators of drug resistance across a spectrum of treatment modalities, including chemotherapy, targeted therapy, immunotherapy, and radiotherapy. This comprehensive review examines the complex relationship between USPs and drug resistance mechanisms, focusing on specific treatment strategies and highlighting the influence of USPs on DNA damage repair, apoptosis, characteristics of cancer stem cells, immune evasion, and other crucial biological functions. Additionally, the review highlights the potential clinical significance of USP inhibitors as a means to counter drug resistance in cancer treatment. By inhibiting particular USP, cancer cells can become more susceptible to a variety of anti-cancer drugs. The integration of USP inhibitors with current anti-cancer therapies offers a promising strategy to circumvent drug resistance. Therefore, this review emphasizes the importance of USPs as viable therapeutic targets and offers insight into fruitful directions for future research and drug development. Targeting USPs presents an effective method to combat drug resistance across various cancer types, leading to enhanced treatment strategies and better patient outcomes.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jingwei Dai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
3
|
Li KQ, Bai X, Ke AT, Ding SQ, Zhang CD, Dai DQ. Ubiquitin-specific proteases: From biological functions to potential therapeutic applications in gastric cancer. Biomed Pharmacother 2024; 173:116323. [PMID: 38401523 DOI: 10.1016/j.biopha.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Deubiquitination, a post-translational modification regulated by deubiquitinases, is essential for cancer initiation and progression. Ubiquitin-specific proteases (USPs) are essential elements of the deubiquitinase family, and are overexpressed in gastric cancer (GC). Through the regulation of several signaling pathways, such as Wnt/β-Catenin and nuclear factor-κB signaling, and the promotion of the expression of deubiquitination- and stabilization-associated proteins, USPs promote the proliferation, metastasis, invasion, and epithelial-mesenchymal transition of GC. In addition, the expression of USPs is closely related to clinicopathological features, patient prognosis, and chemotherapy resistance. USPs therefore could be used as prognostic biomarkers. USP targeting small molecule inhibitors have demonstrated strong anticancer activity. However, they have not yet been tested in the clinic. This article provides an overview of the latest fundamental research on USPs in GC, aiming to enhance the understanding of how USPs contribute to GC progression, and identifying possible targets for GC treatment to improve patient survival.
Collapse
Affiliation(s)
- Kai-Qiang Li
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Xiao Bai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Ang-Ting Ke
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Si-Qi Ding
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Chun-Dong Zhang
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China
| | - Dong-Qiu Dai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China; Cancer Center, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110032, China.
| |
Collapse
|
4
|
Xiu M, Bao W, Wang J, Chen J, Li Y, Hai Y. High USP32 expression contributes to cancer progression and is correlated with immune infiltrates in hepatocellular carcinoma. BMC Cancer 2023; 23:1105. [PMID: 37957631 PMCID: PMC10644423 DOI: 10.1186/s12885-023-11617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Ubiquitin-specific protease 32 (USP32) is a highly conserved gene that promotes cancer progression. However, its role in hepatocellular carcinoma (HCC) is not well understood. The aim of this project is to explore the clinical significance and functions of USP32 in HCC. METHODS The expression of USP32 in HCC was evaluated using data from TCGA, GEO, TISCH, tissue microarray, and human HCC samples from our hospital. Survival analysis, PPI analysis and GSEA analysis were performed to evaluate USP32-related clinical significance, key molecules and enrichment pathways. Using the ssGSEA algorithm and TIMER, we investigated the relationships between USP32 and immune infiltrates in the TME. Univariate and multivariate Cox regression analyses were then used to identify key USP32-related immunomodulators and constructed a USP32-related immune prognostic model. Finally, CCK8, transwell and colony formation assays of HCC cells were performed and an HCC nude mouse model was established to verify the oncogenic role of USP32. RESULTS USP32 is overexpressed in HCC and its expression is an independent predictive factor for outcomes of HCC patients. USP32 is associated with pathways related to cell behaviors and cancer signaling, and its expression is significantly correlated with the infiltration of immune cells in the TME. We also successfully constructed a USP32-related immune prognostic model using 5 genes. Wet experiments confirmed that knockdown of USP32 could repress the proliferation, colony formation and migration of HCC cells in vitro and inhibit tumor growth in vivo. CONCLUSION USP32 is highly expressed in HCC and closely correlates with the TME of HCC. It is a potential target for improving the efficacy of chemotherapy and developing new strategies for targeted therapy and immunotherapy in HCC.
