1
|
Cáceres E, Olivella JC, Di Napoli M, Raihane AS, Divani AA. Immune Response in Traumatic Brain Injury. Curr Neurol Neurosci Rep 2024; 24:593-609. [PMID: 39467990 PMCID: PMC11538248 DOI: 10.1007/s11910-024-01382-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW This review aims to comprehensively examine the immune response following traumatic brain injury (TBI) and how its disruption can impact healing and recovery. RECENT FINDINGS The immune response is now considered a key element in the pathophysiology of TBI, with consequences far beyond the acute phase after injury. A delicate equilibrium is crucial for a healthy recovery. When this equilibrium is disrupted, chronic inflammation and immune imbalance can lead to detrimental effects on survival and disability. Globally, traumatic brain injury (TBI) imposes a substantial burden in terms of both years of life lost and years lived with disability. Although its epidemiology exhibits dynamic trends over time and across regions, TBI disproportionally affects the younger populations, posing psychosocial and financial challenge for communities and families. Following the initial trauma, the primary injury is succeeded by an inflammatory response, primarily orchestrated by the innate immune system. The inflammasome plays a pivotal role during this stage, catalyzing both programmed cell death pathways and the up-regulation of inflammatory cytokines and transcription factors. These events trigger the activation and differentiation of microglia, thereby intensifying the inflammatory response to a systemic level and facilitating the migration of immune cells and edema. This inflammatory response, initially originated in the brain, is monitored by our autonomic nervous system. Through the vagus nerve and adrenergic and cholinergic receptors in various peripheral lymphoid organs and immune cells, bidirectional communication and regulation between the immune and nervous systems is established.
Collapse
Affiliation(s)
- Eder Cáceres
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia.
- School of Medicine, Universidad de La Sabana, Chía, Colombia.
- Bioscience PhD. School of Engineering, Universidad de La Sabana, Chía, Colombia.
| | | | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Ahmed S Raihane
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico Health Science Center, Albuquerque, NM, USA
| |
Collapse
|
2
|
Jumabayi W, Reyimu A, Zheng R, Paerhati P, Rahman M, Zou X, Xu A. Ferroptosis: A new way to intervene in the game between Mycobacterium tuberculosis and macrophages. Microb Pathog 2024; 197:107014. [PMID: 39396689 DOI: 10.1016/j.micpath.2024.107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the main pathogen responsible for the high mortality and morbidity of tuberculosis (TB) worldwide, primarily targets and invades macrophages. Infected macrophages activate a series of immune mechanisms to clear Mtb, however, Mtb evades host immune surveillance through subtle immune escape strategies to create a microenvironment conducive to its own proliferation, growth, and dissemination, while inducing immune cell death. The course of TB is strongly correlated with the form of cell death, including apoptosis, pyroptosis, and necrosis. Recent studies have revealed that ferroptosis, a novel type of programmed cell death characterized by iron-dependent lipid peroxidation, is closely linked to the regulatory mechanisms of TB. The central role of ferroptosis in the pathologic process of TB is increasingly becoming a focal point for exploring new therapeutic targets in this field. This paper will delve into the dynamic game between Mtb and host immune cells, especially the role of ferroptosis in the pathogenesis of TB. At the same time, this paper will analyze the regulatory pathways of ferroptosis and provide unique insights and innovative perspectives for TB therapeutic strategies based on the ferroptosis mechanism. This study not only expands the theoretical basis of TB treatment, but also points out the direction of future drug development, providing new possibilities for overcoming this global health problem.
Collapse
Affiliation(s)
- Wuerken Jumabayi
- The Third Clinical Medical College (Affiliated Cancer Hospital) of Xinjiang Medical University, Urumqi, China
| | | | | | | | | | | | - Aimin Xu
- The First People's Hospital of Kashi, Kashi, China.
| |
Collapse
|
3
|
Zhang H, Wang W, Hu X, Wang Z, Lou J, Cui P, Zhao X, Wang Y, Chen X, Lu S. Heterophyllin B enhances transcription factor EB-mediated autophagy and alleviates pyroptosis and oxidative stress after spinal cord injury. Int J Biol Sci 2024; 20:5415-5435. [PMID: 39494322 PMCID: PMC11528460 DOI: 10.7150/ijbs.97669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Traumatic spinal cord injury (SCI) has devastating physical, psychosocial, and vocational implications for patients and caregivers. Heterophyllin B (HB) is a brain-permeable cyclopeptide from Pseudostellaria heterophylla that promotes axonal regeneration and neuroinflammation. However, the efficacy of HB in improving functional recovery following SCI and the underlying mechanisms remain unclear. This study utilized a murine model for SCI assessment to evaluate the therapeutic effects of HB. following HB intervention, functional recovery post-SCI, was assessed through the Basso Mouse Scale, gait analysis, and the detection of motor-evoked potentials (MEPs). RNA sequencing was used to study the roles of pyroptosis, oxidative stress, and autophagy in HB's impact on SCI. Techniques such as Western blot, immunofluorescence, and enzyme-linked immunosorbent assay were used to evaluate pyroptosis, oxidative stress, and autophagy markers. Associated virus vectors were used to suppress transcription factor EB (TFEB), an autophagy regulator, in a living organism. HB promoted autophagy by enhancing TFEB nuclear translocation. In contrast, it inhibited pyroptosis and oxidative stress. Based on using the adenosine monophosphate-activated protein kinase (AMPK) inhibitor Compound C, the AMPK-TRPML1-calcineurin pathway was involved in HB's regulation of TFEB. In summary, this study demonstrated that HB facilitated functional recuperation by stimulating TFEB-driven autophagy while simultaneously suppressing pyroptosis and oxidative stress after SCI, indicating its potential for clinical application.
Collapse
Affiliation(s)
- Haojie Zhang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zheng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Junsheng Lou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China
| | - Peng Cui
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xuan Zhao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yu Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
4
|
Geng Y, Lou J, Wu J, Tao Z, Yang N, Kuang J, Wu Y, Zhang J, Xiang L, Shi J, Cai Y, Wang X, Chen J, Xiao J, Zhou K. NEMO-Binding Domain/IKKγ Inhibitory Peptide Alleviates Neuronal Pyroptosis in Spinal Cord Injury by Inhibiting ASMase-Induced Lysosome Membrane Permeabilization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405759. [PMID: 39225315 PMCID: PMC11516130 DOI: 10.1002/advs.202405759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/16/2024] [Indexed: 09/04/2024]
Abstract
A short peptide termed NEMO-binding domain (NBD) peptide has an inhibitory effect on nuclear factor kappa-B (NF-κB). Despite its efficacy in inhibiting inflammatory responses, the precise neuroprotective mechanisms of NBD peptide in spinal cord injury (SCI) remain unclear. This study aims to determine whether the pyroptosis-related aspects involved in the neuroprotective effects of NBD peptide post-SCI.Using RNA sequencing, the molecular mechanisms of NBD peptide in SCI are explored. The evaluation of functional recovery is performed using the Basso mouse scale, Nissl staining, footprint analysis, Masson's trichrome staining, and HE staining. Western blotting, enzyme-linked immunosorbent assays, and immunofluorescence assays are used to examine pyroptosis, autophagy, lysosomal membrane permeabilization (LMP), acid sphingomyelinase (ASMase), and the NF-κB/p38-MAPK related signaling pathway.NBD peptide mitigated glial scar formation, reduced motor neuron death, and enhanced functional recovery in SCI mice. Additionally, NBD peptide inhibits pyroptosis, ameliorate LMP-induced autophagy flux disorder in neuron post-SCI. Mechanistically, NBD peptide alleviates LMP and subsequently enhances autophagy by inhibiting ASMase through the NF-κB/p38-MAPK/Elk-1/Egr-1 signaling cascade, thereby mitigating neuronal death. NBD peptide contributes to functional restoration by suppressing ASMase-mediated LMP and autophagy depression, and inhibiting pyroptosis in neuron following SCI, which may have potential clinical application value.
Collapse
Affiliation(s)
- Yibo Geng
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Junsheng Lou
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Junnan Wu
- Department of PharmacyThe Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People's HospitalQuzhou324000China
| | - Zhichao Tao
- Renji College of Wenzhou Medical UniversityWenzhou325027China
| | - Ningning Yang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jiaxuan Kuang
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
| | - Yuzhe Wu
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jiacheng Zhang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Linyi Xiang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jingwei Shi
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
| | - Yuepiao Cai
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Molecular Pharmacology Research CenterSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhou325027China
| | - Xiangyang Wang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jiaoxiang Chen
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jian Xiao
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Molecular Pharmacology Research CenterSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhou325027China
| | - Kailiang Zhou
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
| |
Collapse
|
5
|
Hu X, Wang W, Chen X, Kong C, Zhao X, Wang Z, Zhang H, Lu S. Trehalose Rescues Postmenopausal Osteoporosis Induced by Ovariectomy through Alleviating Osteoblast Pyroptosis via Promoting Autophagy. Biomedicines 2024; 12:2224. [PMID: 39457537 PMCID: PMC11505409 DOI: 10.3390/biomedicines12102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Osteoporosis, a prevalent bone metabolic disease, often requires long-term drug treatments that may lead to serious side effects. Trehalose, a natural disaccharide found in various organisms, has been shown to have a promoting effect on autophagy. However, whether trehalose can improve bone mass recovery in ovariectomized rats and its underlying mechanisms remains unclear. In this study, trehalose was administered to ovariectomized rats to evaluate its therapeutic potential for osteoporosis following ovariectomy. METHODS Micro-computed tomography (Micro-CT), hematoxylin and eosin (HE) and immunohistochemical staining techniques were utilized to evaluate the impact of trehalose on osteoporosis induced by ovariectomy (OVX) in mice, both in imaging and histological dimensions. Furthermore, the influence of trehalose on osteoblastogenesis and functional activity was quantified through Alizarin Red S (ARS) staining and immunoblotting assays. RESULTS Trehalose effectively mitigated bone loss, elevated autophagy and suppressed pyroptosis in ovariectomized rats. Furthermore, 3-methyladenine diminished the protective effects of trehalose, particularly in promoting autophagy and inhibiting pyroptosis. CONCLUSIONS Trehalose demonstrates significant potential in treating osteoporosis by suppressing NLRP3 inflammasome-driven pyroptosis, primarily through autophagy promotion. This suggests that trehalose could be a promising, safer alternative treatment for osteoporosis.
Collapse
Affiliation(s)
- Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Xuan Zhao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Zheng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Haojie Zhang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
6
|
Guo D, Liu Z, Zhou J, Ke C, Li D. Significance of Programmed Cell Death Pathways in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9947. [PMID: 39337436 PMCID: PMC11432010 DOI: 10.3390/ijms25189947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Programmed cell death (PCD) is a form of cell death distinct from accidental cell death (ACD) and is also referred to as regulated cell death (RCD). Typically, PCD signaling events are precisely regulated by various biomolecules in both spatial and temporal contexts to promote neuronal development, establish neural architecture, and shape the central nervous system (CNS), although the role of PCD extends beyond the CNS. Abnormalities in PCD signaling cascades contribute to the irreversible loss of neuronal cells and function, leading to the onset and progression of neurodegenerative diseases. In this review, we summarize the molecular processes and features of different modalities of PCD, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, and other novel forms of PCD, and their effects on the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), multiple sclerosis (MS), traumatic brain injury (TBI), and stroke. Additionally, we examine the key factors involved in these PCD signaling pathways and discuss the potential for their development as therapeutic targets and strategies. Therefore, therapeutic strategies targeting the inhibition or facilitation of PCD signaling pathways offer a promising approach for clinical applications in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong Guo
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Zhihao Liu
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Jinglin Zhou
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Chongrong Ke
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| | - Daliang Li
- College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, Fuzhou 350117, China
| |
Collapse
|
7
|
Nolt M, Connor J. Implications of Iron in Ferroptosis, Necroptosis, and Pyroptosis as Potential Players in TBI Morbidity and Mortality. ASN Neuro 2024; 16:2394352. [PMID: 39249102 PMCID: PMC11529200 DOI: 10.1080/17590914.2024.2394352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Iron is a critical transition metal required to sustain a healthy central nervous system. Iron is involved in metabolic reactions, enzymatic activity, myelinogenesis, and oxygen transport. However, in several pathological conditions such as cancer, neurodegeneration, and neurotrauma iron becomes elevated. Excessive iron can have deleterious effects leading to reactive oxygen species (ROS) via the Fenton reaction. Iron-derived ROS are known to drive several mechanisms such as cell death pathways including ferroptosis, necroptosis, and pyroptosis. Excessive iron present in the post-traumatic brain could trigger these harmful pathways potentiating the high rates of morbidity and mortality. In the present review, we will discuss how iron plays an intricate role in initiating ferroptosis, necroptosis, and pyroptosis, examine their potential link to traumatic brain injury morbidity and mortality, and suggest therapeutic targets.
