1
|
Zhao J, Hu R, Lai KC, Zhang Z, Lai L. Recombinant FOXN1 fusion protein increases T cell generation in old mice. Front Immunol 2024; 15:1423488. [PMID: 39072332 PMCID: PMC11272594 DOI: 10.3389/fimmu.2024.1423488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
T cell development in the thymus is dependent on the thymic microenvironment, in which thymic epithelial cells (TECs) are the major component. However, TECs undergo both a qualitative and quantitative loss during aging, which is believed to be the major factor responsible for age-dependent thymic atrophy. FOXN1 plays a critical role in TEC development and adult TECs maintenance. We have previously reported that intrathymic injection of a recombinant (r) protein containing murine FOXN1 and a protein transduction domain increases the number of TECs in mice, leading to enhanced thymopoiesis. However, intrathymic injection may not be an ideal choice for clinical applications. In this study, we produced a rFOXN1 fusion protein containing the N-terminal of CCR9, human FOXN1 and a protein transduction domain. When injected intravenously into 14-month-old mice, the rFOXN1 fusion protein enters the thymus and TECs, and enhances thymopoiesis, resulting in increased T cell generation in the thymus and increased number of T cells in peripheral lymphoid organ. Our results suggest that the rFOXN1 fusion protein has the potential to be used in preventing and treating T cell immunodeficiency in older adults.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Rong Hu
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Kuan Chen Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Zhenzhen Zhang
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
2
|
Ji ZH, Ren WZ, He S, Wu HY, Yuan B, Chen J, Jin HJ. A missense mutation in Lama3 causes androgen alopecia. Sci Rep 2023; 13:20818. [PMID: 38012251 PMCID: PMC10682005 DOI: 10.1038/s41598-023-48337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/25/2023] [Indexed: 11/29/2023] Open
Abstract
Hair loss disorders such as androgenetic alopecia have caused serious disturbances to normal human life. Animal models play an important role in exploring pathogenesis of disease and evaluating new therapies. NIH hairless mice are a spontaneous hairless mouse discovered and bred in our laboratory. In this study, we resequenced the genomes of NIH normal mice and NIH hairless mice and obtained 3,575,560 high-quality, plausible SNP loci and 995,475 InDels. The Euclidean distance algorithm was used to assess the association of SNP loci with the hairless phenotype, at a threshold of 0.62. Two regions of chromosome 18 having the highest association with the phenotype contained 345 genes with a total length of 13.98 Mb. The same algorithm was used to assess the association of InDels with the hairless phenotype at a threshold of 0.54 and revealed a region of 25.45 Mb in length, containing 518 genes. The mutation candidate gene Lama3 (NM_010680.2: c.652C>T; NP_034810.1: p. Arg217Cys) was selected based on the results of functional gene analysis and mutation prediction screening. Lama3 (R217C) mutant mice were further constructed using CRISPR/Cas9 technology, and the relationship between Lama3 point mutations and the hairless phenotype were clarified by phenotypic observation. The results showed that male Lama3 point mutation mice started to lose hair on the 80th day after birth, and the hair loss area gradually expanded over time. H&E staining of skin sections showed that the point mutation mice had increased sebaceous glands in the dermis and missing hair follicle structure (i.e., typical symptoms of androgenetic alopecia). This study is a good extension of the current body of knowledge about the function of Lama3, and the constructed Lama3 (R217C) mutant mice may be a good animal model for studying androgenetic alopecia.
Collapse
Affiliation(s)
- Zhong-Hao Ji
- Department of Plastic Surgery, The First Hospital of Jilin University, Changchun, 130062, Jilin, China
- Department of Basic Medicine, Changzhi Medical College, Changzhi, 046000, Shanxi, China
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Song He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Hong-Yu Wu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
- Jilin Academy of Agricultural Sciences, Jilin City, 132101, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China
| | - Jian Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, China.