Collapse
Affiliation(s)
- Mengxi Xiu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Wenfang Bao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jialin Wang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jingde Chen
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Yanan Hai
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
5
|
Li S, Song Y, Wang K, Liu G, Dong X, Yang F, Chen G, Cao C, Zhang H, Wang M, Li Y, Zeng T, Liu C, Li B. USP32 deubiquitinase: cellular functions, regulatory mechanisms, and potential as a cancer therapy target. Cell Death Discov 2023; 9:338. [PMID: 37679322 PMCID: PMC10485055 DOI: 10.1038/s41420-023-01629-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
An essential protein regulatory system in cells is the ubiquitin-proteasome pathway. The substrate is modified by the ubiquitin ligase system (E1-E2-E3) in this pathway, which is a dynamic protein bidirectional modification regulation system. Deubiquitinating enzymes (DUBs) are tasked with specifically hydrolyzing ubiquitin molecules from ubiquitin-linked proteins or precursor proteins and inversely regulating protein degradation, which in turn affects protein function. The ubiquitin-specific peptidase 32 (USP32) protein level is associated with cell cycle progression, proliferation, migration, invasion, and other cellular biological processes. It is an important member of the ubiquitin-specific protease family. It is thought that USP32, a unique enzyme that controls the ubiquitin process, is closely linked to the onset and progression of many cancers, including small cell lung cancer, gastric cancer, breast cancer, epithelial ovarian cancer, glioblastoma, gastrointestinal stromal tumor, acute myeloid leukemia, and pancreatic adenocarcinoma. In this review, we focus on the multiple mechanisms of USP32 in various tumor types and show that USP32 controls the stability of many distinct proteins. Therefore, USP32 is a key and promising therapeutic target for tumor therapy, which could provide important new insights and avenues for antitumor drug development. The therapeutic importance of USP32 in cancer treatment remains to be further proven. In conclusion, there are many options for the future direction of USP32 research.
Collapse
Grants
- Bing Li, Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China Chunyan Liu, Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
Collapse
Affiliation(s)
- Shuang Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yang Song
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kexin Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Teng Zeng
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chunyan Liu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Wang Q, Xiong F, Wu G, Wang D, Liu W, Chen J, Qi Y, Wang B, Chen Y. SMAD Proteins in TGF-β Signalling Pathway in Cancer: Regulatory Mechanisms and Clinical Applications. Diagnostics (Basel) 2023; 13:2769. [PMID: 37685308 PMCID: PMC10487229 DOI: 10.3390/diagnostics13172769] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Suppressor of mother against decapentaplegic (SMAD) family proteins are central to one of the most versatile cytokine signalling pathways in metazoan biology, the transforming growth factor-β (TGF-β) pathway. The TGF-β pathway is widely known for its dual role in cancer progression as both an inhibitor of tumour cell growth and an inducer of tumour metastasis. This is mainly mediated through SMAD proteins and their cofactors or regulators. SMAD proteins act as transcription factors, regulating the transcription of a wide range of genes, and their rich post-translational modifications are influenced by a variety of regulators and cofactors. The complex role, mechanisms, and important functions of SMAD proteins in tumours are the hot topics in current oncology research. In this paper, we summarize the recent progress on the effects and mechanisms of SMAD proteins on tumour development, diagnosis, treatment and prognosis, and provide clues for subsequent research on SMAD proteins in tumours.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Fei Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Guanhua Wu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Wenzheng Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Junsheng Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Yongqiang Qi