Collapse
Affiliation(s)
- Makenzie Nolt
- Neurosurgery Department, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - James Connor
- Neurosurgery Department, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
8
|
Pearson A, Koprivica M, Eisenbaum M, Ortiz C, Browning M, Vincennie T, Tinsley C, Mullan M, Crawford F, Ojo J. PPARγ activation ameliorates cognitive impairment and chronic microglial activation in the aftermath of r-mTBI. J Neuroinflammation 2024; 21:194. [PMID: 39097742 PMCID: PMC11297749 DOI: 10.1186/s12974-024-03173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024] Open
Abstract
Chronic neuroinflammation and microglial activation are key mediators of the secondary injury cascades and cognitive impairment that follow exposure to repetitive mild traumatic brain injury (r-mTBI). Peroxisome proliferator-activated receptor-γ (PPARγ) is expressed on microglia and brain resident myeloid cell types and their signaling plays a major anti-inflammatory role in modulating microglial responses. At chronic timepoints following injury, constitutive PPARγ signaling is thought to be dysregulated, thus releasing the inhibitory brakes on chronically activated microglia. Increasing evidence suggests that thiazolidinediones (TZDs), a class of compounds approved from the treatment of diabetes mellitus, effectively reduce neuroinflammation and chronic microglial activation by activating the peroxisome proliferator-activated receptor-γ (PPARγ). The present study used a closed-head r-mTBI model to investigate the influence of the TZD Pioglitazone on cognitive function and neuroinflammation in the aftermath of r-mTBI exposure. We revealed that Pioglitazone treatment attenuated spatial learning and memory impairments at 6 months post-injury and reduced the expression of reactive microglia and astrocyte markers in the cortex, hippocampus, and corpus callosum. We then examined whether Pioglitazone treatment altered inflammatory signaling mechanisms in isolated microglia and confirmed downregulation of proinflammatory transcription factors and cytokine levels. To further investigate microglial-specific mechanisms underlying PPARγ-mediated neuroprotection, we generated a novel tamoxifen-inducible microglial-specific PPARγ overexpression mouse line and examined its influence on microglial phenotype following injury. Using RNA sequencing, we revealed that PPARγ overexpression ameliorates microglial activation, promotes the activation of pathways associated with wound healing and tissue repair (such as: IL10, IL4 and NGF pathways), and inhibits the adoption of a disease-associated microglia-like (DAM-like) phenotype. This study provides insight into the role of PPARγ as a critical regulator of the neuroinflammatory cascade that follows r-mTBI in mice and demonstrates that the use of PPARγ agonists such as Pioglitazone and newer generation TZDs hold strong therapeutic potential to prevent the chronic neurodegenerative sequelae of r-mTBI.
Collapse
Affiliation(s)
- Andrew Pearson
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA.
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK.
| | - Milica Koprivica
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Max Eisenbaum
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
| | - Camila Ortiz
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
| | | | - Tessa Vincennie
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Cooper Tinsley
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
- James A. Haley Veterans' Hospital, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Joseph Ojo
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
- James A. Haley Veterans' Hospital, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| |
Collapse
|
9
|
Wang Y, Fang N, Wang Y, Geng Y, Li Y. Activating MC4R Promotes Functional Recovery by Repressing Oxidative Stress-Mediated AIM2 Activation Post-spinal Cord Injury. Mol Neurobiol 2024; 61:6101-6118. [PMID: 38277117 DOI: 10.1007/s12035-024-03936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Spinal cord injury (SCI) is a destructive neurological trauma that induces permanent sensory and motor impairment as well as a deficit in autonomic physiological function. Melanocortin receptor 4 (MC4R) is a G protein-linked receptor that is extensively expressed in the neural system and contributes to inhibiting inflammation, regulating mitochondrial function, and inducing programmed cell death. However, the effect of MC4R in the modulation of oxidative stress and whether this mechanism is related to the role of absent in melanoma 2 (AIM2) in SCI are not confirmed yet. In the current study, we demonstrated that MC4R is significantly increased in the neurons of spinal cords after trauma and oxidative stimulation of cells. Further, activation of MC4R by RO27-3225 effectively improved functional recovery, inhibited AIM2 activation, maintained mitochondrial homeostasis, repressed oxidative stress, and prevented Drp1 translocation to the mitochondria. Meanwhile, treating Drp1 inhibitors would be beneficial in reducing AIM2 activation, and activating AIM2 could abolish the protective effect of MC4R on neuron homeostasis. In conclusion, we demonstrated that MC4R protects against neural injury through a novel process by inhibiting mitochondrial dysfunction, oxidative stress, as well as AIM2 activation, which may serve as an available candidate for SCI therapy.
Collapse
Affiliation(s)
- Yongli Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Orthopaedics, Huzhou Central Hospital, Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory, Huzhou, Zhejiang, China
| | - Nongtao Fang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yikang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
10
|
Liu J, Kong G, Lu C, Wang J, Li W, Lv Z, Tong J, Liu Y, Xiong W, Li H, Fan J. IPSC-NSCs-derived exosomal let-7b-5p improves motor function after spinal cord Injury by modulating microglial/macrophage pyroptosis. J Nanobiotechnology 2024; 22:403. [PMID: 38982427 PMCID: PMC11232148 DOI: 10.1186/s12951-024-02697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Following spinal cord injury (SCI), the inflammatory storm initiated by microglia/macrophages poses a significant impediment to the recovery process. Exosomes play a crucial role in the transport of miRNAs, facilitating essential cellular communication through the transfer of genetic material. However, the miRNAs from iPSC-NSCs-Exos and their potential mechanisms leading to repair after SCI remain unclear. This study aims to explore the role of iPSC-NSCs-Exos in microglia/macrophage pyroptosis and reveal their potential mechanisms. METHODS iPSC-NSCs-Exos were characterized and identified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. A mouse SCI model and a series of in vivo and in vitro experiments were conducted to investigate the therapeutic effects of iPSC-NSCs-Exos. Subsequently, miRNA microarray analysis and rescue experiments were performed to confirm the role of miRNAs in iPSC-NSCs-Exos in SCI. Mechanistic studies were carried out using Western blot, luciferase activity assays, and RNA-ChIP. RESULTS Our findings revealed that iPSC-NSCs-derived exosomes inhibited microglia/macrophage pyroptosis at 7 days post-SCI, maintaining myelin integrity and promoting axonal growth, ultimately improving mice motor function. The miRNA microarray showed let-7b-5p to be highly enriched in iPSC-NSCs-Exos, and LRIG3 was identified as the target gene of let-7b-5p. Through a series of rescue experiments, we uncovered the connection between iPSC-NSCs and microglia/macrophages, revealing a novel target for treating SCI. CONCLUSION In conclusion, we discovered that iPSC-NSCs-derived exosomes can package and deliver let-7b-5p, regulating the expression of LRIG3 to ameliorate microglia/macrophage pyroptosis and enhance motor function in mice after SCI. This highlights the potential of combined therapy with iPSC-NSCs-Exos and let-7b-5p in promoting functional recovery and limiting inflammation following SCI.
Collapse
Affiliation(s)
- Jie Liu
- Department of Orthopaedics, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, 366 Taihu Road, Taizhou, Jiangsu, China
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, China
| | - Guang Kong
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chenlin Lu
- Department of Clinical Research Center, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, 366 Taihu Road, Taizhou, Jiangsu, China
| | - Juan Wang
- Department of human anatomy, School of Basic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenbo Li
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, China
| | - Zhengming Lv
- Department of Orthopaedics, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, 366 Taihu Road, Taizhou, Jiangsu, China
| | - Jian Tong
- Department of Orthopaedics, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, 366 Taihu Road, Taizhou, Jiangsu, China
| | - Yuan Liu
- Songjiang Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wu Xiong
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, China.
| | - Haijun Li
- Department of Orthopaedics, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, 366 Taihu Road, Taizhou, Jiangsu, China.
| | - Jin Fan
- Department of Orthopaedics, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Nanjing Medical University, 366 Taihu Road, Taizhou, Jiangsu, China.
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, China.
| |
Collapse
|
11
|
Liu R, Jiang L, Chen Y, Shao J, Chen K, Li X, Lv J, Cai W, Cai H, Zhu Z, Wang C, Zhou K, Huang J, Xiao J, Ni W, Wu C. Ginsenoside-Rh2 Promotes Functional Recovery after Spinal Cord Injury by Enhancing TFEB-Mediated Autophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14727-14746. [PMID: 38907713 DOI: 10.1021/acs.jafc.4c02379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Background: Following spinal cord injury (SCI), autophagy plays a positive role in neuronal protection, whereas pyroptosis triggers an inflammatory response. Ginsenoside-Rh2 (GRh2), known for its neuroprotective effects, is considered a promising drug. However, the exact molecular mechanisms underlying these protective effects remain unclear. Aim of the Study: Explore the therapeutic value of GRh2 in SCI and its potential mechanisms of action. Materials and Methods: An SCI mouse model was established, followed by random grouping and drug treatments under different conditions. Subsequently, the functional recovery of SCI mice after GRh2 treatment was assessed using hematoxylin and eosin, Masson's trichrome, and Nissl staining, footprint analysis, Basso Mouse Scale scoring, and inclined plane tests. The expression levels of relevant indicators in the mice were detected using Western blotting, immunofluorescence, and a quantitative polymerase chain reaction. Network pharmacology analysis was used to identify the relevant signaling pathways through which GRh2 exerts its therapeutic effects. Results: GRh2 promoted functional recovery after SCI. GRh2 significantly inhibits pyroptosis by enhancing autophagy in SCI mice. Simultaneously, the neuroprotective effect of GRh2, achieved through the inhibition of pyroptosis, is partially reversed by 3-methyladenine, an autophagy inhibitor. Additionally, the increase in autophagy induced by GRh2 is mediated by the promotion of transcription factor EB (TFEB) nuclear translocation and dephosphorylation. Partial attenuation of the protective effects of GRh2 was observed after TFEB knockdown. Additionally, GRh2 can modulate the activity of TFEB in mice post-SCI through the EGFR-MAPK signaling pathway, and NSC228155 (an EGFR activator) can partially reverse the effect of GRh2 on the EGFR-MAPK signaling pathway. Conclusions: GRh2 improves functional recovery after SCI by upregulating TFEB-mediated autophagic flux and inhibiting pyroptosis, indicating its potential clinical applicability.
Collapse
Affiliation(s)
- Rongjie Liu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Liting Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Yituo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Jiaqin Shao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Kongbin Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiang Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Junlei Lv
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Wanta Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxu Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhefan Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Chenggui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Jinfeng Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
12
|
Xiang L, Lou J, Zhao J, Geng Y, Zhang J, Wu Y, Zhao Y, Tao Z, Li Y, Qi J, Chen J, Yang L, Zhou K. Underlying Mechanism of Lysosomal Membrane Permeabilization in CNS Injury: A Literature Review. Mol Neurobiol 2024:10.1007/s12035-024-04290-6. [PMID: 38888836 DOI: 10.1007/s12035-024-04290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Lysosomes play a crucial role in various intracellular pathways as their final destination. Various stressors, whether mild or severe, can induce lysosomal membrane permeabilization (LMP), resulting in the release of lysosomal enzymes into the cytoplasm. LMP not only plays a pivotal role in various cellular events but also significantly contributes to programmed cell death (PCD). Previous research has demonstrated the participation of LMP in central nervous system (CNS) injuries, including traumatic brain injury (TBI), spinal cord injury (SCI), subarachnoid hemorrhage (SAH), and hypoxic-ischemic encephalopathy (HIE). However, the mechanisms underlying LMP in CNS injuries are poorly understood. The occurrence of LMP leads to the activation of inflammatory pathways, increased levels of oxidative stress, and PCD. Herein, we present a comprehensive overview of the latest findings regarding LMP and highlight its functions in cellular events and PCDs (lysosome-dependent cell death, apoptosis, pyroptosis, ferroptosis, and autophagy). In addition, we consolidate the most recent insights into LMP in CNS injury by summarizing and exploring the latest advances. We also review potential therapeutic strategies that aim to preserve LMP or inhibit the release of enzymes from lysosomes to alleviate the consequences of LMP in CNS injury. A better understanding of the role that LMP plays in CNS injury may facilitate the development of strategic treatment options for CNS injury.
Collapse
Affiliation(s)
- Linyi Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Junsheng Lou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiacheng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuzhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yinuo Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Zhichao Tao
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianjun Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, China.