| | - Hong-Juan Jin
- Department of Plastic Surgery, The First Hospital of Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
3
|
Akhlaghipour I, Fanoodi A, Zangouei AS, Taghehchian N, Khalili-Tanha G, Moghbeli M. MicroRNAs as the Critical Regulators of Forkhead Box Protein Family in Pancreatic, Thyroid, and Liver Cancers. Biochem Genet 2023; 61:1645-1674. [PMID: 36781813 DOI: 10.1007/s10528-023-10346-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023]
Abstract
The metabolism of human body is mainly regulated by the pancreas, liver, and thyroid using the hormones or exocrine secretions that affect the metabolic processes from food digestion to intracellular metabolism. Therefore, metabolic organ disorders have wide clinical symptoms that severely affect the quality of patient's life. The pancreatic, liver, and thyroid cancers as the main malignancies of the metabolic system have always been considered as one of the serious health challenges worldwide. Despite the novel therapeutic modalities, there are still significant high mortality and recurrence rates, especially in liver and pancreatic cancer patients which are mainly related to the late diagnosis. Therefore, it is required to assess the molecular bases of tumor progressions to introduce novel early detection and therapeutic markers in these malignancies. Forkhead box (FOX) protein family is a group of transcription factors that have pivotal roles in regulation of cell proliferation, migration, and apoptosis. They function as oncogene or tumor suppressor during tumor progression. MicroRNAs (miRNAs) are also involved in regulation of cellular processes. Therefore, in the present review, we discussed the role of miRNAs during pancreatic, thyroid, and liver tumor progressions through FOX regulation. It has been shown that miRNAs were mainly involved in tumor progression via FOXM and FOXO targeting. This review paves the way for the introduction of miR/FOX axis as an efficient early detection marker and therapeutic target in pancreatic, thyroid, and liver tumors.
Collapse
Affiliation(s)
- Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Zhao J, Zhang Z, Lai KC, Lai L. Administration of recombinant FOXN1 protein attenuates Alzheimer's pathology in mice. Brain Behav Immun 2023; 113:341-352. [PMID: 37541395 PMCID: PMC10528256 DOI: 10.1016/j.bbi.2023.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia in older adults and characterized by progressive loss of memory and cognitive functions that are associated with amyloid-beta (Aβ) plaques and neurofibrillary tangles. Immune cells play an important role in the clearance of Aβ deposits and neurofibrillary tangles. T cells are the major component of the immune system. The thymus is the primary organ for T cell generation. T cell development in the thymus depends on thymic epithelial cells (TECs). However, TECs undergo both qualitative and quantitative loss over time. We have previously reported that a recombinant (r) protein containing FOXN1 and a protein transduction domain can increase the number of TECs and subsequently increases the number of T cells in mice. In this study we determined the ability of rFOXN1 to affect cognitive performance and AD pathology in mice. METHODS Aged 3xTg-AD and APP/PS1 AD mice were injected with rFOXN1 or control protein. Cognitive performance, AD pathology, the thymic microenvironment and immune cells were then analyzed. RESULTS Administration of rFOXN1 into AD mice improves cognitive performance and reduces Aβ plaque load and phosphorylated tau in the brain. This is related to rejuvenating the aged thymic microenvironment, which results in enhanced T cell generation in the thymus, leading to increased number of T cells, especially IFNγ-producing T cells, in the spleen and the choroid plexus (CP), enhanced expression of immune cell trafficking molecules in the CP, and increased migration of monocyte-derived macrophages into the brain. Furthermore, the production of anti-Aβ antibodies in the serum and the brain, and the macrophage phagocytosis of Aβ are enhanced in rFOXN1-treated AD mice. CONCLUSIONS Our results suggest that rFOXN1 protein has the potential to provide a novel approach to treat AD patients.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Zhenzhen Zhang
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Kuan Chen Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA; University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
5
|