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Bing Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Yongjun Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| |
Collapse
|
7
|
Campolo F, Sesti F, Feola T, Puliani G, Faggiano A, Tarsitano MG, Tenuta M, Hasenmajer V, Ferretti E, Verrico M, Gianfrilli D, Venneri MA, Isidori AM, Giannetta E. Platelet-derived circRNAs signature in patients with gastroenteropancreatic neuroendocrine tumors. J Transl Med 2023; 21:548. [PMID: 37587471 PMCID: PMC10428534 DOI: 10.1186/s12967-023-04417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Neuroendocrine tumors (NETs) early diagnosis is a clinical challenge that require a deep understanding of molecular and genetic features of this heterogeneous group of neoplasms. However, few biomarkers exist to aid diagnosis and to predict prognosis and treatment response. In the oncological field, tumor-educated platelets (TEPs) have been implicated as central players in the systemic and local responses to tumor growth, thereby altering tumor specific RNA profile. Although TEPs have been found to be enriched in RNAs, few studies have investigated the potential of a type of RNA, circular RNAs (circRNA), as platelet-derived biomarkers for cancer. In this proof-of-concept study, we aim to demonstrate whether the circRNAs signature of tumor educated platelets can be used as a liquid biopsy biomarker for the detection of gastroenteropancreatic (GEP)-NETs and the prediction of the early response to treatment. METHODS We performed a 24-months, prospective proof-of-concept study in men and women with histologically proven well-differentiated G1-G2 GEP-NET, aged 18-80 years, naïve to treatment. We performed a RNAseq analysis of circRNAs obtained from TEPs samples of 10 GEP-NETs patients at baseline and after 3 months from therapy (somatostatin analogs or surgery) and from 5 patients affected by non-malignant endocrinological diseases enrolled as a control group. RESULTS Statistical analysis based on p < 0.05 resulted in the identification of 252 circRNAs differentially expressed between GEP-NET and controls of which 109 were up-regulated and 143 were down-regulated in NET patients. Further analysis based on an FDR value ≤ 0.05 resulted in the selection of 5 circRNAs all highly significant downregulated. The same analysis on GEP-NETs at baseline and after therapy in 5 patients revealed an average of 4983 remarkably differentially expressed circRNAs between follow-up and baseline samples of which 2648 up-regulated and 2334 down-regulated, respectively. Applying p ≤ 0.05 and FDR ≤ 0.05 filters, only 3/5 comparisons gave statistically significant results. CONCLUSIONS Our findings identified for the first time a circRNAs signature from TEPs as potential diagnostic and predictive biomarkers for GEP-NETs.
Collapse
Affiliation(s)
- Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Franz Sesti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Tiziana Feola
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Neuroendocrinology, Neuromed Institute, IRCCS, Pozzilli, Italy
| | - Giulia Puliani
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Antongiulio Faggiano
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy
| | | | - Marta Tenuta
- UOC Endocrinology, Metabolic Diseases, Andrology SMIC08, Policlinico Umberto I, Rome, Italy
| | - Valeria Hasenmajer
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Monica Verrico
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
- Centre for Rare Diseases (ENDO-ERN Accredited), Policlinico Umberto I, Rome, Italy
| | - Elisa Giannetta
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
8
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
9
|