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, WenzhouZhejiang, 325035, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
13
|
Liu FS, Huang HL, Deng LX, Zhang QS, Wang XB, Li J, Liu FB. Identification and bioinformatics analysis of genes associated with pyroptosis in spinal cord injury of rat and mouse. Sci Rep 2024; 14:14023. [PMID: 38890348 PMCID: PMC11189416 DOI: 10.1038/s41598-024-64843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
The mechanism of spinal cord injury (SCI) is highly complex, and an increasing number of studies have indicated the involvement of pyroptosis in the physiological and pathological processes of secondary SCI. However, there is limited bioinformatics research on pyroptosis-related genes (PRGs) in SCI. This study aims to identify and validate differentially expressed PRGs in the GEO database, perform bioinformatics analysis, and construct regulatory networks to explore potential regulatory mechanisms and therapeutic targets for SCI. We obtained high-throughput sequencing datasets of SCI in rats and mice from the GEO database. Differential analysis was conducted using the "limma" package in R to identify differentially expressed genes (DEGs). These genes were then intersected with previously reported PRGs, resulting in a set of PRGs in SCI. GO and KEGG enrichment analyses, as well as correlation analysis, were performed on the PRGs in both rat and mouse models of SCI. Additionally, a protein-protein interaction (PPI) network was constructed using the STRING website to examine the relationships between proteins. Hub genes were identified using Cytoscape software, and the intersection of the top 5 hub genes in rats and mice were selected for subsequent experimentally validated. Furthermore, a competing endogenous RNA (ceRNA) network was constructed to explore potential regulatory mechanisms. The gene expression profiles of GSE93249, GSE133093, GSE138637, GSE174549, GSE45376, GSE171441_3d and GSE171441_35d were selected in this study. We identified 10 and 12 PRGs in rats and mice datasets respectively. Six common DEGs were identified in the intersection of rats and mice PRGs. Enrichment analysis of these DEGs indicated that GO analysis was mainly focused on inflammation-related factors, while KEGG analysis showed that the most genes were enriched on the NOD-like receptor signaling pathway. We constructed a ceRNA regulatory network that consisted of five important PRGs, as well as 24 miRNAs and 34 lncRNAs. This network revealed potential regulatory mechanisms. Additionally, the three hub genes obtained from the intersection were validated in the rat model, showing high expression of PRGs in SCI. Pyroptosis is involved in secondary SCI and may play a significant role in its pathogenesis. The regulatory mechanisms associated with pyroptosis deserve further in-depth research.
Collapse
Affiliation(s)
- Fu-Sheng Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Hai-Long Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lin-Xia Deng
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qian-Shi Zhang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Xiao-Bin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Fu-Bing Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
14
|
Song Q, Cui Q, Sun S, Wang Y, Yuan Y, Zhang L. Crosstalk Between Cell Death and Spinal Cord Injury: Neurology and Therapy. Mol Neurobiol 2024:10.1007/s12035-024-04188-3. [PMID: 38713439 DOI: 10.1007/s12035-024-04188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Spinal cord injury (SCI) often leads to neurological dysfunction, and neuronal cell death is one of the main causes of neurological dysfunction. After SCI, in addition to necrosis, programmed cell death (PCD) occurs in nerve cells. At first, studies recognized only necrosis, apoptosis, and autophagy. In recent years, researchers have identified new forms of PCD, including pyroptosis, necroptosis, ferroptosis, and cuproptosis. Related studies have confirmed that all of these cell death modes are involved in various phases of SCI and affect the direction of the disease through different mechanisms and pathways. Furthermore, regulating neuronal cell death after SCI through various means has been proven to be beneficial for the recovery of neural function. In recent years, emerging therapies for SCI have also provided new potential methods to restore neural function. Thus, the relationship between SCI and cell death plays an important role in the occurrence and development of SCI. This review summarizes and generalizes the relevant research results on neuronal necrosis, apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis after SCI to provide a new understanding of neuronal cell death after SCI and to aid in the treatment of SCI.
Collapse
Affiliation(s)
- Qifeng Song
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Qian Cui
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Shi Sun
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Yashi Wang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Yin Yuan
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Lixin Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China.
| |
Collapse
|
15
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. The Mechanism of Pyroptosis and Its Application Prospect in Diabetic Wound Healing. J Inflamm Res 2024; 17:1481-1501. [PMID: 38463193 PMCID: PMC10924950 DOI: 10.2147/jir.s448693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Pyroptosis defines a form of pro-inflammatory-dependent programmed cell death triggered by gasdermin proteins, which creates cytoplasmic pores and promotes the activation and accumulation of immune cells by releasing several pro-inflammatory mediators and immunogenic substances upon cell rupture. Pyroptosis comprises canonical (mediated by Caspase-1) and non-canonical (mediated by Caspase-4/5/11) molecular signaling pathways. Numerous studies have explored the contributory roles of inflammasome and pyroptosis in the progression of multiple pathological conditions such as tumors, nerve injury, inflammatory diseases and metabolic disorders. Accumulating evidence indicates that the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome results in the activation of pyroptosis and inflammation. Current evidence suggests that pyroptosis-dependent cell death plays a progressive role in the development of diabetic complications including diabetic wound healing (DWH) and diabetic foot ulcers (DFUs). This review presents a brief overview of the molecular mechanisms underlying pyroptosis and addresses the current research on pyroptosis-dependent signaling pathways in the context of DWH. In this review, we also present some prospective therapeutic compounds/agents that can target pyroptotic signaling pathways, which may serve as new strategies for the effective treatment and management of diabetic wounds.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Chuxiao Shao
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Peiwu Geng
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Shuanghu Wang
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Department of Wound Healing, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| |
Collapse
|
16
|
Chen Y, Zhang H, Jiang L, Cai W, Kuang J, Geng Y, Xu H, Li Y, Yang L, Cai Y, Wang X, Xiao J, Ni W, Zhou K. DADLE promotes motor function recovery by inhibiting cytosolic phospholipase A 2 mediated lysosomal membrane permeabilization after spinal cord injury. Br J Pharmacol 2024; 181:712-734. [PMID: 37766498 DOI: 10.1111/bph.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Autophagy is a protective factor for controlling neuronal damage, while necroptosis promotes neuroinflammation after spinal cord injury (SCI). DADLE (D-Ala2 , D-Leu5 ]-enkephalin) is a selective agonist for delta (δ) opioid receptor and has been identified as a promising drug for neuroprotection. The aim of this study was to investigate the mechanism/s by which DADLE causes locomotor recovery following SCI. EXPERIMENTAL APPROACH Spinal cord contusion model was used and DADLE was given by i.p. (16 mg·kg-1 ) in mice for following experiments. Motor function was assessed by footprint and Basso mouse scale (BMS) score analysis. Western blotting used to evaluate related protein expression. Immunofluorescence showed the protein expression in each cell and its distribution. Network pharmacology analysis was used to find the related signalling pathways. KEY RESULTS DADLE promoted functional recovery after SCI. In SCI model of mice, DADLE significantly increased autophagic flux and inhibited necroptosis. Concurrently, DADLE restored autophagic flux by decreasing lysosomal membrane permeabilization (LMP). Additionally, chloroquine administration reversed the protective effect of DADLE to inhibit necroptosis. Further analysis showed that DADLE decreased phosphorylated cPLA2 , overexpression of cPLA2 partially reversed DADLE inhibitory effect on LMP and necroptosis, as well as the promotion autophagy. Finally, AMPK/SIRT1/p38 pathway regulating cPLA2 is involved in the action DADLE on SCI and naltrindole inhibited DADLE action on δ receptor and on AMPK signalling pathway. CONCLUSION AND IMPLICATION DADLE causes its neuroprotective effects on SCI by promoting autophagic flux and inhibiting necroptosis by decreasing LMP via activating δ receptor/AMPK/SIRT1/p38/cPLA2 pathway.
Collapse
Affiliation(s)
- Yituo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Liting Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Wanta Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jiaxuan Kuang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Liangliang Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Zhang Z, Zhu Z, Liu D, Wang X, Liu X, Mi Z, Fu J, Fan H. Machine learning and experiments revealed a novel pyroptosis-based classification linked to diagnosis and immune landscape in spinal cord injury. Heliyon 2024; 10:e24974. [PMID: 38314301 PMCID: PMC10837564 DOI: 10.1016/j.heliyon.2024.e24974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 12/03/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Background Rising evidence indicates the development of pyroptosis in the initiation and pathogenesis of spinal cord injury (SCI). However, the associated effects of pyroptosis-related genes (PRGs) in SCI are unclear. Methods We obtained the gene expression profiles of SCI and normal samples in the GEO. Database The R package limma screened for differentially expressed (DE) PRGs and performed functional enrichment analysis. Mechanical learning and PPI analysis helped filter essential PRGs to diagnose SCI. Peripheral blood was collected for validation from ten SCI patients and eight healthy individuals. The association of essential PRGs with immune infiltration was evaluated, and pyroptosis subtypes were recognized in SCI patients by unsupervised cluster analysis. Besides, a SCI model was built for in vivo validation of essential PRGs. Result We identified 25 DE-PRGs between SCI and normal controls. Functional enrichment analysis revealed the principal involvement of DE-PRGs in pyroptosis, inflammasome complex, interleukin-1 beta production, etc. Subsequently, three essential PRGs were identified and validated, showing excellent diagnostic efficacy and significant correlation with immune cell infiltration. Additionally, we developed diagnostic nomograms to predict the occurrence of SCI. Two pyroptosis subtypes exhibited distinct biological functions and immune landscapes among SCI patients. Finally, the expression of these essential PRGswas verified in vivo. Conclusion The current study described the vital effects of pyroptosis-related genes in SCI, providing a novel direction for effective assessment and management of SCI.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhijie Zhu
- Department of Orthopedics, Air Force Hospital of Eastern Theater, Nanjing, 210002, China
| | - Dong Liu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xuankang Wang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xincheng Liu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhenzhou Mi
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jun Fu
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hongbin Fan
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
18
|
Zhang X, Huang X, Hang D, Jin J, Li S, Zhu Y, Liu H. Targeting pyroptosis with nanoparticles to alleviate neuroinflammatory for preventing secondary damage following traumatic brain injury. SCIENCE ADVANCES 2024; 10:eadj4260. [PMID: 38198543 PMCID: PMC10780956 DOI: 10.1126/sciadv.adj4260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Posttraumatic neuroinflammation is a key driver of secondary injury after traumatic brain injury (TBI). Pyroptosis, a proinflammatory form of programmed cell death, considerably activates strong neuroinflammation and amplifies the inflammatory response by releasing inflammatory contents. Therefore, treatments targeting pyroptosis may have beneficial effects on the treatment of secondary brain damage after TBI. Here, a cysteine-alanine-glutamine-lysine peptide-modified β-lactoglobulin (β-LG) nanoparticle was constructed to deliver disulfiram (DSF), C-β-LG/DSF, to inhibit pyroptosis and decrease neuroinflammation, thereby preventing TBI-induced secondary injury. In the post-TBI mice model, C-β-LG/DSF selectively targets the injured brain, increases DSF accumulation, and extends the time of the systemic circulation of DSF. C-β-LG/DSF can alleviate brain edema and inflammatory response, inhibit secondary brain injury, promote learning, and improve memory recovery in mice after trauma. Therefore, this study likely provided a potential approach for reducing the secondary spread of TBI.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Avenue, Shenzhen 518055, China
- Institute of Nervous System Diseases, Xuzhou Medical University, No. 84 Huaihai Xi Road, Xuzhou 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai Xi Road, Xuzhou 221002, China
| | - Xuyang Huang
- Department of Intensive Care Medicine, The Second Hospital of Jiaxing, No.1518, Huancheng North Road, Jiaxing, Zhejiang 314099, China
| | - Diancheng Hang
- Institute of Nervous System Diseases, Xuzhou Medical University, No. 84 Huaihai Xi Road, Xuzhou 221002, China
| | - Jiaqi Jin
- Institute of Nervous System Diseases, Xuzhou Medical University, No. 84 Huaihai Xi Road, Xuzhou 221002, China
| | - Shanshan Li
- Department of Forensic Medicine, Xuzhou Medical University, No. 84 Huaihai Xi Road, Xuzhou 221002, China
| | - Yufu Zhu
- Institute of Nervous System Diseases, Xuzhou Medical University, No. 84 Huaihai Xi Road, Xuzhou 221002, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai Xi Road, Xuzhou 221002, China
| | - Hongmei Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Avenue, Shenzhen 518055, China
- Institute of Nervous System Diseases, Xuzhou Medical University, No. 84 Huaihai Xi Road, Xuzhou 221002, China
| |
Collapse
|
19
|
Li F, Cai T, Yu L, Yu G, Zhang H, Geng Y, Kuang J, Wang Y, Cai Y, Xiao J, Wang X, Ding J, Xu H, Ni W, Zhou K. FGF-18 Protects the Injured Spinal cord in mice by Suppressing Pyroptosis and Promoting Autophagy via the AKT-mTOR-TRPML1 axis. Mol Neurobiol 2024; 61:55-73. [PMID: 37581847 DOI: 10.1007/s12035-023-03503-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/11/2023] [Indexed: 08/16/2023]
Abstract
Spinal cord injury (SCI) is a severe medical condition with lasting effects. The efficacy of numerous clinical treatments is hampered by the intricate pathophysiological mechanism of SCI. Fibroblast growth factor 18 (FGF-18) has been found to exert neuroprotective effects after brain ischaemia, but its effect after SCI has not been well explored. The aim of the present study was to explore the therapeutic effect of FGF-18 on SCI and the related mechanism. In the present study, a mouse model of SCI was used, and the results showed that FGF-18 may significantly affect functional recovery. The present findings demonstrated that FGF-18 directly promoted functional recovery by increasing autophagy and decreasing pyroptosis. In addition, FGF-18 increased autophagy, and the well-known autophagy inhibitor 3-methyladenine (3MA) reversed the therapeutic benefits of FGF-18 after SCI, suggesting that autophagy mediates the therapeutic effects of FGF-18 on SCI. A mechanistic study revealed that after stimulation of the protein kinase B (AKT)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway, the FGF-18-induced increase in autophagy was mediated by the dephosphorylation and nuclear translocation of transcription factor E3 (TFE3). Together, these findings indicated that FGF-18 is a robust autophagy modulator capable of accelerating functional recovery after SCI, suggesting that it may be a promising treatment for SCI in the clinic.