Motha S, Patil PB, Ramavat RN, Myadara S, Qadri SSYH. A nude mutant rat derived from Sprague Dawley-National Institute of Nutrition rat colony with normal thymus: A potential model for noncommunicable diseases. Indian J Pharmacol 2023; 55:299-306. [PMID: 37929408 PMCID: PMC10751523 DOI: 10.4103/ijp.ijp_173_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND A spontaneous mutant rat with a hairless phenotype and an intact thymus was discovered in a long-standing Sprague Dawley-National Institute of Nutrition (SD/NIN) rat colony at a national animal resource facility. OBJECTIVE We conducted extensive phenotypic and biochemical analyses on this mutant strain to determine its suitability as a preclinical model for immunocompetent testing in noncommunicable disease research. MATERIALS AND METHODS We subjected the mutant rats to strict and frequent phenotypic and genetic surveillance to accomplish this objective. The animals were assessed for food intake, body weight, blood cell profile, clinical chemistry, adipose tissue deposition, and bone mineral density (BMD) using total electrical body conductance (TOBEC) and dual-energy X-ray absorptiometry (DXA) analysis. RESULTS Initially, only two hairless mutant rats, a male and a female, were born from a single dam in the SD/NIN rat strain. However, the results indicate that the mutant colony propagated from these unique pups displayed distinct phenotypic features and exhibited differences in feeding behavior, weight gain, and clinical biochemistry. The food conversion rate was significantly higher in nude females (2.8-fold) while 26% lower in nude males. Both sexes of nude rats had significantly higher triglycerides and lower glucose levels in females. However, glucose levels did not change in male nude rats. Furthermore, nude female and male rats had significantly lower fat (TOBEC) and bone mineral content (DXA). Nonetheless, BMD was only slightly lower (7%-8%) compared to the heterozygous groups. CONCLUSIONS These findings indicate that the spontaneous mutant rat has the potential to serve as an immunopotent and modulatory testing system in pharmacokinetics/pharmacodynamics and toxicology, which can be further explored for therapeutic drug discovery.
Collapse
Affiliation(s)
- Satyavani Motha
- Department of Animal Facility, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Pradeep Bhatu Patil
- Department of Animal Facility, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - Ravindar Naik Ramavat
- Department of Rodent Facility, ICMR-National Animal Resource Facility for Biomedical Research, Hyderabad, Telangana, India
| | - Srinivas Myadara
- Department of Animal Facility, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| | - S. S. Y. H. Qadri
- Department of Animal Facility, ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Chen S, Tang W, Yu G, Tang Z, Liu E. CXCL12/CXCR4 Axis is Involved in the Recruitment of NK Cells by HMGB1 Contributing to Persistent Airway Inflammation and AHR During the Late Stage of RSV Infection. J Microbiol 2023; 61:461-469. [PMID: 36781697 DOI: 10.1007/s12275-023-00018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 02/15/2023]
Abstract
We previously showed that both high-mobility group box-1 (HMGB1) and natural killer (NK) cells contribute to respiratory syncytial virus (RSV)-induced persistent airway inflammation and airway hyperresponsiveness (AHR). Meanwhile, Chemokine (C-X-C motif) ligand 12 (CXCL12) and its specific receptor (chemokine receptor 4, CXCR4) play important roles in recruitment of immune cells. CXCL12 has been reported to form a complex with HMGB1 that binds to CXCR4 and increases inflammatory cell migration. The relationship between HMGB1, NK cells and chemokines in RSV-infected model remains unclear. An anti-HMGB1 neutralizing antibody and inhibitor of CXCR4 (AMD3100) was administered to observe changes of NK cells and airway disorders in nude mice and BALB/c mice. Results showed that the mRNA expression and protein levels of HMGB1 were elevated in late stage of RSV infection and persistent airway inflammation and AHR were diminished after administration of anti-HMGB1 antibodies, with an associated significant decrease in CXCR4+ NK cells. In addition, CXCL12 and CXCR4 were reduced after HMGB1 blockade. Treatment with AMD3100 significantly suppressed the recruitment of NK cells and alleviated the airway disorders. Thus, CXCL12/CXCR4 axis is involved in the recruitment of NK cells by HMGB1, contributing to persistent airway inflammation and AHR during the late stage of RSV infection.