USPs in Pancreatic Ductal Adenocarcinoma: A Comprehensive Bioinformatic Analysis of Expression, Prognostic Significance, and Immune Infiltration. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6109052. [PMID: 36582601 PMCID: PMC9794441 DOI: 10.1155/2022/6109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), as an intractable malignancy, still causes an extremely high mortality worldwide. The ubiquitin-specific protease (USP) family constitutes the major part of deubiquitinating enzymes (DUBs) which has been reported to be involved in initiation and progression of various malignancies via the function of deubiquitination. However, the biological function and clinical values of USPs in PDAC have not been comprehensively elucidated. In this study, Gene Expression Profiling Interactive Analysis (GEPIA), Gene Expression Omnibus (GEO) datasets, UALCAN database, and the Human Protein Atlas (HPA) online tool were used to analyze the expression level and the relationship between USP expression and clinicopathological features in PDAC. Survival module of HPA and Kaplan-Meier plotter (KMP) databases was recruited to explore the prognostic value of USPs. Tumor Immune Estimation Resource (TIMER) online tool and KMP databases were utilized to elucidate tumor immune infiltration and immune-related survival of USPs. CBioPortal online tool was used to identify the gene mutation level of USPs in PDAC. Both cBioPortal and LinkedOmics were used to confirm the potential biological functions of USPs in PDAC. Our study showed that USP10, USP14, USP18, USP32, USP33, and USP39 (termed as six-USPs) expressions were significantly elevated in tumor tissues. The high expression of the four USPs (USP10, USP14, USP18, and USP39) indicated a poor prognosis. A significant relationship was indicated between the expression of six-USPs and clinicopathological features. Also, the expression of six-USPs was related to promoter methylation level. Moreover, more than 40% genetic alterations and mutations were discovered in six-USPs. Furthermore, the six-USP expression was correlated with immune infiltration and immune-related prognosis. The functional analysis found that the six-USPs were involved in various biological processes and signaling pathways, such as nucleocytoplasmic transport, choline metabolism in cancer, cell cycle, ErbB signaling pathway, RIG-I-like receptor signaling pathway, TGF-β signaling pathway, and TNF signaling pathway. In conclusion, the results showed that six-USPs are potential prognostic biomarkers and can be recruited as possible therapeutic targets of PDAC.
Collapse
|
10
|
Hertel A, Alves LM, Dutz H, Tascher G, Bonn F, Kaulich M, Dikic I, Eimer S, Steinberg F, Bremm A. USP32-regulated LAMTOR1 ubiquitination impacts mTORC1 activation and autophagy induction. Cell Rep 2022; 41:111653. [PMID: 36476874 DOI: 10.1016/j.celrep.2022.111653] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
The endosomal-lysosomal system is a series of organelles in the endocytic pathway that executes trafficking and degradation of proteins and lipids and mediates the internalization of nutrients and growth factors to ensure cell survival, growth, and differentiation. Here, we reveal regulatory, non-proteolytic ubiquitin signals in this complex system that are controlled by the enigmatic deubiquitinase USP32. Knockout (KO) of USP32 in primary hTERT-RPE1 cells results among others in hyperubiquitination of the Ragulator complex subunit LAMTOR1. Accumulation of LAMTOR1 ubiquitination impairs its interaction with the vacuolar H+-ATPase, reduces Ragulator function, and ultimately limits mTORC1 recruitment. Consistently, in USP32 KO cells, less mTOR kinase localizes to lysosomes, mTORC1 activity is decreased, and autophagy is induced. Furthermore, we demonstrate that depletion of USP32 homolog CYK-3 in Caenorhabditis elegans results in mTOR inhibition and autophagy induction. In summary, we identify a control mechanism of the mTORC1 activation cascade at lysosomes via USP32-regulated LAMTOR1 ubiquitination.