Collapse
Affiliation(s)
- Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Tingwen Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Letian Yu
- Renji College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Jiaxuan Kuang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, 315300, Ningbo, China
| | - Yongli Wang
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
- Department of Orthopaedics, Huzhou Basic and Clinical Translation of Orthopaedics key Laboratory, Huzhou Central Hospital, 313300, Huzhou, China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China.
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China.
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, 315300, Ningbo, China.
| |
Collapse
|
20
|
Hu Y, Liu Y, Zong L, Zhang W, Liu R, Xing Q, Liu Z, Yan Q, Li W, Lei H, Liu X. The multifaceted roles of GSDME-mediated pyroptosis in cancer: therapeutic strategies and persisting obstacles. Cell Death Dis 2023; 14:836. [PMID: 38104141 PMCID: PMC10725489 DOI: 10.1038/s41419-023-06382-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Pyroptosis is a novel regulated cell death (RCD) mode associated with inflammation and innate immunity. Gasdermin E (GSDME), a crucial component of the gasdermin (GSDM) family proteins, has the ability to convert caspase-3-mediated apoptosis to pyroptosis of cancer cells and activate anti-tumor immunity. Accumulating evidence indicates that GSDME methylation holds tremendous potential as a biomarker for early detection, diagnosis, prognosis, and treatment of tumors. In fact, GSDME-mediated pyroptosis performs a dual role in anti-tumor therapy. On the one side, pyroptotic cell death in tumors caused by GSDME contributes to inflammatory cytokines release, which transform the tumor immune microenvironment (TIME) from a 'cold' to a 'hot' state and significantly improve anti-tumor immunotherapy. However, due to GSDME is expressed in nearly all body tissues and immune cells, it can exacerbate chemotherapy toxicity and partially block immune response. How to achieve a balance between the two sides is a crucial research topic. Meanwhile, the potential functions of GSDME-mediated pyroptosis in anti-programmed cell death protein 1 (PD-1) therapy, antibody-drug conjugates (ADCs) therapy, and chimeric antigen receptor T cells (CAR-T cells) therapy have not yet been fully understood, and how to improve clinical outcomes persists obscure. In this review, we systematically summarize the latest research regarding the molecular mechanisms of pyroptosis and discuss the role of GSDME-mediated pyroptosis in anti-tumor immunity and its potential applications in cancer treatment.
Collapse
Affiliation(s)
- Yixiang Hu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Ya Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Lijuan Zong
- Department of Rehabilitation Medicine, Zhongda Hospital of Southeast University, Nanjing, 210096, China
| | - Wenyou Zhang
- Department of Pharmacy, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Renzhu Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Qichang Xing
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Zheng Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Qingzi Yan
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Wencan Li
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Haibo Lei
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China.
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China.
| | - Xiang Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China.
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China.
| |
Collapse
|
21
|
Chen X, Ning Y, Wang B, Qin J, Li C, Gao R, Ma Z, Zhou Y, Li P, Zhao Y, Peng Y, Chen X, Yang N, Shu S. HET0016 inhibits neuronal pyroptosis in the immature brain post-TBI via the p38 MAPK signaling pathway. Neuropharmacology 2023; 239:109687. [PMID: 37579871 DOI: 10.1016/j.neuropharm.2023.109687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/05/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Traumatic brain injury (TBI) is a serious health threat worldwide, especially for the younger demographic. Our previous study demonstrated that HET0016 (a specific inhibitor of 20-hydroxyeicosatetraenoic acid synthesis) can decrease the lesion volume in the immature brain post-TBI; however, its mechanism of action and its association with pyroptosis post-TBI are unclear. In this study, we established a controlled cortical impact (CCI) injury rat model (postnatal day 9-10) and observed that increased expression of indicators for pyroptosis, including NLR family pyrin domain containing 3 (NLRP3), caspase-1 and gasdermin D (GSDMD) proteins and interleukin (IL)-18/IL-1β mRNA during the acute phase of TBI, especially on post-injury day (PID) 1. Additionally, we found that caspase-1 was primarily expressed in the neurons and microglia. HET0016 (1 mg/kg/d, ip, 3 consecutive days since TBI) reduced the lesion volume; neuronal death; expression of NLRP3, caspase-1, and GSDMD; and expression of IL-18/IL-1β mRNA. Bioinformatics analysis suggested involvement of mitogen-activated protein kinase (MAPK) signaling pathway in the HET0016-mediated neuroprotective role against TBI in the immature brain. Western blot analysis revealed reduced expression of p-p38 MAPK and nuclear factor-kappa B (NF-κB) p65 in the neurons and microglia upon HET0016 treatment in TBI rats. In cultured primary cortical neurons subjected to oxygen-glucose deprivation/re-oxygenation (OGD) + (lipopolysaccharide) LPS, HET0016-induced the reduction of p-p38 MAPK, NLRP3, cleaved-caspase-1, GSDMD, IL-18, and IL-1β was reversed by co-treatment with p38 MAPK activator as well as NLRP3 agonist. Therefore, we conclude that pyroptosis is involved in neuronal death in the immature brains post-TBI and that HET0016 administration can alleviate neuronal pyroptosis possibly via inhibiting the phosphorylation of p38 MAPK.
Collapse
Affiliation(s)
- Xiaoli Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yalei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China; Institute of Brain and Intelligence, Army Medical University, Chongqing, 400038, China
| | - Bo Wang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jun Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Changhong Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ruobing Gao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhihui Ma
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yuanguo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China; Institute of Brain and Intelligence, Army Medical University, Chongqing, 400038, China
| | - Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China; Institute of Brain and Intelligence, Army Medical University, Chongqing, 400038, China
| | - Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China; Institute of Brain and Intelligence, Army Medical University, Chongqing, 400038, China
| | - Yan Peng
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xing Chen
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Nan Yang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shiyu Shu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
22
|
Wang Z, Hu X, Cui P, Kong C, Chen X, Wang W, Lu S. Progress in understanding the role of cGAS-STING pathway associated with programmed cell death in intervertebral disc degeneration. Cell Death Discov 2023; 9:377. [PMID: 37845198 PMCID: PMC10579269 DOI: 10.1038/s41420-023-01607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 10/18/2023] Open
Abstract
Nucleus pulposus (NP) inflammatory response can induce intervertebral disc degeneration (IVDD) by causing anabolic and catabolic disequilibrium of the extracellular matrix (ECM). This process is accompanied by the production of endogenous DNAs, then detectable by the DNA sensor cyclic GMP-AMP synthase (cGAS). cGAS recognizes these DNAs and activates the downstream adaptor protein, a stimulator of interferon genes (STING), initiating a cascade of inflammation responses through various cytokines. This evidence implies a crucial role of the cGAS-STING signaling pathway in IVDD. Additionally, it is suggested that this pathway could modulate IVDD progression by regulating apoptosis, autophagy, and pyroptosis. However, a detailed understanding of the role of cGAS-STING pathway in IVDD is still lacking. This review provides a comprehensive summary of recent advances in our understanding of the role of the cGAS-STING pathway in modulating inflammatory response in IVDD. We delve into the connection between the cGAS-STING axis and apoptosis, autophagy, and pyroptosis in IVDD. Furthermore, we discuss the therapeutic potential of targeting the cGAS-STING signaling pathway in IVDD treatment. Overall, this review aims to provide a foundation for future directions in IVDD treatment strategies.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Peng Cui
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
23
|
Zhou Z, Luo H, Yu H, Liu Z, Zhong J, Xiong J, Cao K. Ferrostatin-1 facilitated neurological functional rehabilitation of spinal cord injury mice by inhibiting ferroptosis. Eur J Med Res 2023; 28:336. [PMID: 37697399 PMCID: PMC10494332 DOI: 10.1186/s40001-023-01264-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/03/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND To seek the potential therapy for spinal cord injury, Ferrostatin-1, the first ferroptosis inhibitor, was administrated in spinal cord injury mice to identify the therapeutic effect. METHODS Spinal cord injury model was established by a modified Allen's method. Then, ferrostatin-1 was administrated by intraspinal injection. Cortical evoked motor potential and BMS were indicated to assess the neurological function rehabilitation. H&E, Nissl's staining, NeuN, and GFAP immunofluorescence were used to identify the histological manifestation on the mice with the injured spinal cord. Spinosin, a selective small molecule activator of the Nrf2/HO-1 signaling pathway, was administrated to verify the underlying mechanism of ferrostatin-1. RESULTS Ferrostatin-1 promoted the rehabilitation of cortical evoked motor potential and BMS scores, synchronized with improvement in the histological manifestation of neuron survival and scar formation. Spinosin disturbed the benefits of ferrostatin-1 administration on histological and neurobehavioral manifestation by deranging the Nrf2/HO-1 signaling pathway. CONCLUSIONS Ferrostatin-1 improved the rehabilitation of spinal cord injury mice by regulating ferroptosis through the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Zhenhai Zhou
- The Orthopaedic Hospital, The First Affiliated Hospital of Nanchang University, #1519 Dongyue Avenue, Nanchang, 330052, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China
| | - Hao Luo
- The Orthopaedic Hospital, The First Affiliated Hospital of Nanchang University, #1519 Dongyue Avenue, Nanchang, 330052, China
| | - Honggui Yu
- The Orthopaedic Hospital, The First Affiliated Hospital of Nanchang University, #1519 Dongyue Avenue, Nanchang, 330052, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China
| | - Zhiming Liu
- The Orthopaedic Hospital, The First Affiliated Hospital of Nanchang University, #1519 Dongyue Avenue, Nanchang, 330052, China
| | - Junlong Zhong
- The Orthopaedic Hospital, The First Affiliated Hospital of Nanchang University, #1519 Dongyue Avenue, Nanchang, 330052, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China
| | - Jiachao Xiong
- The Orthopaedic Hospital, The First Affiliated Hospital of Nanchang University, #1519 Dongyue Avenue, Nanchang, 330052, China
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China
| | - Kai Cao
- The Orthopaedic Hospital, The First Affiliated Hospital of Nanchang University, #1519 Dongyue Avenue, Nanchang, 330052, China.
- Institute of Spine and Spinal Cord, Nanchang University, Nanchang, China.
| |
Collapse
|
24
|
Qu D, Hu D, Zhang J, Yang G, Guo J, Zhang D, Qi C, Fu H. Identification and Validation of Ferroptosis-Related Genes in Patients with Acute Spinal Cord Injury. Mol Neurobiol 2023; 60:5411-5425. [PMID: 37316756 DOI: 10.1007/s12035-023-03423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
Ferroptosis plays crucial roles in the pathology of spinal cord injury (SCI). The purpose of this study was to identify differentially expressed ferroptosis-related genes (DE-FRGs) in human acute SCI by bioinformatics analysis and validate the hub DE-FRGs in non-SCI and SCI patients. The GSE151371 dataset was downloaded from the Gene Expression Omnibus and difference analysis was performed. The differentially expressed genes (DEGs) in GSE151371 overlapped with the ferroptosis-related genes (FRGs) obtained from the Ferroptosis Database. A total of 41 DE-FRGs were detected in 38 SCI samples and 10 healthy samples in GSE151371. Then, enrichment analyses of these DE-FRGs were performed for functional annotation. The GO enrichment results showed that upregulated DE-FRGs were mainly associated with reactive oxygen species and redox reactions, and the KEGG enrichment analysis indicated involvement in some diseases and ferroptosis pathways. Protein-protein interaction (PPI) analysis and lncRNA-miRNA-mRNA regulatory network were performed to explore the correlations between genes and regulatory mechanisms. The relationship between DE-FRGs and differentially expressed mitochondria-related genes (DE-MRGs) was also analyzed. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the hub DE-FRGs in clinical blood samples from acute SCI patients and healthy controls. Consistent with the bioinformatics results, qRT-PCR of the clinical samples indicated similar expression levels of TLR4, STAT3, and HMOX1. This study identified DE-FRGs in blood samples from SCI patients, and the results could improve our understanding of the molecular mechanisms of ferroptosis in SCI. These candidate genes and pathways could be therapeutic targets for SCI.
