1
|
Song X, Hu Q, Xu X, Pan W. Protein kinase C beta relieves autism-like behavior in EN2 knockout mice via upregulation of the FTO/PGC-1α/UCP1 axis. J Biochem Mol Toxicol 2023; 37:e23236. [PMID: 36239013 DOI: 10.1002/jbt.23236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/19/2022] [Accepted: 09/22/2022] [Indexed: 01/18/2023]
Abstract
Increasing evidence suggests that disruption of neuron activity contributes to the autistic phenotype. Thus, we aimed in this study to explore the role of protein kinase C beta (PKCβ) in the regulation of neuron activity in an autism model. The expression of PKCβ in the microarray data of autism animal models was obtained from the Gene Expression Omnibus database. Then, mice with autism-like behavior were prepared in EN2 knockout (-/- ) mice. The interaction between PKCβ on fat mass and obesity-associated protein (FTO) as well as between PGC-1α and uncoupling protein 1 (UCP1) were characterized. The effect of FTO on the N6 -methyladenosine (m6A) modification level of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) was assayed. Following transfection of overexpressed PKCβ and/or silenced UCP1, effects of PKCβ and UCP1 in autism-like behaviors in EN2-/- mice were analyzed. Results showed that PKCβ was downregulated in EN2-/- mouse brain tissues or neurons. PKCβ promoted the expression and stability of FTO, which downregulated the m6A modification level of PGC-1α to promote its expression. Moreover, PGC-1α positively targeted the expression of UCP1. PKCβ knockdown enhanced sociability and spatial exploration ability, and reduced neuron apoptosis in EN2-/- mouse models of autism, which was reversed by UCP1 overexpression. Collectively, PKCβ overexpression leads to activation of the FTO/m6A/PGC-1α/UCP1 axis, thus inhibiting neuron apoptosis and providing neuroprotection in mice with autism-like behavior.
Collapse
Affiliation(s)
- Xingyu Song
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Qibo Hu
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Xiaoheng Xu
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Wei Pan
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Yang Y, Wang C, Liu L, Buxbaum J, He Z, Ionita-Laza I. KnockoffTrio: A knockoff framework for the identification of putative causal variants in genome-wide association studies with trio design. Am J Hum Genet 2022; 109:1761-1776. [PMID: 36150388 PMCID: PMC9606389 DOI: 10.1016/j.ajhg.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/24/2022] [Indexed: 01/25/2023] Open
Abstract
Family-based designs can eliminate confounding due to population substructure and can distinguish direct from indirect genetic effects, but these designs are underpowered due to limited sample sizes. Here, we propose KnockoffTrio, a statistical method to identify putative causal genetic variants for father-mother-child trio design built upon a recently developed knockoff framework in statistics. KnockoffTrio controls the false discovery rate (FDR) in the presence of arbitrary correlations among tests and is less conservative and thus more powerful than the conventional methods that control the family-wise error rate via Bonferroni correction. Furthermore, KnockoffTrio is not restricted to family-based association tests and can be used in conjunction with more powerful, potentially nonlinear models to improve the power of standard family-based tests. We show, using empirical simulations, that KnockoffTrio can prioritize causal variants over associations due to linkage disequilibrium and can provide protection against confounding due to population stratification. In applications to 14,200 trios from three study cohorts for autism spectrum disorders (ASDs), including AGP, SPARK, and SSC, we show that KnockoffTrio can identify multiple significant associations that are missed by conventional tests applied to the same data. In particular, we replicate known ASD association signals with variants in several genes such as MACROD2, NRXN1, PRKAR1B, CADM2, PCDH9, and DOCK4 and identify additional associations with variants in other genes including ARHGEF10, SLC28A1, ZNF589, and HINT1 at FDR 10%.