Collapse
Affiliation(s)
- Alexandra Hertel
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ludovico Martins Alves
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Henrik Dutz
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Florian Bonn
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany; Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; Frankfurt Cancer Institute, 60596 Frankfurt am Main, Germany; Cardio-Pulmonary Institute, 60590 Frankfurt am Main, Germany
| | - Stefan Eimer
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60439 Frankfurt am Main, Germany
| | - Florian Steinberg
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany
| | - Anja Bremm
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
11
|
An T, Lu Y, Gong Z, Wang Y, Su C, Tang G, Hou J. Research Progress for Targeting Deubiquitinases in Gastric Cancers. Cancers (Basel) 2022; 14:cancers14235831. [PMID: 36497313 PMCID: PMC9735992 DOI: 10.3390/cancers14235831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Gastric cancers (GCs) are malignant tumors with a high incidence that threaten global public health. Despite advances in GC diagnosis and treatment, the prognosis remains poor. Therefore, the mechanisms underlying GC progression need to be identified to develop prognostic biomarkers and therapeutic targets. Ubiquitination, a post-translational modification that regulates the stability, activity, localization, and interactions of target proteins, can be reversed by deubiquitinases (DUBs), which can remove ubiquitin monomers or polymers from modified proteins. The dysfunction of DUBs has been closely linked to tumorigenesis in various cancer types, and targeting certain DUBs may provide a potential option for cancer therapy. Multiple DUBs have been demonstrated to function as oncogenes or tumor suppressors in GC. In this review, we summarize the DUBs involved in GC and their associated upstream regulation and downstream mechanisms and present the benefits of targeting DUBs for GC treatment, which could provide new insights for GC diagnosis and therapy.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanting Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250353, China
| | - Zhaoqi Gong
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yongtao Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chen Su
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Guimei Tang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Correspondence: (G.T.); (J.H.)
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen 361005, China
- Correspondence: (G.T.); (J.H.)
| |
Collapse
|
12
|
Genetic variation as a long-distance modulator of RAD21 expression in humans. Sci Rep 2022; 12:13035. [PMID: 35906355 PMCID: PMC9338076 DOI: 10.1038/s41598-022-15081-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/17/2022] [Indexed: 11/08/2022] Open
Abstract
Somatic mutations and changes in expression of RAD21 are common in many types of cancer. Moreover, sub-optimal levels of RAD21 expression in early development can result in cohesinopathies. Altered RAD21 levels can result directly from mutations in the RAD21 gene. However, whether DNA variants outside of the RAD21 gene could control its expression and thereby contribute to cancer and developmental disease is unknown. In this study, we searched for genomic variants that modify RAD21expression to determine their potential to contribute to development or cancer by RAD21 dysregulation. We searched 42,953,834 genomic variants for a spatial-eQTL association with the transcription of RAD21. We identified 123 significant associations (FDR < 0.05), which are local (cis) or long-distance (trans) regulators of RAD21 expression. The 123 variants co-regulate a further seven genes (AARD, AKAP11, GRID1, KCNIP4, RCN1, TRIOBP, and USP32), enriched for having Sp2 transcription factor binding sites in their promoter regions. The Sp2 transcription factor and six of the seven genes had previously been associated with cancer onset, progression, and metastasis. Our results suggest that genome-wide variation in non-coding regions impacts on RAD21 transcript levels in addition to other genes, which then could impact on oncogenesis and the process of ubiquitination. This identification of distant co-regulation of oncogenes represents a strategy for discovery of novel genetic regions influencing cancer onset and a potential for diagnostics.
Collapse
|
13
|
Zheng Z, Shang Y, Xu R, Yan X, Wang X, Cai J, Bai Z, Liu X, Yin J, Zhang J, Zhang Z. Ubiquitin specific peptidase 38 promotes the progression of gastric cancer through upregulation of fatty acid synthase. Am J Cancer Res 2022; 12:2686-2696. [PMID: 35812059 PMCID: PMC9251701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023] Open
Abstract
Gastric cancer (GC) is a malignant tumor with an adverse health effect worldwide, whereas the underlying mechanism of GC development remains controversial. Identification of biomarkers is critical for the treatment of GC. Increasing evidence demonstrates that protein modification plays a pivotal role in carcinogenesis. USP38 is a member of the ubiquitin-specific protease (USP) family, which promotes protein stability by deubiquitinating the target proteins. In this study, we focused on the effect of USP38 on the GC and explored its underlying mechanism. The Cancer Genome Atlas (TCGA) database was used to evaluate the expression of USP38. AGS and HGC27 cells were treated with siRNA targeting USP38 or plasmids overexpressing USP38 to disturb levels of USP38. Immumohistochemical staining was performed to detect the level of USP38 and FASN. RT-qPCR and Western blotting (WB) were used to analyze the expression of mRNA and protein respectively. CCK8 assay, colony formation, cell migration assay, and cell apoptosis and cell cycle were performed to assess cell proliferation and migration ability. A subcutaneous tumor mice model was carried to verify the effect of USP38 on the GC in vivo. In this research, we found that USP38 was overexpressed in GC tissues, and USP38 contributed to GC cell proliferation, migration and tumorigenesis. Cell cycle and apoptosis were also regulated by USP38. Mechanistically, USP38 interacted with FASN, which resulted in enhanced protein stability of FASN and increased triglyceride production. Furthermore, FASN was critical for GC cell growth, migration and tumor development triggered by USP38 overexpression because its inhibitor orilistat reversed phenotypes in USP38 overexpressed GC cells. Collectively, USP38 overexpression is critical for GC cell growth, migration and tumorigenesis. Targeting FASN with inhibitors could be used as a potential treatment for GC patients with highly expressed USP38.