Collapse
Affiliation(s)
- Di Qu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Medical Department of Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Die Hu
- Qingdao Eye Hospital of Shandong First Medical University, 5 Yan'er Island Road, Qingdao, 266071, China
| | - Jing Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Medical Department of Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Guodong Yang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Medical Department of Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Jia Guo
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Medical Department of Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Dongfang Zhang
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
| | - Chao Qi
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| | - Haitao Fu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| |
Collapse
|
25
|
Tan J, Zhuo Z, Si Y. Application of pyroptosis in tumor research (Review). Oncol Lett 2023; 26:376. [PMID: 37559585 PMCID: PMC10407856 DOI: 10.3892/ol.2023.13962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/27/2023] [Indexed: 08/11/2023] Open
Abstract
As a potent clinical strategy, cancer therapy has sparked an academic boom over the past few years. Immune checkpoint inhibitors (ICIs) have been demonstrated to be highly successful. These achievements have progressed cancer treatment and have made an indelible mark on cancer. However, the inherent complexity of cancer means that only part of the population can benefit from this treatment. Pyroptosis is a new suicidal cellular mechanism that induces inflammation by releasing immunogenic cellular components. Inflammatory signaling cascades mediated by pyroptosis commonly inspire numerous cell lysis in immune diseases. Contrariwise, this consequence may be a promising target in cancer research. Therefore, the present study briefly described programmed cell death processes and their potential roles in cancer. Because of the rapid development of bioengineering in cancer, the present study also examined the associated scaffolding available for cancer, highlighting advances in tumor engineering approaches. Ultimately, an improved understanding of pyroptosis and tumor scaffolding might shed light on a combination that can be manipulated for therapeutic purposes.
Collapse
Affiliation(s)
- Jianing Tan
- Department of Neurology, Changshu No. 2 People's Hospital, Affiliated Changshu Hospital of Nantong University, Suzhou, Jiangsu 215500, P.R. China
| | - Ziliang Zhuo
- Department of Neurology, Changshu No. 2 People's Hospital, Affiliated Changshu Hospital of Nantong University, Suzhou, Jiangsu 215500, P.R. China
| | - Yu Si
- Basic Research Laboratory, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
26
|
Liu Y, Lei H, Zhang W, Xing Q, Liu R, Wu S, Liu Z, Yan Q, Li W, Liu X, Hu Y. Pyroptosis in renal inflammation and fibrosis: current knowledge and clinical significance. Cell Death Dis 2023; 14:472. [PMID: 37500614 PMCID: PMC10374588 DOI: 10.1038/s41419-023-06005-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Pyroptosis is a novel inflammatory form of regulated cell death (RCD), characterized by cell swelling, membrane rupture, and pro-inflammatory effects. It is recognized as a potent inflammatory response required for maintaining organismal homeostasis. However, excessive and persistent pyroptosis contributes to severe inflammatory responses and accelerates the progression of numerous inflammation-related disorders. In pyroptosis, activated inflammasomes cleave gasdermins (GSDMs) and generate membrane holes, releasing interleukin (IL)-1β/18, ultimately causing pyroptotic cell death. Mechanistically, pyroptosis is categorized into caspase-1-mediated classical pyroptotic pathway and caspase-4/5/11-mediated non-classical pyroptotic pathway. Renal fibrosis is a kidney disease characterized by the loss of structural and functional units, the proliferation of fibroblasts and myofibroblasts, and extracellular matrix (ECM) accumulation, which leads to interstitial fibrosis of the kidney tubules. Histologically, renal fibrosis is the terminal stage of chronic inflammatory kidney disease. Although there is a multitude of newly discovered information regarding pyroptosis, the regulatory roles of pyroptosis involved in renal fibrosis still need to be fully comprehended, and how to improve clinical outcomes remains obscure. Hence, this review systematically summarizes the novel findings regarding the role of pyroptosis in the pathogenesis of renal fibrosis and discusses potential biomarkers and drugs for anti-fibrotic therapeutic strategies.
Collapse
Affiliation(s)
- Ya Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Haibo Lei
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Wenyou Zhang
- Department of Pharmacy, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qichang Xing
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Renzhu Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Shiwei Wu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Zheng Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Qingzi Yan
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Wencan Li
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China
| | - Xiang Liu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China.
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China.
| | - Yixiang Hu
- Molecular Pharmacology Laboratory, Department of Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, 411100, China.
- Honghao Zhou Research Institute, Xiangtan Center Hospital, Xiangtan, 411100, China.
| |
Collapse
|
27
|
Rodkin S, Nwosu C, Sannikov A, Raevskaya M, Tushev A, Vasilieva I, Gasanov M. The Role of Hydrogen Sulfide in Regulation of Cell Death following Neurotrauma and Related Neurodegenerative and Psychiatric Diseases. Int J Mol Sci 2023; 24:10742. [PMID: 37445920 DOI: 10.3390/ijms241310742] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Injuries of the central (CNS) and peripheral nervous system (PNS) are a serious problem of the modern healthcare system. The situation is complicated by the lack of clinically effective neuroprotective drugs that can protect damaged neurons and glial cells from death. In addition, people who have undergone neurotrauma often develop mental disorders and neurodegenerative diseases that worsen the quality of life up to severe disability and death. Hydrogen sulfide (H2S) is a gaseous signaling molecule that performs various cellular functions in normal and pathological conditions. However, the role of H2S in neurotrauma and mental disorders remains unexplored and sometimes controversial. In this large-scale review study, we examined the various biological effects of H2S associated with survival and cell death in trauma to the brain, spinal cord, and PNS, and the signaling mechanisms underlying the pathogenesis of mental illnesses, such as cognitive impairment, encephalopathy, depression and anxiety disorders, epilepsy and chronic pain. We also studied the role of H2S in the pathogenesis of neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, we reviewed the current state of the art study of H2S donors as neuroprotectors and the possibility of their therapeutic uses in medicine. Our study showed that H2S has great neuroprotective potential. H2S reduces oxidative stress, lipid peroxidation, and neuroinflammation; inhibits processes associated with apoptosis, autophagy, ferroptosis and pyroptosis; prevents the destruction of the blood-brain barrier; increases the expression of neurotrophic factors; and models the activity of Ca2+ channels in neurotrauma. In addition, H2S activates neuroprotective signaling pathways in psychiatric and neurodegenerative diseases. However, high levels of H2S can cause cytotoxic effects. Thus, the development of H2S-associated neuroprotectors seems to be especially relevant. However, so far, all H2S modulators are at the stage of preclinical trials. Nevertheless, many of them show a high neuroprotective effect in various animal models of neurotrauma and related disorders. Despite the fact that our review is very extensive and detailed, it is well structured right down to the conclusions, which will allow researchers to quickly find the proper information they are interested in.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Tushev
- Neurosurgical Department, Rostov State Medical University Clinic, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinic Therapy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| |
Collapse
|
28
|
Li B, Guo J, Zhou X, Li W, Wang N, Cao R, Cui S. The emerging role of pyroptosis in neuropathic pain. Int Immunopharmacol 2023; 121:110562. [PMID: 37364324 DOI: 10.1016/j.intimp.2023.110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Neuropathic pain caused by somatosensory system injuries is notoriously difficult to treat. Previous research has shown that neuroinflammation and cell death have been implicated in the pathophysiology of neuropathic pain. Pyroptosis is a form of programmed cell death associated with inflammatory processes, as it can enhance or sustain the inflammatory response by releasing pro-inflammatory cytokines. This review presents the current knowledge on pyroptosis and its underlying mechanisms, including the canonical and noncanonical pathways. Moreover, we discuss recent findings on the role of pyroptosis in neuropathic pain and its potential as a therapeutic target. In conclusion, this review highlights the potential significance of pyroptosis as a promising target for developing innovative therapies to treat neuropathic pain.
Collapse
Affiliation(s)
- Baolong Li
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Jin Guo
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Xiongyao Zhou
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Weizhen Li
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Ningning Wang
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Rangjuan Cao
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
| | - Shusen Cui
- Department of Hand and Foot Surgery, The Third Bethune Hospital of Jilin University, Changchun, China; Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
| |
Collapse
|
29
|
Tang L, Liu S, Li S, Chen Y, Xie B, Zhou J. Induction Mechanism of Ferroptosis, Necroptosis, and Pyroptosis: A Novel Therapeutic Target in Nervous System Diseases. Int J Mol Sci 2023; 24:10127. [PMID: 37373274 DOI: 10.3390/ijms241210127] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, three emerging cell deaths, ferroptosis, necroptosis and pyroptosis, have gradually attracted everyone's attention, and they also play an important role in the occurrence and development of various diseases. Ferroptosis is an idiographic iron-dependent form regulated cell death with the hallmark of accumulation of the intracellular reactive oxygen species (ROS). Necroptosis is a form of regulated necrotic cell death mediated by the receptor-interacting protein kinase 1(RIPK1) and receptor-interacting protein kinase 3RIPK3. Pyroptosis, also known as cell inflammatory necrosis, is a programmed cell necrosis mediated by Gasdermin D (GSDMD). It is manifested by the continuous swelling of the cells until the cell membrane ruptures, resulting in the release of the cell contents and the activation of a strong inflammatory response. Neurological disorders remain a clinical challenge and patients do not respond well to conventional treatments. Nerve cell death can aggravate the occurrence and development of neurological diseases. This article reviews the specific mechanisms of these three types of cell death and their relationship with neurological diseases and the evidence for the role of the three types of cell death in neurological diseases; understanding these pathways and their mechanisms is helpful for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Lu Tang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Sitong Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Shiwei Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Ye Chen
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
30
|
Wang D, Wan X. Progress in the study of molecular mechanisms of cell pyroptosis in tumor therapy. Int Immunopharmacol 2023; 118:110143. [PMID: 37030114 DOI: 10.1016/j.intimp.2023.110143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Pyroptosis, also known as cellular inflammatory necrosis, is a programmed cell death mediated by the Gasdermin family of proteins. The mechanisms by which pyroptosis occurs are divided into the GSDMD-mediated Caspase-1 and Caspase-4/-5/-11-dependent classical inflammatory vesicle pathway and the GSDME-mediated Caspase-3 and granzyme-dependent non-classical inflammatory vesicle pathways, among others. Recent studies have shown that pyroptosis has both inhibitory and promotive effects on tumor development. Pyroptosis induction also plays a dual role in antitumor immunotherapy: on the one hand, it suppresses antitumor immunity by promoting the release of inflammatory factors, and on the other hand, it inhibits tumor cell proliferation by triggering antitumor inflammatory responses. In addition, cell scorching plays an essential role in chemotherapy. It has been found that natural drugs modulating the induction of cell scorch are necessary to treat tumors. Therefore, studying the specific mechanisms of cell pyroptosis in different tumors can provide more ideas for developing oncology drugs. In this paper, we review the molecular mechanisms of pyroptosis and the role of pyroptosis in tumor development and treatment to provide new targets for clinical tumor treatment, prognosis, and antitumor drug development.
Collapse
|
31
|
Chen J, Shen Y, Shao X, Wu W. An emerging role of inflammasomes in spinal cord injury and spinal cord tumor. Front Immunol 2023; 14:1119591. [PMID: 36969234 PMCID: PMC10033975 DOI: 10.3389/fimmu.2023.1119591] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Spinal cord injury (SCI) and spinal cord tumor are devastating events causing structural and functional impairment of the spinal cord and resulting in high morbidity and mortality; these lead to a psychological burden and financial pressure on the patient. These spinal cord damages likely disrupt sensory, motor, and autonomic functions. Unfortunately, the optimal treatment of and spinal cord tumors is limited, and the molecular mechanisms underlying these disorders are unclear. The role of the inflammasome in neuroinflammation in diverse diseases is becoming increasingly important. The inflammasome is an intracellular multiprotein complex and participates in the activation of caspase-1 and the secretion of pro-inflammatory cytokines such as interleukin (IL)-1β and IL-18. The inflammasome in the spinal cord is involved in the stimulation of immune-inflammatory responses through the release of pro-inflammatory cytokines, thereby mediating further spinal cord damage. In this review, we highlight the role of inflammasomes in SCI and spinal cord tumors. Targeting inflammasomes is a promising therapeutic strategy for the treatment of SCI and spinal cord tumors.