Collapse
Affiliation(s)
- Yi Yang
- Department of Biostatistics, Columbia University, New York, NY 10032, USA; Department of Biostatistics, City University of Hong Kong, Hong Kong SAR, China; School of Data Science, City University of Hong Kong, Hong Kong SAR, China
| | - Chen Wang
- Department of Biostatistics, Columbia University, New York, NY 10032, USA
| | - Linxi Liu
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joseph Buxbaum
- Departments of Psychiatry, Neuroscience, and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zihuai He
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
3
|
Wang X, Yang Z, Fang S, Zhang Y, Guo J, Gou L. Declining Levels of Specialized Synaptic Surface Proteins in nNOS-Expressing Interneurons in Mice Treated Prenatally with Valproic Acid. Neurochem Res 2021; 46:1794-1800. [PMID: 33876374 DOI: 10.1007/s11064-021-03326-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/12/2021] [Accepted: 04/09/2021] [Indexed: 11/27/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of neurodevelopmental disorder characterized by impaired social interaction, and repetitive or restricted interests and behaviors. Membrane proteins are a significant part of the proteins in cell and play key functions in synaptic transmission. We have recently shown that neuronal nitric oxide synthase (nNOS) expression was reduced in the basolateral amygdala (BLA) of mice following postnatal valproic acid (VPA) exposure. In the current study, we utilized a label-free proteomics approach to identify and quantify surface protein expression in nNOS-positive interneurons between VPA-treated and control mice. Western blot was used to confirm the expression of selected membrane proteins. Our proteomics data revealed differentially expressed surface proteins in nNOS interneurons, e.g. Narp, AMPA-type glutamate (AMPA) receptor subunit GluA4 and Protein kinase C gamma (PKCγ), which were validated by Western blotting in mice treated with VPA. This work will pave the way for further elucidation of the mechanisms of these differentially membrane proteins in nNOS interneurons-medicated ASD.
Collapse
Affiliation(s)
- Xiaona Wang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Engineering Research Center of Childhood Neurodevelopment, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China.
| | - Zhigang Yang
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China
| | - Shuanfeng Fang
- Healthcare Department, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China
| | - Yaodong Zhang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Engineering Research Center of Childhood Neurodevelopment, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China
| | - Jisheng Guo
- School of Basic Medical Sciences, Yantai Campus of Binzhou Medical University, 346 Guanhai Road, Laishan District, Yantai City, 264003, Shandong, China
| | - Lingshan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, China
| |
Collapse
|
4
|
Clarke RA, Furlong TM, Eapen V. Tourette Syndrome Risk Genes Regulate Mitochondrial Dynamics, Structure, and Function. Front Psychiatry 2020; 11:556803. [PMID: 33776808 PMCID: PMC7987655 DOI: 10.3389/fpsyt.2020.556803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a neurodevelopmental disorder characterized by motor and vocal tics with an estimated prevalence of 1% in children and adolescents. GTS has high rates of inheritance with many rare mutations identified. Apart from the role of the neurexin trans-synaptic connexus (NTSC) little has been confirmed regarding the molecular basis of GTS. The NTSC pathway regulates neuronal circuitry development, synaptic connectivity and neurotransmission. In this study we integrate GTS mutations into mitochondrial pathways that also regulate neuronal circuitry development, synaptic connectivity and neurotransmission. Many deleterious mutations in GTS occur in genes with complementary and consecutive roles in mitochondrial dynamics, structure and function (MDSF) pathways. These genes include those involved in mitochondrial transport (NDE1, DISC1, OPA1), mitochondrial fusion (OPA1), fission (ADCY2, DGKB, AMPK/PKA, RCAN1, PKC), mitochondrial metabolic and bio-energetic optimization (IMMP2L, MPV17, MRPL3, MRPL44). This study is the first to develop and describe an integrated mitochondrial pathway in the pathogenesis of GTS. The evidence from this study and our earlier modeling of GTS molecular pathways provides compounding support for a GTS deficit in mitochondrial supply affecting neurotransmission.
Collapse
Affiliation(s)
- Raymond A Clarke
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Teri M Furlong
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Valsamma Eapen
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,South West Sydney Local Health District, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
5
|
Matsumura K, Baba M, Nagayasu K, Yamamoto K, Kondo M, Kitagawa K, Takemoto T, Seiriki K, Kasai A, Ago Y, Hayata-Takano A, Shintani N, Kuriu T, Iguchi T, Sato M, Takuma K, Hashimoto R, Hashimoto H, Nakazawa T. Autism-associated protein kinase D2 regulates embryonic cortical neuron development. Biochem Biophys Res Commun 2019; 519:626-632. [PMID: 31540692 DOI: 10.1016/j.bbrc.2019.09.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder, characterized by impaired social interaction, repetitive behavior and restricted interests. Although the molecular etiology of ASD remains largely unknown, recent studies have suggested that de novo mutations are significantly involved in the risk of ASD. We and others recently identified spontaneous de novo mutations in PKD2, a protein kinase D family member, in sporadic ASD cases. However, the biological significance of the de novo PKD2 mutations and the role of PKD2 in brain development remain unclear. Here, we performed functional analysis of PKD2 in cortical neuron development using in utero electroporation. PKD2 is highly expressed in cortical neural stem cells in the developing cortex and regulates cortical neuron development, including the neuronal differentiation of neural stem cells and migration of newborn neurons. Importantly, we determined that the ASD-associated de novo mutations impair the kinase activity of PKD2, suggesting that the de novo PKD2 mutations can be a risk factor for the disease by loss of function of PKD2. Our current findings provide novel insight into the molecular and cellular pathogenesis of ASD.