Collapse
Affiliation(s)
- Zhi Zheng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchBeijing, China
- National Clinical Research Center for Digestive DiseasesBeijing, China
- Beijing Institute of Clinical MedicineBeijing, China
| | - Yuxi Shang
- Department of Hematology, Fuxing Hospital, Eighth Clinical Medical College, Capital Medical UniversityBeijing, China
| | - Rui Xu
- Department of Pathology, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
| | - Xiaosheng Yan
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchBeijing, China
- National Clinical Research Center for Digestive DiseasesBeijing, China
- Beijing Institute of Clinical MedicineBeijing, China
| | - Xi Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchBeijing, China
- National Clinical Research Center for Digestive DiseasesBeijing, China
- Beijing Institute of Clinical MedicineBeijing, China
| | - Jun Cai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchBeijing, China
- National Clinical Research Center for Digestive DiseasesBeijing, China
- Beijing Institute of Clinical MedicineBeijing, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchBeijing, China
- National Clinical Research Center for Digestive DiseasesBeijing, China
- Beijing Institute of Clinical MedicineBeijing, China
| | - Xiaoye Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchBeijing, China
- National Clinical Research Center for Digestive DiseasesBeijing, China
- Beijing Institute of Clinical MedicineBeijing, China
| | - Jie Yin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchBeijing, China
- National Clinical Research Center for Digestive DiseasesBeijing, China
- Beijing Institute of Clinical MedicineBeijing, China
| | - Jun Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchBeijing, China
- National Clinical Research Center for Digestive DiseasesBeijing, China
- Beijing Institute of Clinical MedicineBeijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchBeijing, China
- National Clinical Research Center for Digestive DiseasesBeijing, China
- Beijing Institute of Clinical MedicineBeijing, China
| |
Collapse
|
14
|
Identification of ubiquitin-specific protease 32 as an oncogene in glioblastoma and the underlying mechanisms. Sci Rep 2022; 12:6445. [PMID: 35440702 PMCID: PMC9018837 DOI: 10.1038/s41598-022-09497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma (GBM) patients present poor prognosis. Deubiquitination by deubiquitinating enzymes (DUBs) is a critical process in cancer progression. Ubiquitin-specific proteases (USPs) constitute the largest sub-family of DUBs. Evaluate the role of USP32 in GBM progression and provide a potential target for GBM treatment. Clinical significance of USP32 was investigated using Gene Expression Omnibus databases. Effects of USP32 on cell growth and metastasis were studied in vitro and in vivo. Differentially expressive genes between USP32-knockdown U-87 MG cells and negative control cells were detected using RNA sequencing and used for Gene Ontology and Kyoto Encyclopedia of Genes and Genomic pathway enrichment analyses. Finally, RT-qPCR was used to validate the divergent expression of genes involved in the enriched pathways. USP32 was upregulated in GBM patients, being correlated to poor prognosis. USP32 downregulation inhibited cell growth and metastasis in vitro. Furthermore, USP32 knockdown inhibited tumorigenesis in vivo. In addition, UPS32 was identified as a crucial regulator in different pathways including cell cycle, cellular senescence, DNA replication, base excision repair, and mismatch repair pathways. USP32 acts as an oncogene in GBM through regulating several biological processes/pathways. It could be a potential target for GBM treatment.