Collapse
|
32
|
Davis JA, Grau JW. Protecting the injured central nervous system: Do anesthesia or hypothermia ameliorate secondary injury? Exp Neurol 2023; 363:114349. [PMID: 36775099 DOI: 10.1016/j.expneurol.2023.114349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
Traumatic injury to the central nervous system (CNS) and stroke initiate a cascade of processes that expand the area of tissue loss. The current review considers recent studies demonstrating that the induction of an anesthetic state or cooling the affected tissue (hypothermia) soon after injury can have a therapeutic effect. We first provide an overview of the neurobiological processes that fuel tissue loss after traumatic brain injury (TBI), spinal cord injury (SCI) and stroke. We then examine the rehabilitative effectiveness of therapeutic anesthesia across a variety of drug categories through a systematic review of papers in the PubMed database. We also review the therapeutic benefits hypothermia, another treatment that quells neural activity. We conclude by considering factors related to the safety, efficacy and timing of treatment, as well as the mechanisms of action. Clinical implications are also discussed.
Collapse
Affiliation(s)
- Jacob A Davis
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
33
|
Zhang H, Wu C, Yu DD, Su H, Chen Y, Ni W. Piperine attenuates the inflammation, oxidative stress, and pyroptosis to facilitate recovery from spinal cord injury via autophagy enhancement. Phytother Res 2023; 37:438-451. [PMID: 36114802 DOI: 10.1002/ptr.7625] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022]
Abstract
Spinal cord injury (SCI) is a serious injury that can lead to irreversible motor dysfunction. Due to its complicated pathogenic mechanism, there are no effective drug treatments. Piperine, a natural active alkaloid extracted from black pepper, has been reported to influence neurogenesis and exert a neuroprotective effect in traumatic brain injury. The aim of this study was to investigate the therapeutic effect of piperine in an SCI model. SCI was induced in mice by clamping the spinal cord with a vascular clip for 1 min. Before SCI and every 2 days post-SCI, evaluations using the Basso mouse scale and inclined plane tests were performed. On day 28 after SCI, footprint analyses, and HE/Masson staining of tissues were performed. On a postoperative Day 3, the spinal cord was harvested to assess the levels of pyroptosis, reactive oxygen species (ROS), inflammation, and autophagy. Piperine enhanced functional recovery after SCI. Additionally, piperine reduced inflammation, oxidative stress, pyroptosis, and activated autophagy. However, the effects of piperine on functional recovery after SCI were reversed by autophagy inhibition. The study demonstrated that piperine facilitated functional recovery after SCI by inhibiting inflammatory, oxidative stress, and pyroptosis, mediated by the activation of autophagy.
Collapse
Affiliation(s)
- Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Dong-Dong Yu
- Department of Urology, Huzhou Central Hospital, Huzhou, People's Republic of China
| | - Haohan Su
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanlin Chen
- Spinal Surgery Department, The Central Hospital of Lishui City, Lishui, People's Republic of China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
34
|
Zhang H, Chen Y, Li F, Wu C, Cai W, Ye H, Su H, He M, Yang L, Wang X, Zhou K, Ni W. Elamipretide alleviates pyroptosis in traumatically injured spinal cord by inhibiting cPLA2-induced lysosomal membrane permeabilization. J Neuroinflammation 2023; 20:6. [PMID: 36609266 PMCID: PMC9825014 DOI: 10.1186/s12974-023-02690-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating injury that may result in permanent motor impairment. The active ingredients of medications are unable to reach the affected area due to the blood‒brain barrier. Elamipretide (SS-31) is a new and innovative aromatic cationic peptide. Because of its alternating aromatic and cationic groups, it freely crosses the blood‒brain barrier. It is also believed to decrease inflammation and protect against a variety of neurological illnesses. This study explored the therapeutic value of SS-31 in functional recovery after SCI and its possible underlying mechanism. A spinal cord contusion injury model as well as the Basso Mouse Scale, footprint assessment, and inclined plane test were employed to assess how well individuals could function following SCI. The area of glial scarring, the number of dendrites, and the number of synapses after SCI were confirmed by HE, Masson, MAP2, and Syn staining. Western blotting, immunofluorescence, and enzyme-linked immunosorbent assays were employed to examine the expression levels of pyroptosis-, autophagy-, lysosomal membrane permeabilization (LMP)- and MAPK signalling-related proteins. The outcomes showed that SS-31 inhibited pyroptosis, enhanced autophagy and attenuated LMP in SCI. Mechanistically, we applied AAV vectors to upregulate Pla2g4A in vivo and found that SS-31 enhanced autophagy and attenuated pyroptosis and LMP by inhibiting phosphorylation of cPLA2. Ultimately, we applied asiatic acid (a p38-MAPK agonist) to test whether SS-31 regulated cPLA2 partially through the MAPK-P38 signalling pathway. Our group is the first to suggest that SS-31 promotes functional recovery partially by inhibiting cPLA2-mediated autophagy impairment and preventing LMP and pyroptosis after SCI, which may have potential clinical application value.
Collapse
Affiliation(s)
- Haojie Zhang
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Yituo Chen
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Feida Li
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Chenyu Wu
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Wanta Cai
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Hantao Ye
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Haohan Su
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Mingjun He
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Liangliang Yang
- grid.268099.c0000 0001 0348 3990School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang China
| | - Xiangyang Wang
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Kailiang Zhou
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| | - Wenfei Ni
- grid.417384.d0000 0004 1764 2632Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China ,grid.268099.c0000 0001 0348 3990Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000 Zhejiang China
| |
Collapse
|
35
|
Ni WF, Zhou KL, Zhang HJ, Chen YT, Hu XL, Cai WT, Wang XY. Functions and mechanisms of cytosolic phospholipase A 2 in central nervous system trauma. Neural Regen Res 2023; 18:258-266. [PMID: 35900400 PMCID: PMC9396495 DOI: 10.4103/1673-5374.346460] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
36
|
Zhang H, Ni W, Yu G, Geng Y, Lou J, Qi J, Chen Y, Li F, Ye H, Ma H, Xu H, Zhao L, Cai Y, Wang X, Xu H, Xiao J, Zhou K. 3,4-Dimethoxychalcone, a caloric restriction mimetic, enhances TFEB-mediated autophagy and alleviates pyroptosis and necroptosis after spinal cord injury. Theranostics 2023; 13:810-832. [PMID: 36632211 PMCID: PMC9830432 DOI: 10.7150/thno.78370] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Caloric restriction mimetics (CRMs) mimic the favourable effects of caloric restriction (CR) and have been shown to have therapeutic effects in neuroinflammatory disease. However, whether CRMs improve the functional recovery from spinal cord injury (SCI) and the underlying mechanism of action remain unclear. In this study, we used the CRMs 3,4-dimethoxychalcone (3,4-DC) to evaluate the therapeutic value of CRMs for SCI. Methods: HE, Masson and Nissl staining; footprint analysis; and the Basso mouse scale were used to determine the functional recovery from SCI after 3,4-DC treatment. RNA sequencing was used to identify the mechanisms of 3,4-DC in SCI. Western blotting, qPCR and immunofluorescence were used to detect the levels of pyroptosis, necroptosis, autophagy and the AMPK-TRPML1-calcineurin signalling pathway. We employed a dual-luciferase reporter assay in vitro and applied AAV vectors to inhibit TFEB in vivo to explore the mechanism of 3,4-DC. Results: 3,4-DC reduced glial scar area and motor neuron death and improved functional recovery after SCI. RNA-sequencing results indicated that oxidative stress, pyroptosis, necroptosis, and autophagy may be involved in the ability of 3,4-DC to improve functional recovery. Furthermore, 3,4-DC inhibited pyroptosis and necroptosis by enhancing autophagy. We also found that 3,4-DC enhances autophagy by promoting TFEB activity. A decrease in the TFEB level abolished the protective effect of 3,4-DC. In addition, 3,4-DC partially regulated TFEB activity through the AMPK-TRPML1-calcineurin signalling pathway. Conclusions: 3,4-DC promotes functional recovery by upregulating TFEB-mediated autophagy and inhibiting pyroptosis and necroptosis after SCI, which may have potential clinical application value.
Collapse
Affiliation(s)
- Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Junsheng Lou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianjun Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Yituo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Hantao Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Haiwei Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Luying Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China,✉ Corresponding authors: Huazi Xu, E-mail: , Tel/Fax number: +8613616632111. Jian Xiao, E-mail: , Tel/Fax number: +8613968857613. Kailiang Zhou, E-mail: , Tel/Fax number: +8615088555167
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China,✉ Corresponding authors: Huazi Xu, E-mail: , Tel/Fax number: +8613616632111. Jian Xiao, E-mail: , Tel/Fax number: +8613968857613. Kailiang Zhou, E-mail: , Tel/Fax number: +8615088555167
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China,✉ Corresponding authors: Huazi Xu, E-mail: , Tel/Fax number: +8613616632111. Jian Xiao, E-mail: , Tel/Fax number: +8613968857613. Kailiang Zhou, E-mail: , Tel/Fax number: +8615088555167
| |
Collapse
|
37
|
Role of Transcription Factor Nrf2 in Pyroptosis in Spinal Cord Injury by Regulating GSDMD. Neurochem Res 2023; 48:172-187. [PMID: 36040608 DOI: 10.1007/s11064-022-03719-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) is a prevalent disease that debilitates millions of people. Nuclear factor E2-related factor 2 (Nrf2) is an important regulator of SCI. The current study sought to elaborate on the effects of Nrf2 on gasdermin D (GSDMD)-mediated microglia pyroptosis to repair SCI. The SCI rat model was established via the percussion of the T10 spinal cord and in vitro SCI model was established on BV-2 cells via lipopolysaccharide (LPS)/adenosine triphosphate (ATP) treatment. Nrf2 expression in SCI rats and BV-2 cells was overexpressed via pcDNA3.1-Nrf2 injection. Functional assays were carried out to evaluate SCI rat pathological injury, BV-2 cell viability, the release of lactate dehydrogenase (LDH), and pyroptotic factors. The binding relations of Nrf2 and microRNA (miR)-146a and miR-146a and GSDMD were verified. BV-2 pyroptosis was analyzed after the combined experiment of miR-146a-inhibitor and pcDNA3.1-GSDMD. Our experiments revealed that Nrf2 was downregulated in SCI, and Nrf2 overexpression relieved SCI pathological injury, promoted BV-2 cell viability, inhibited the release of LDH, and repressed pyroptosis. Mechanically, Nrf2 bound to the miR-146a promoter and promoted miR-146a expression, and miR-146a targeted GSDMD transcription. Rescue experiments revealed that miR-146a knockdown or GSDMD overexpression annulled the inhibitory function of Nrf2 overexpression in LPS/ATP-induced microglia pyroptosis. Overall, our findings initially highlighted that Nrf2 inhibited GSDMD-mediated microglia pyroptosis and accelerated SCI repair by repressing miR-146a.
Collapse
|
38
|
Xu H, Zheng LX, Chen XS, Pang QY, Yan YN, Liu R, Guo HM, Ren ZY, Yang Y, Gu ZY, Gao C, Gao Y, Luo CL, Zhao Y, Wang Y, Wang T, Tao LY. Brain-specific loss of Abcg1 disturbs cholesterol metabolism and aggravates pyroptosis and neurological deficits after traumatic brain injury. Brain Pathol 2022; 33:e13126. [PMID: 36271611 PMCID: PMC10154369 DOI: 10.1111/bpa.13126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
Based on accumulating evidence, cholesterol metabolism dysfunction has been suggested to contribute to the pathophysiological process of traumatic brain injury (TBI) and lead to neurological deficits. As a key transporter of cholesterol that efflux from cells, the ATP-binding cassette (ABC) transporter family exerts many beneficial effects on central nervous system (CNS) diseases. However, there is no study regarding the effects and mechanisms of ABCG1 on TBI. As expected, TBI resulted in the different time-course changes of cholesterol metabolism-related molecules in the injured cortex. Considering ABCG1 is expressed in neuron and glia post-TBI, we generated nestin-specific Abcg1 knockout (Abcg1-KO) mice using the Cre/loxP recombination system. These Abcg1-KO mice showed reduced plasma high-density lipoprotein cholesterol levels and increased plasma lower-density lipoprotein cholesterol levels under the base condition. After TBI, these Abcg1-KO mice were susceptible to cholesterol metabolism turbulence. Moreover, Abcg1-KO exacerbated TBI-induced pyroptosis, apoptosis, neuronal cell insult, brain edema, neurological deficits, and brain lesion volume. Importantly, we found that treating with retinoid X receptor (RXR, the upstream molecule of ABCG1) agonist, bexarotene, in Abcg1-KO mice partly rescued TBI-induced neuronal damages mentioned above and improved functional deficits versus vehicle-treated group. These data show that, in addition to regulating brain cholesterol metabolism, Abcg1 improves neurological deficits through inhibiting pyroptosis, apoptosis, neuronal cell insult, and brain edema. Moreover, our findings demonstrate that the cerebroprotection of Abcg1 on TBI partly relies on the activation of the RXRalpha/PPARgamma pathway, which provides a potential therapeutic target for treating TBI.