Collapse
Affiliation(s)
- Kensuke Matsumura
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Interdisciplinary Program for Biomedical Sciences, Institute for Transdisciplinary Graduate Degree Programs, Osaka University, Suita, Osaka, 565-0871, Japan; Research Fellowships for Young Scientists of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Masayuki Baba
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuki Nagayasu
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kana Yamamoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Momoka Kondo
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kohei Kitagawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomoya Takemoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Interdisciplinary Program for Biomedical Sciences, Institute for Transdisciplinary Graduate Degree Programs, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan
| | - Norihito Shintani
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Toshihiko Kuriu
- Osaka Medical College, Research and Development Center, Takatsuki, Osaka, 569-8686, Japan
| | - Tokuichi Iguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Makoto Sato
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan; Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan; Research Center for Child Mental Development, University of Fukui, Yoshida-gun, Fukui, 910-1193, Japan
| | - Kazuhiro Takuma
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan; Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, 187-8553, Japan; Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan; Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan; Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan; Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Developmental protein kinase C hyper-activation results in microcephaly and behavioral abnormalities in zebrafish. Transl Psychiatry 2018; 8:232. [PMID: 30352990 PMCID: PMC6199330 DOI: 10.1038/s41398-018-0285-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Susceptible genetic polymorphisms and altered expression levels of protein kinase C (PKC)-encoding genes suggest overactivation of PKC in autism spectrum disorder (ASD) development. To delineate the pathological role of PKC, we pharmacologically stimulated its activity during the early development of zebrafish. Results demonstrated that PKC hyper-activation perturbs zebrafish development and induces a long-lasting head size deficit. The anatomical and cellular analysis revealed reduced neural precursor proliferation and newborn neuron formation. β-Catenin that is essential for brain growth is dramatically degraded. Stabilization of β-catenin by gsk3β inhibition partially restores the head size deficit. In addition, the neuropathogenic effect of developmental PKC hyper-activation was further supported by the alterations in the behavioral domain including motor abnormalities, heightened stress reactivity and impaired habituation learning. Taken together, by causally connecting early-life PKC hyper-activation to these neuropathological traits and the impaired neurogenesis, these results suggest that PKC could be a critical pathway in ASD pathogenesis.
Collapse
|
7
|
Moon E, Choe BM, Park JM, Chung YI, Lee BD, Park JH, Lee YM, Jeong HJ, Cheon Y, Choi Y, Park J. Protein Kinase C Activity and Delayed Recovery of Sleep-Wake Cycle in Mouse Model of Bipolar Disorder. Psychiatry Investig 2018; 15:907-913. [PMID: 30235919 PMCID: PMC6166033 DOI: 10.30773/pi.2018.05.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/23/2018] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Previous studies reported the delayed recovery group after circadian rhythm disruption in mice showed higher quinpiroleinduced locomotor activity. This study aimed to compare not only Protein Kinase C (PKC) activities in frontal, striatal, hippocampus and cerebellum, but also relative PKC activity ratios among brain regions according to recovery of circadian rhythm. METHODS The circadian rhythm disruption protocol was applied to eight-week-old twenty male Institute Cancer Research mice. The circadian rhythm recovery patterns were collected through motor activities measured by Mlog system. Depressive and manic proneness were examined by forced swim test and quinpirole-induced open field test respectively. Enzyme-linked immunosorbent assay was employed to measure PKC activities. RESULTS The delayed recovery group presented greater locomotor activities than the early recovery group (p=0.033). The delayed recovery group had significantly lower frontal PKC activity than the other (p=0.041). The former showed lower frontal/cerebellar PKC activity ratio (p=0.047) but higher striatal/frontal (p=0.038) and hippocampal/frontal (p=0.007) PKC activities ratios than the latter. CONCLUSION These findings support potential mechanism of delayed recovery after circadian disruption in bipolar animal model could be an alteration of relative PKC activities among mood regulation related brain regions. It is required to investigate the PKC downstream signaling related to the delayed recovery pattern.