Collapse
|
15
|
Chandrasekaran AP, Kaushal K, Park CH, Kim KS, Ramakrishna S. USP32 confers cancer cell resistance to YM155 via promoting ER-associated degradation of solute carrier protein SLC35F2. Theranostics 2021; 11:9752-9771. [PMID: 34815782 PMCID: PMC8581437 DOI: 10.7150/thno.63806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The most commonly preferred chemotherapeutic agents to treat cancers are small-molecule drugs. However, the differential sensitivity of various cancer cells to small molecules and untargeted delivery narrow the range of potential therapeutic applications. The mechanisms responsible for drug resistance in a variety of cancer cells are also largely unknown. Several deubiquitinating enzymes (DUBs) are the main determinants of drug resistance in cancer cells. Methods: We used CRISPR-Cas9 to perform genome-scale knockout of the entire set of genes encoding ubiquitin-specific proteases (USPs) and systematically screened for DUBs resistant to the clinically evaluated anticancer compound YM155. A series of in vitro and in vivo experiments were conducted to reveal the relationship between USP32 and SLC35F2 on YM155-mediated DNA damage in cancer cells. Results: CRISPR-based dual-screening method identified USP32 as a novel DUB that governs resistance for uptake of YM155 by destabilizing protein levels of SLC35F2, a solute-carrier protein essential for the uptake of YM155. The expression of USP32 and SLC35F2 was negatively correlated across a panel of tested cancer cell lines. YM155-resistant cancer cells in particular exhibited elevated expression of USP32 and low expression of SLC35F2. Conclusion: Collectively, our DUB-screening strategy revealed a resistance mechanism governed by USP32 associated with YM155 resistance in breast cancers, one that presents an attractive molecular target for anti-cancer therapies. Targeted genome knockout verified that USP32 is the main determinant of SLC35F2 protein stability in vitro and in vivo, suggesting a novel way to treat tumors resistant to small-molecule drugs.
Collapse
|
16
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Kalantari M, Mohammadinejad R, Javaheri T, Sethi G. Association of the Epithelial-Mesenchymal Transition (EMT) with Cisplatin Resistance. Int J Mol Sci 2020; 21:E4002. [PMID: 32503307 PMCID: PMC7312011 DOI: 10.3390/ijms21114002] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Therapy resistance is a characteristic of cancer cells that significantly reduces the effectiveness of drugs. Despite the popularity of cisplatin (CP) as a chemotherapeutic agent, which is widely used in the treatment of various types of cancer, resistance of cancer cells to CP chemotherapy has been extensively observed. Among various reported mechanism(s), the epithelial-mesenchymal transition (EMT) process can significantly contribute to chemoresistance by converting the motionless epithelial cells into mobile mesenchymal cells and altering cell-cell adhesion as well as the cellular extracellular matrix, leading to invasion of tumor cells. By analyzing the impact of the different molecular pathways such as microRNAs, long non-coding RNAs, nuclear factor-κB (NF-ĸB), phosphoinositide 3-kinase-related protein kinase (PI3K)/Akt, mammalian target rapamycin (mTOR), and Wnt, which play an important role in resistance exhibited to CP therapy, we first give an introduction about the EMT mechanism and its role in drug resistance. We then focus specifically on the molecular pathways involved in drug resistance and the pharmacological strategies that can be used to mitigate this resistance. Overall, we highlight the various targeted signaling pathways that could be considered in future studies to pave the way for the inhibition of EMT-mediated resistance displayed by tumor cells in response to CP exposure.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Mahshad Kalantari
- Department of Genetic Science, Tehran Medical Science Branch, Islamic Azad University, Tehran 19168931813, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 1355576169, Iran
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, MA 02215, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| |
Collapse
|