Collapse
Affiliation(s)
- Heng Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Le-Xin Zheng
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Xue-Shi Chen
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Qiu-Yu Pang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Ya-Nan Yan
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Rong Liu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Han-Mu Guo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Zhi-Yang Ren
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Yan Yang
- Department of Pathology and Pathophysiology, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Zhi-Ya Gu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Cheng Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Cheng-Liang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Pathology and Pathophysiology, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Ying Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| | - Lu-Yang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, China
| |
Collapse
|
39
|
Nie Z, Tan L, Niu J, Wang B. The role of regulatory necrosis in traumatic brain injury. Front Mol Neurosci 2022; 15:1005422. [PMID: 36329694 PMCID: PMC9622788 DOI: 10.3389/fnmol.2022.1005422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in the population worldwide, of which key injury mechanism involving the death of nerve cells. Many recent studies have shown that regulatory necrosis is involved in the pathological process of TBI which includes necroptosis, pyroptosis, ferroptosis, parthanatos, and Cyclophilin D (CypD) mediated necrosis. Therefore, targeting the signaling pathways involved in regulatory necrosis may be an effective strategy to reduce the secondary injury after TBI. Meanwhile, drugs or genes are used as interference factors in various types of regulatory necrosis, so as to explore the potential treatment methods for the secondary injury after TBI. This review summarizes the current progress on regulatory necrosis in TBI.
Collapse
|
40
|
Zhao Y, Chen Y, Wang Z, Xu C, Qiao S, Liu T, Qi K, Tong D, Li C. Bone Marrow Mesenchymal Stem Cell Exosome Attenuates Inflammasome-Related Pyroptosis via Delivering circ_003564 to Improve the Recovery of Spinal Cord Injury. Mol Neurobiol 2022; 59:6771-6789. [PMID: 36038697 DOI: 10.1007/s12035-022-03006-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
Bone marrow mesenchymal stem cell (BMSC) is previously reported to present a certain effect on treating spinal cord injury (SCI), while the underlying mechanism is largely uncovered. Therefore, the current study aimed to investigate the involvement of exosome-delivered circRNA profile in the BMSC's effect on pyroptosis for SCI treatment. H2O2 treated rat primary neurons were cultured with normal medium, BMSC, BMSC plus GW4869, and BMSC-derived exosome, respectively, then inflammasome-related pyroptosis markers, and circRNA profiles were detected. Subsequently, circ_003564-knockdown BMSC exosome was transfected into H2O2 treated rat primary neurons and NGF-stimulated PC-12 cells. Furthermore, in vivo validation was conducted. BMSC and BMSC-derived exosome both decreased inflammasome-related pyroptosis markers including cleaved caspase-1, GSDMD, NLRP3, IL-1β, and IL-18 in H2O2-treated neurons, while exosome-free BMSC (BMSC plus GW4869) did not obviously reduce these factors. Microarray assay revealed that BMSC (vs. exosome-free BMSC) and BMSC-derived exosome (vs. normal medium) greatly regulated circRNA profiles, which were enriched in neuroinflammation pathways (such as neurotrophin, apoptosis, and TNF). Among three functional candidate circRNAs (circ_015525, circ_008876, and circ_003564), circ_003564 was most effective to regulate inflammasome-related pyroptosis. Interestingly, circ_003564-knockdown BMSC exosome showed higher expression of inflammasome-related pyroptosis markers compared to negative-control-knockdown BMSC exosome in H2O2 treated primary neurons/NGF-stimulated PC-12 cells. In vivo, BMSC exosome improved the function recovery and decreased tissue injury and inflammasome-related pyroptosis in SCI rats, whose effect was attenuated by circ_003564 knockdown transfection. BMSC exosome attenuates inflammasome-related pyroptosis via delivering circ_003564, contributing to its treatment efficacy for SCI.
Collapse
Affiliation(s)
- Yanyin Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwei Wang
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Changli Xu
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Suchi Qiao
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tianze Liu
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Ke Qi
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Dake Tong
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Cheng Li
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
41
|
Pang Q, Zheng L, Ren Z, Xu H, Guo H, Shan W, Liu R, Gu Z, Wang T. Mechanism of Ferroptosis and Its Relationships with Other Types of Programmed Cell Death: Insights for Potential Therapeutic Benefits in Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1274550. [PMID: 36062196 PMCID: PMC9433211 DOI: 10.1155/2022/1274550] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/19/2022] [Accepted: 08/13/2022] [Indexed: 12/05/2022]
Abstract
Traumatic brain injury (TBI) is a serious health issue with a high incidence, high morbidity, and high mortality that poses a large burden on society. Further understanding of the pathophysiology and cell death models induced by TBI may support targeted therapies for TBI patients. Ferroptosis, a model of programmed cell death first defined in 2012, is characterized by iron dyshomeostasis, lipid peroxidation, and glutathione (GSH) depletion. Ferroptosis is distinct from apoptosis, autophagy, pyroptosis, and necroptosis and has been shown to play a role in secondary brain injury and worsen long-term outcomes after TBI. This review systematically describes (1) the regulatory pathways of ferroptosis after TBI, (2) the neurobiological links between ferroptosis and other cell death models, and (3) potential therapies targeting ferroptosis for TBI patients.
Collapse
Affiliation(s)
- Qiuyu Pang
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Lexin Zheng
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Zhiyang Ren
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Heng Xu
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Hanmu Guo
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Wenqi Shan
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Rong Liu
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Zhiya Gu
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| | - Tao Wang
- Department of Forensic Science, Suzhou Medicine College of Soochow University, Suzhou 215123, China
| |
Collapse
|
42
|
Feng Z, Hua S, Li W, Han J, Li F, Chen H, Zhang Z, Xie Y, Ouyang Q, Zou X, Liu Z, Li C, Huang S, Lai Z, Cai X, Cai Y, Zou Y, Tang Y, Jiang X. Mesenchymal stem cells protect against TBI-induced pyroptosis in vivo and in vitro through TSG-6. Cell Commun Signal 2022; 20:125. [PMID: 35982465 PMCID: PMC9387023 DOI: 10.1186/s12964-022-00931-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background Pyroptosis, especially microglial pyroptosis, may play an important role in central nervous system pathologies, including traumatic brain injury (TBI). Transplantation of mesenchymal stem cells (MSCs), such as human umbilical cord MSCs (hUMSCs), has been a focus of brain injury treatment. Recently, MSCs have been found to play a role in many diseases by regulating the pyroptosis pathway. However, the effect of MSC transplantation on pyroptosis following TBI remains unknown. Tumor necrosis factor α stimulated gene 6/protein (TSG-6), a potent anti-inflammatory factor expressed in many cell types including MSCs, plays an anti-inflammatory role in many diseases; however, the effect of TSG-6 secreted by MSCs on pyroptosis remains unclear. Methods Mice were subjected to controlled cortical impact injury in vivo. To assess the time course of pyroptosis after TBI, brains of TBI mice were collected at different time points. To study the effect of TSG-6 secreted by hUMSCs in regulating pyroptosis, normal hUMSCs, sh-TSG-6 hUMSCs, or different concentrations of rmTSG-6 were injected intracerebroventricularly into mice 4 h after TBI. Neurological deficits, double immunofluorescence staining, presence of inflammatory factors, cell apoptosis, and pyroptosis were assessed. In vitro, we investigated the anti-pyroptosis effects of hUMSCs and TSG-6 in a lipopolysaccharide/ATP-induced BV2 microglial pyroptosis model. Results In TBI mice, the co-localization of Iba-1 (marking microglia/macrophages) with NLRP3/Caspase-1 p20/GSDMD was distinctly observed at 48 h. In vivo, hUMSC transplantation or treatment with rmTSG-6 in TBI mice significantly improved neurological deficits, reduced inflammatory cytokine expression, and inhibited both NLRP3/Caspase-1 p20/GSDMD expression and microglial pyroptosis in the cerebral cortices of TBI mice. However, the therapeutic effect of hUMSCs on TBI mice was reduced by the inhibition of TSG-6 expression in hUMSCs. In vitro, lipopolysaccharide/ATP-induced BV2 microglial pyroptosis was inhibited by co-culture with hUMSCs or with rmTSG-6. However, the inhibitory effect of hUMSCs on BV2 microglial pyroptosis was significantly reduced by TSG-6-shRNA transfection. Conclusion In TBI mice, microglial pyroptosis was observed. Both in vivo and in vitro, hUMSCs inhibited pyroptosis, particularly microglial pyroptosis, by regulating the NLRP3/Caspase-1/GSDMD signaling pathway via TSG-6. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00931-2.
Collapse
Affiliation(s)
- Zhiming Feng
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Shiting Hua
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wangan Li
- Emergency Trauma Center, Huizhou First Hospital, Huizhou, China
| | - Jianbang Han
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Feng Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Haijia Chen
- Guangzhou Saliai Stem Cell Science and Technology Co. Ltd, Guangzhou, China
| | - Zhongfei Zhang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yu Xie
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Qian Ouyang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xiaoxiong Zou
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhizheng Liu
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Cong Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Sixian Huang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zelin Lai
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xiaolin Cai
- Emergency Trauma Center, Huizhou First Hospital, Huizhou, China
| | - Yingqian Cai
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yuxi Zou
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yanping Tang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xiaodan Jiang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
43
|
Yu E, Zhang E, Lv X, Yan L, Lin Z, Siaw-Debrah F, Zhang Y, Yang S, Ruan L, Zhuge Q, Ni H. LDC7559 Exerts Neuroprotective Effects by Inhibiting GSDMD-dependent Pyroptosis of Microglia in Mice with Traumatic Brain Injury. J Neurotrauma 2022; 40:742-757. [PMID: 35920115 DOI: 10.1089/neu.2021.0318] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pyroptosis is considered one of a critical factor in the recovery of neurological function following traumatic brain injury. Brain injury activates a molecular signaling cascade associated with pyroptosis and inflammation, including NLRP3, inflammatory cytokines, caspase-1, gasdermin D (GSDMD), and other pyroptosis-related proteins. In this study, we explored the neuroprotective effects of LDC7559, a GSDMD inhibitor. Briefly, LDC7559, siRNA-GSDMD (si-GSDMD), or equal solvent was administrated to mice with a lipopolysaccharide + nigericin (LPS + Nig) model in vitro or with controlled cortical impact brain injury. The findings revealed that inflammation and pyroptosis levels were decreased by LDC7559 or si-GSDMD treatment both in vitro and in vivo. Immunofluorescence staining, brain water content, hematoxylin and eosin staining, and behavioral investigations suggested that LDC7559 or si-GSDMD inhibited microglial proliferation, ameliorated cerebral edema, reduced brain tissue loss, and promoted brain function recovery. Taken together, LDC7559 may inhibit pyroptosis and reduce inflammation by inhibiting GSDMD, thereby promoting the recovery of neurological function.
Collapse
Affiliation(s)
- Enxing Yu
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,Ningbo City First Hospital, Department of Plastic and Reconstructive Surgery, Ningbo, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery,, Wenzhou, Zhejiang, China;
| | - Erjia Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China;
| | - Xinhuang Lv
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China;
| | - Lin Yan
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Zhongxiao Lin
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Felix Siaw-Debrah
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,Korle Bu Teaching Hospital, Department of Neurosurgery, Korlebu teaching hospital, Accra, Greater Accra, Ghana;
| | - Ying Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Su Yang
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Linhui Ruan
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Qichuan Zhuge
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Haoqi Ni
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| |
Collapse
|
44
|
Ferroptosis: A Novel Therapeutic Direction of Spinal Cord Injury. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7906218. [PMID: 35866036 PMCID: PMC9296343 DOI: 10.1155/2022/7906218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023]
Abstract
An injury to the spinal cord results in a crucial central nervous system event that further causes irreversible impairment or loss of motor, autonomic, and sensory functions. A progressive pathophysiological cascade following spinal cord injury (SCI) includes ischemia/reperfusion injury, oxidative stress, proapoptotic signaling, peripheral inflammatory cell infiltration, and glutamate-mediated excitotoxicity, and regulated cell death. These complex pathological and physiological changes continue to cause cell injury over the long-term and severely limit the efficacy of clinical treatment strategies in restoring the injured nervous system. Ferroptosis is a nonapoptotic, iron-regulated kind of cell death that has recently been discovered. It is distinguished by iron overload-induced toxic lipid peroxidation associated with mitochondrial morphological changes during the cell death process. For example, after SCI, iron overload activates the reactive oxygen species generation, dysregulation of glutathione/glutathione peroxidase 4 (GSH/GPX4) metabolism, and accumulation of lipid peroxides, which cause lipid membrane deterioration and ferroptosis. Conversely, knockout or differential expression of key genes and application of lipid peroxidation inhibitors and iron chelators (e.g., deferoxamine) (e.g., SRS-16-86) can block ferroptosis and promote neuronal repair for functional recovery after SCI. Although the findings of numerous investigations have been confirmed the importance of ferroptosis in several human neurologic sicknesses and its potential in SCI, the mechanism of ferroptosis and its application in SCI has not been elucidated. This review highlights current ferroptosis research and its impact on SCI, as well as the key molecular mechanism of ferroptosis in promoting the recovery from SCI. Understanding ferroptosis' process and function in SCI could provide useful insight into the treatment and avoidance of such a destructive injury.