Collapse
Affiliation(s)
- Eunsoo Moon
- Department of Psychiatry and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.,Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Byeong-Moo Choe
- Department of Psychiatry, Dong-A University School of Medicine, Busan, Republic of Korea
| | - Je-Min Park
- Department of Psychiatry and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.,Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Young In Chung
- Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Byung Dae Lee
- Department of Psychiatry and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.,Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jae-Hong Park
- Department of Psychiatry, Dong-A University School of Medicine, Busan, Republic of Korea
| | - Young Min Lee
- Department of Psychiatry and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.,Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hee Jeong Jeong
- Department of Psychiatry and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - YongJun Cheon
- Department of Psychiatry, Dongrae Hospital, Busan, Republic of Korea
| | - Yoonmi Choi
- Department of Psychiatry and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Jeonghyun Park
- Department of Psychiatry and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
8
|
Jack A, Pelphrey K. Annual Research Review: Understudied populations within the autism spectrum - current trends and future directions in neuroimaging research. J Child Psychol Psychiatry 2017; 58:411-435. [PMID: 28102566 PMCID: PMC5367938 DOI: 10.1111/jcpp.12687] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Autism spectrum disorders (ASDs) are a heterogeneous group of neurodevelopmental conditions that vary in both etiology and phenotypic expression. Expressions of ASD characterized by a more severe phenotype, including autism with intellectual disability (ASD + ID), autism with a history of developmental regression (ASD + R), and minimally verbal autism (ASD + MV) are understudied generally, and especially in the domain of neuroimaging. However, neuroimaging methods are a potentially powerful tool for understanding the etiology of these ASD subtypes. SCOPE AND METHODOLOGY This review evaluates existing neuroimaging research on ASD + MV, ASD + ID, and ASD + R, identified by a search of the literature using the PubMed database, and discusses methodological, theoretical, and practical considerations for future research involving neuroimaging assessment of these populations. FINDINGS There is a paucity of neuroimaging research on ASD + ID, ASD + MV, and ASD + R, and what findings do exist are often contradictory, or so sparse as to be ungeneralizable. We suggest that while greater sample sizes and more studies are necessary, more important would be a paradigm shift toward multimodal (e.g. imaging genetics) approaches that allow for the characterization of heterogeneity within etiologically diverse samples.
Collapse
Affiliation(s)
- Allison Jack
- Autism and Neurodevelopmental Disorders Institute, The George Washington University, Ashburn, VA
- Department of Pharmacology and Physiology, The George Washington University, Washington, D.C
| | - Kevin Pelphrey
- Autism and Neurodevelopmental Disorders Institute, The George Washington University, Ashburn, VA
- Department of Pharmacology and Physiology, The George Washington University, Washington, D.C
- Children's National Health System, Washington, D.C., USA
| |
Collapse
|
9
|
Jasien JM, Daimon CM, Wang R, Shapiro BK, Martin B, Maudsley S. The effects of aging on the BTBR mouse model of autism spectrum disorder. Front Aging Neurosci 2014; 6:225. [PMID: 25225482 PMCID: PMC4150363 DOI: 10.3389/fnagi.2014.00225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/08/2014] [Indexed: 01/11/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder characterized by alterations in social functioning, communicative abilities, and engagement in repetitive or restrictive behaviors. The process of aging in individuals with autism and related neurodevelopmental disorders is not well understood, despite the fact that the number of individuals with ASD aged 65 and older is projected to increase by over half a million individuals in the next 20 years. To elucidate the effects of aging in the context of a modified central nervous system, we investigated the effects of age on the BTBR T + tf/j mouse, a well characterized and widely used mouse model that displays an ASD-like phenotype. We found that a reduction in social behavior persists into old age in male BTBR T + tf/j mice. We employed quantitative proteomics to discover potential alterations in signaling systems that could regulate aging in the BTBR mice. Unbiased proteomic analysis of hippocampal and cortical tissue of BTBR mice compared to age-matched wild-type controls revealed a significant decrease in brain derived neurotrophic factor and significant increases in multiple synaptic markers (spinophilin, Synapsin I, PSD 95, NeuN), as well as distinct changes in functional pathways related to these proteins, including “Neural synaptic plasticity regulation” and “Neurotransmitter secretion regulation.” Taken together, these results contribute to our understanding of the effects of aging on an ASD-like mouse model in regards to both behavior and protein alterations, though additional studies are needed to fully understand the complex interplay underlying aging in mouse models displaying an ASD-like phenotype.
Collapse
Affiliation(s)
- Joan M Jasien
- Metabolism Unit, Laboratory of Clinical Investigation, National Institutes of Health, National Institute on Aging Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine, Kennedy Krieger Institute Baltimore, MD, USA
| | - Caitlin M Daimon
- Metabolism Unit, Laboratory of Clinical Investigation, National Institutes of Health, National Institute on Aging Baltimore, MD, USA
| | - Rui Wang
- Metabolism Unit, Laboratory of Clinical Investigation, National Institutes of Health, National Institute on Aging Baltimore, MD, USA
| | - Bruce K Shapiro
- Department of Neurology, Johns Hopkins University School of Medicine, Kennedy Krieger Institute Baltimore, MD, USA
| | - Bronwen Martin
- Metabolism Unit, Laboratory of Clinical Investigation, National Institutes of Health, National Institute on Aging Baltimore, MD, USA
| | - Stuart Maudsley
- Receptor Pharmacology Unit, Laboratory of Neurosciences, National Institute on Aging Baltimore, MD, USA ; VIB-Department of Molecular Genetics, University of Antwerp Antwerp, Belgium
| |
Collapse
|
10
|
Sun HJ, Zhang LL, Fan ZD, Chen D, Zhang L, Gao XY, Kang YM, Zhu GQ. Superoxide anions involved in sympathoexcitation and pressor effects of salusin-β in paraventricular nucleus in hypertensive rats. Acta Physiol (Oxf) 2014; 210:534-45. [PMID: 24304512 DOI: 10.1111/apha.12188] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/18/2013] [Accepted: 10/23/2013] [Indexed: 12/20/2022]
Abstract
AIMS Salusin-β in paraventricular nucleus (PVN) increases renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), heart rate (HR) and arginine vasopressin (AVP) release in hypertensive rats but not in normal rats. The present study was designed to investigate the downstream molecular mechanism of salusin-β in the PVN in hypertension. METHOD Renovascular hypertension was induced by two-kidney, one-clip (2K1C) in male SD rats. Acute experiments were carried out 4 weeks after 2K1C or sham operation under anaesthesia. RESULTS MrgA1 mRNA expression and salusin-β level in the PVN as well as plasma salusin-β level were increased in 2K1C rats. Bilateral PVN microinjection of salusin-β increased the RSNA, MAP and HR in 2K1C rats, which were abolished by the pre-treatment with polyethylene glycol-superoxide dismutase (PEG-SOD), the superoxide anion scavenger tempol, the NAD(P)H oxidase inhibitor apocynin or the protein kinase C (PKC) inhibitor chelerythrine chloride (CLC), but not affected by the AT1 receptor antagonist losartan, the Mas receptor antagonist A-779, the NOS inhibitor L-NAME or the GABAA and GABAB receptor antagonists gabazine+CGP-35348. Salusin-β-induced increases in superoxide anion level and NAD(P)H oxidase activity in the PVN were abolished by the PVN pre-treatment with CLC. Salusin-β increased AVP levels in rostral ventrolateral medulla and plasma, which were prevented by the pre-treatment with PEG-SOD, apocynin or CLC in 2K1C rats. Salusin-β augmented the enhanced activity of PKC in the PVN in 2K1C rats. CONCLUSION Protein kinase C-NAD(P)H oxidase-superoxide anions pathway in the PVN is involved in salusin-β-induced sympathetic activation, pressor response and AVP release in renovascular hypertension.