Collapse
|
45
|
Tang X, Li Q, Huang T, Zhang H, Chen X, Ling J, Yang Y. Regenerative Role of T Cells in Nerve Repair and Functional Recovery. Front Immunol 2022; 13:923152. [PMID: 35865551 PMCID: PMC9294345 DOI: 10.3389/fimmu.2022.923152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/06/2022] [Indexed: 12/17/2022] Open
Abstract
The immune system is essential in the process of nerve repair after injury. Successful modulation of the immune response is regarded as an effective approach to improving treatment outcomes. T cells play an important role in the immune response of the nervous system, and their beneficial roles in promoting regeneration have been increasingly recognized. However, the diversity of T-cell subsets also delivers both neuroprotective and neurodegenerative functions. Therefore, this review mainly discusses the beneficial impact of T-cell subsets in the repair of both peripheral nervous system and central nervous system injuries and introduces studies on various therapies based on T-cell regulation. Further discoveries in T-cell mechanisms and multifunctional biomaterials will provide novel strategies for nerve regeneration.
Collapse
Affiliation(s)
- Xiaoxuan Tang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Qiaoyuan Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Tingting Huang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Han Zhang
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Xiaoli Chen
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Jue Ling
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Jue Ling, ; Yumin Yang,
| | - Yumin Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-Innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- *Correspondence: Jue Ling, ; Yumin Yang,
| |
Collapse
|
46
|
Wang H, Huang Q, Zhang Z, Ji J, Sun T, Wang D. Transient post-operative overexpression of CXCR2 on monocytes of traumatic brain injury patients drives monocyte chemotaxis toward cerebrospinal fluid and enhances monocyte-mediated immunogenic cell death of neurons in vitro. J Neuroinflammation 2022; 19:171. [PMID: 35768823 PMCID: PMC9245242 DOI: 10.1186/s12974-022-02535-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background After traumatic brain injury (TBI), peripheral monocytes infiltrate into the central nervous system due to disruption of the blood–brain barrier, and play an important role in neuroinflammation. However, the mechanisms regulating the movement and function of peripheral monocytes after TBI have not been fully investigated. Methods TBI patients who underwent surgery at our hospital were recruited. CXCR2 expression in CD14+ monocytes from peripheral blood and cerebrospinal fluid (CSF) of TBI patients around surgery was analyzed by flow cytometry and compared with that of patients who suffered TBI 2–24 months prior and underwent cranioplasty. In vitro, serum or CSF from TBI/non-TBI patients were used to treat peripheral monocytes isolated from healthy volunteers to evaluate their effect on CXCR2 expression. Transwell experiments were performed to analyze the role of CXCR2 in monocyte chemotaxis toward the CSF. The role of CXCR2 in monocyte-mediated immunogenic cell death (ICD) of nerve cells was explored in an indirect co-culture system. Results Transient CXCR2 upregulation in monocytes from the peripheral blood and CSF of TBI patients was detected soon after surgery and was associated with unfavorable outcomes. TBI serum and CSF promoted CXCR2 expression in monocytes, and dexamethasone reversed this effect. Peripheral monocytes from TBI patients showed enhanced chemotaxis toward the CSF and increased inflammatory cytokine secretion. The CXCR2 antagonist SB225002 decreased monocyte chemotaxis toward TBI CSF, and lowered pro-inflammatory cytokine secretion in monocytes treated with TBI serum. SB225002 also relieved ICD in nerve cells co-cultured with TBI serum-treated monocytes. Conclusions CXCR2 is transiently overexpressed in the peripheral monocytes of TBI patients post-surgery, and drives peripheral monocyte chemotaxis toward CSF and monocyte-mediated ICD of nerve cells. Therefore, CXCR2 may be a target for monocyte-based therapies for TBI. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02535-6.
Collapse
Affiliation(s)
- Huayang Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Qibing Huang
- Department of Neurosurgical Intensive Care Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Zhijie Zhang
- Department of Ultrasound, Shandong Maternal and Child Health Hospital, Jinan, China
| | - Jian Ji
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Sun
- Department of Neurosurgery, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Donghai Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, # 107 Wenhuaxi Road, Jinan, Shandong, China.
| |
Collapse
|
47
|
Shi M, Liu L, Min X, Mi L, Chai Y, Chen F, Wang J, Yue S, Zhang J, Deng Q, Chen X. Activation of Sigma-1 Receptor Alleviates ER-Associated Cell Death and Microglia Activation in Traumatically Injured Mice. J Clin Med 2022; 11:2348. [PMID: 35566476 PMCID: PMC9102000 DOI: 10.3390/jcm11092348] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) is associated with neuroinflammation and subsequent cell death following traumatic brain injury (TBI). The sigma-1 receptor (Sig-1R) acts as a dynamic pluripotent modulator of fundamental cellular processes at the mitochondria-associated membranes (MAMs). The activation of Sig-1R is neuroprotective in a variety of central nervous system diseases, but its impact on ER stress induced by traumatic brain injury is not known. This study investigated the role of Sig-1R in regulating the ER stress-mediated microglial activation and programmed cell death (apoptosis and pyroptosis) induced by TBI. METHODS Ten human brain tissues were obtained from The Tianjin Medical University General Hospital. Four normal brain tissues were obtained from patients who underwent surgery for cerebral vascular malformation, through which peripheral brain tissues were isolated. Six severe TBI tissues were from patients with brain injury caused by accidents. None of the patients had any other known neurological disorders. Mice with Sig-1R deletion using CRISPR technology were subjected to controlled cortical impact-induced injury. In parallel, wild type C57BL/6J mice were analyzed for outcomes after they were exposed to TBI and received the Sig-1R agonist PRE-084 (10 mg/kg daily for three days) either alone or in combination with the Sig-1R antagonist BD-1047 (10 mg/kg). RESULTS The expression of Sig-1R and the 78 kDa glucose-regulated protein, a known UPR marker, were significantly elevated in the injured cerebral tissues from TBI patients and mice subjected to TBI. PRE-084 improved neurological function, restored the cerebral cortical perfusion, and ameliorated and brain edema in C57BL/6J mice subjected to TBI by reducing endoplasmic reticulum stress-mediated apoptosis, pyroptosis, and microglia activation. The effect of PRE-084 was abolished in mice receiving Sig-1R antagonist BD-1047. CONCLUSIONS ER stress and UPR were upregulated in TBI patients and mice subjected to TBI. Sig-1R activation by the exogenous activator PRE-084 attenuated microglial cells activation, reduced ER stress-associated programmed cell death, and restored cerebrovascular and neurological function in TBI mice.
Collapse
Affiliation(s)
- Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Liang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Xiaobin Min
- Baodi Clinical College, Tianjin Medical University, Tianjin 300052, China;
| | - Liang Mi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Yan Chai
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Fanglian Chen
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Jianhao Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Shuyuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; (M.S.); (L.L.); (L.M.); (J.W.); (S.Y.); (J.Z.)
- Tianjin Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin 300052, China; (Y.C.); (F.C.)
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| |
Collapse
|
48
|
Activation of RKIP Binding ASC Attenuates Neuronal Pyroptosis and Brain Injury via Caspase-1/GSDMD Signaling Pathway After Intracerebral Hemorrhage in Mice. Transl Stroke Res 2022; 13:1037-1054. [PMID: 35355228 DOI: 10.1007/s12975-022-01009-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Pyroptosis has been proven to be responsible for secondary brain injury after intracerebral hemorrhage (ICH). A recent study reported that Raf kinase inhibitor protein (RKIP) inhibited assembly and activation of inflammasome in macrophages. Our present study aimed to investigate the effects of RKIP on inflammasome-mediated neuronal pyroptosis and underlying neuroprotective mechanisms in experimental ICH. Here, we showed that RKIP expression was decreased both in cerebrospinal fluid (CSF) samples from patients with ICH and in the peri-hematoma tissues after experimental ICH. In mouse ICH model, activation of RKIP remarkably improved neurological deficits, reduced brain water content and BBB disruption, and promoted hematoma absorption at 24 h after ICH, as well as alleviated neuronal degeneration, reduced membrane pore formation, and downregulated pyroptotic molecules NLRP3, caspase-1 P20, GSDMD-N, and mature IL-1β. Besides, RKIP activation decreased the number of caspase-1 P20-positive neurons after ICH. However, RKIP inhibitor reserved the neuroprotective effects of RKIP at 24 h following ICH. Moreover, RKIP could bind with ASC, then interrupt the assembly of NLRP3 inflammasome. Mechanistically, inhibiting the caspase-1 by VX-765 attenuated brain injury and suppressed neuronal pyroptosis after RKIP inhibitor-pretreated ICH. In conclusion, our findings indicated that activation of RKIP could attenuate neuronal pyroptosis and brain injury after ICH, to some extent, through ASC/Caspase-1/GSDMD pathway. Thus, RKIP may be a potential target to attenuate brain injury via its anti-pyroptosis effect after ICH.
Collapse
|
49
|
Yang B, Zhong W, Gu Y, Li Y. Emerging Mechanisms and Targeted Therapy of Pyroptosis in Central Nervous System Trauma. Front Cell Dev Biol 2022; 10:832114. [PMID: 35399534 PMCID: PMC8990238 DOI: 10.3389/fcell.2022.832114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/14/2022] [Indexed: 01/31/2023] Open
Abstract
Cell death can occur in different modes, ferroptosis, pyroptosis, apoptosis, and necroptosis. Recent studies have shown that pyroptosis can be effectively regulated and that like necroptosis, pyroptosis has been regarded as a type of programmed cell death. The mechanism of its occurrence can be divided into canonical inflammasome-induced pyroptosis and noncanonical inflammasome-induced pyroptosis. In the past research, pyroptosis has been shown to be closely related to various diseases, such as tumors, neurodegenerative diseases, and central nervous system trauma, and studies have pointed out that in central nervous system trauma, pyroptosis is activated. Furthermore, these studies have shown that the inhibition of pyroptosis can play a role in protecting nerve function. In this review, we summarized the mechanisms of pyroptosis, introduce treatment strategies for targeted pyroptosis in central nervous system trauma, and proposed some issues of targeted pyroptosis in the treatment of central nervous system injury.
Collapse
Affiliation(s)
- Biao Yang
- Department of Neurosurgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijie Zhong
- Department of Neurosurgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Gu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi Li
- Department of Neurosurgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yi Li,
| |
Collapse
|
50
|
Role of NETosis in Central Nervous System Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3235524. [PMID: 35028005 PMCID: PMC8752220 DOI: 10.1155/2022/3235524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Central nervous system (CNS) injury is divided into brain injury and spinal cord injury and remains the most common cause of morbidity and mortality worldwide. Previous reviews have defined numerous inflammatory cells involved in this process. In the human body, neutrophils comprise the largest numbers of myeloid leukocytes. Activated neutrophils release extracellular web-like DNA amended with antimicrobial proteins called neutrophil extracellular traps (NETs). The formation of NETs was demonstrated as a new method of cell death called NETosis. As the first line of defence against injury, neutrophils mediate a variety of adverse reactions in the early stage, and we consider that NETs may be the prominent mediators of CNS injury. Therefore, exploring the specific role of NETs in CNS injury may help us shed some light on early changes in the disease. Simultaneously, we discovered that there is a link between NETosis and other cell death pathways by browsing other research, which is helpful for us to establish crossroads between known cell death pathways. Currently, there is a large amount of research concerning NETosis in various diseases, but the role of NETosis in CNS injury remains unknown. Therefore, this review will introduce the role of NETosis in CNS injury, including traumatic brain injury, cerebral ischaemia, CNS infection, Alzheimer's disease, and spinal cord injury, by describing the mechanism of NETosis, the evidence of NETosis in CNS injury, and the link between NETosis and other cell death pathways. Furthermore, we also discuss some agents that inhibit NETosis as therapies to alleviate the severity of CNS injury. NETosis may be a potential target for the treatment of CNS injury, so exploring NETosis provides a feasible therapeutic option for CNS injury in the future.
Collapse
|