Collapse
Affiliation(s)
- H.-J. Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - L.-L. Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - Z.-D. Fan
- Department of Rheumatology and Immunology; Nanjing Children's Hospital Affiliated to Nanjing Medical University; Nanjing China
| | - D. Chen
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - L. Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - X.-Y. Gao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| | - Y.-M. Kang
- Department of Physiology and Pathophysiology; Cardiovascular Research Center; Xi'an Jiaotong University School of Medicine; Xi'an China
| | - G.-Q. Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing China
| |
Collapse
|
11
|
Gu F, Chauhan V, Chauhan A. Impaired synthesis and antioxidant defense of glutathione in the cerebellum of autistic subjects: alterations in the activities and protein expression of glutathione-related enzymes. Free Radic Biol Med 2013; 65:488-496. [PMID: 23892356 DOI: 10.1016/j.freeradbiomed.2013.07.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/03/2013] [Accepted: 07/12/2013] [Indexed: 12/24/2022]
Abstract
Autism is a neurodevelopmental disorder associated with social deficits and behavioral abnormalities. Recent evidence in autism suggests a deficit in glutathione (GSH), a major endogenous antioxidant. It is not known whether the synthesis, consumption, and/or regeneration of GSH is affected in autism. In the cerebellum tissues from autism (n=10) and age-matched control subjects (n=10), the activities of GSH-related enzymes glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), and glutamate cysteine ligase (GCL) involved in antioxidant defense, detoxification, GSH regeneration, and synthesis, respectively, were analyzed. GCL is a rate-limiting enzyme for GSH synthesis, and the relationship between its activity and the protein expression of its catalytic subunit GCLC and its modulatory subunit GCLM was also compared between the autistic and the control groups. Results showed that the activities of GPx and GST were significantly decreased in autism compared to that of the control group (P<0.05). Although there was no significant difference in GR activity between autism and control groups, 40% of autistic subjects showed lower GR activity than 95% confidence interval (CI) of the control group. GCL activity was also significantly reduced by 38.7% in the autistic group compared to the control group (P=0.023), and 8 of 10 autistic subjects had values below 95% CI of the control group. The ratio of protein levels of GCLC to GCLM in the autism group was significantly higher than that of the control group (P=0.022), and GCLM protein levels were reduced by 37.3% in the autistic group compared to the control group. A positive strong correlation was observed between GCL activity and protein levels of GCLM (r=0.887) and GCLC (r=0.799) subunits in control subjects but not in autistic subjects, suggesting that regulation of GCL activity is affected in autism. These results suggest that enzymes involved in GSH homeostasis have impaired activities in the cerebellum in autism, and lower GCL activity in autism may be related to decreased protein expression of GCLM.
Collapse
Affiliation(s)
- Feng Gu
- NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Ved Chauhan
- NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Abha Chauhan
- NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| |
Collapse
|
12
|
Lahiri DK, Sokol DK, Erickson C, Ray B, Ho CY, Maloney B. Autism as early neurodevelopmental disorder: evidence for an sAPPα-mediated anabolic pathway. Front Cell Neurosci 2013; 7:94. [PMID: 23801940 PMCID: PMC3689023 DOI: 10.3389/fncel.2013.00094] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/27/2013] [Indexed: 12/27/2022] Open
Abstract
Autism is a neurodevelopmental disorder marked by social skills and communication deficits and interfering repetitive behavior. Intellectual disability often accompanies autism. In addition to behavioral deficits, autism is characterized by neuropathology and brain overgrowth. Increased intracranial volume often accompanies this brain growth. We have found that the Alzheimer's disease (AD) associated amyloid-β precursor protein (APP), especially its neuroprotective processing product, secreted APP α, is elevated in persons with autism. This has led to the "anabolic hypothesis" of autism etiology, in which neuronal overgrowth in the brain results in interneuronal misconnections that may underlie multiple autism symptoms. We review the contribution of research in brain volume and of APP to the anabolic hypothesis, and relate APP to other proteins and pathways that have already been directly associated with autism, such as fragile X mental retardation protein, Ras small GTPase/extracellular signal-regulated kinase, and phosphoinositide 3 kinase/protein kinase B/mammalian target of rapamycin. We also present additional evidence of magnetic resonance imaging intracranial measurements in favor of the anabolic hypothesis. Finally, since it appears that APP's involvement in autism is part of a multi-partner network, we extend this concept into the inherently interactive realm of epigenetics. We speculate that the underlying molecular abnormalities that influence APP's contribution to autism are epigenetic markers overlaid onto potentially vulnerable gene sequences due to environmental influence.
Collapse
Affiliation(s)
- Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of MedicineIndianapolis, IN USA
- Laboratory of Medical and Molecular Genetics, Indiana University School of MedicineIndianapolis, IN, USA
- Institute of Psychiatric Research, Indiana University School of MedicineIndianapolis, IN, USA
| | - Deborah K. Sokol
- Department of Neurology, Indiana University School of MedicineIndianapolis, IN, USA
| | - Craig Erickson
- Cincinnati Children’s Hospital Medical CenterCincinnati, OH, USA
| | - Balmiki Ray
- Department of Psychiatry, Indiana University School of MedicineIndianapolis, IN USA
- Institute of Psychiatric Research, Indiana University School of MedicineIndianapolis, IN, USA
| | - Chang Y. Ho
- Department of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolis, IN, USA
| | - Bryan Maloney
- Department of Psychiatry, Indiana University School of MedicineIndianapolis, IN USA
- Institute of Psychiatric Research, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|