Collapse
Affiliation(s)
- Sisi Chen
- Chongqing Medical and Pharmaceutical College, Chongqing, 401331, People's Republic of China.,Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Wei Tang
- Respiratory Department, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610073, People's Republic of China
| | - Guangyuan Yu
- Department of Respiratory Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, People's Republic of China
| | - Zhengzhen Tang
- Department of Pediatrics, The Third Affiliated Hospital Medical University (the First People's Hospital of Zunyi), Zunyi, 563000, People's Republic of China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
7
|
Zhao J, Zhang Z, Lai KC, Lai L. Recombinant FOXN1 fusion protein increases T cell generation in aged mice. RESEARCH SQUARE 2023:rs.3.rs-2557067. [PMID: 36798162 PMCID: PMC9934747 DOI: 10.21203/rs.3.rs-2557067/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Background Although the thymus continues to export T cells throughout life, it undergoes a profound involution/atrophy with age, resulting in decreased numbers of T cells in the older adult, which has direct etiological linkages with many diseases. T cell development in the thymus is dependent on the thymic microenvironment, in which thymic epithelial cells (TECs) are the major component. However, TECs undergo both a qualitative and quantitative loss during aging, which is believed to be the major factor responsible for age-dependent thymic atrophy. FOXN1 plays a critical role in TEC development and adult TECs maintenance. We have previously reported that intrathymic injection of a recombinant (r) protein containing FOXN1 and a protein transduction domain increases the number of TECs in mice, leading to enhanced thymopoiesis. However, intrathymic injection may not be an ideal choice for clinical applications. In this study, we produce a rFOXN1 fusion protein containing the N-terminal of CCR9, FOXN1 and a protein transduction domain. Results We show here that, when injected intravenously into aged mice, the rFOXN1 fusion protein migrates into the thymus and enhances thymopoiesis, resulting in increased T cell generation in the thymus and increased number of T cells in peripheral lymphoid organ. Conclusions Our results suggest that the rFOXN1 fusion protein has the potential to be used in preventing and treating T cell immunodeficiency in the older adult.
Collapse
|
8
|
Blethen KE, Sprowls SA, Arsiwala TA, Wolford CP, Panchal DM, Fladeland RA, Glass MJ, Dykstra LP, Kielkowski BN, Blackburn JR, Andrick CJ, Lockman PR. Effects of whole-brain radiation therapy on the blood-brain barrier in immunocompetent and immunocompromised mouse models. Radiat Oncol 2023; 18:22. [PMID: 36732754 PMCID: PMC9896731 DOI: 10.1186/s13014-023-02215-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Approximately 20% of all cancer patients will develop brain metastases in their lifespan. The standard of care for patients with multiple brain metastases is whole-brain radiation therapy, which disrupts the blood-brain barrier. Previous studies have shown inflammatory mediators play a role in the radiation-mediated increase in permeability. Our goal was to determine if differential permeability post-radiation occurs between immunocompetent and immunocompromised mice. METHODS We utilized a commissioned preclinical irradiator to irradiate brains of C57Bl/6J wild-type and athymic nude mice. Acute (3-24 h) effects on blood-brain barrier integrity were evaluated with our in-situ brain perfusion technique and quantitative fluorescent and phosphorescent microscopy. The presence of inflammatory mediators in the brain and serum was determined with a proinflammatory cytokine panel. RESULTS Blood-brain barrier integrity and efflux transporter activity were altered in the immunocompetent mice 12 h following irradiation without similar observations in the immunocompromised mice. We observed increased TNF-α concentrations in the serum of wild-type mice immediately post-radiation and nude mice 12 h post-radiation. The brain concentration of CXCL1 was also increased in both mouse strains at the 12-h time point. CONCLUSIONS The immune response plays a role in the magnitude of blood-brain barrier disruption following irradiation in a time- and size-dependent manner.
Collapse
Affiliation(s)
- K E Blethen
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - S A Sprowls
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - T A Arsiwala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - C P Wolford
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - D M Panchal
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV, USA
| | - R A Fladeland
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - M J Glass
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - L P Dykstra
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - B N Kielkowski
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - J R Blackburn
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - C J Andrick
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - P R Lockman
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA.
| |
Collapse
|
9
|
Duah M, Li L, Shen J, Lan Q, Pan B, Xu K. Thymus Degeneration and Regeneration. Front Immunol 2021; 12:706244. [PMID: 34539637 PMCID: PMC8442952 DOI: 10.3389/fimmu.2021.706244] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
The immune system’s ability to resist the invasion of foreign pathogens and the tolerance to self-antigens are primarily centered on the efficient functions of the various subsets of T lymphocytes. As the primary organ of thymopoiesis, the thymus performs a crucial role in generating a self-tolerant but diverse repertoire of T cell receptors and peripheral T cell pool, with the capacity to recognize a wide variety of antigens and for the surveillance of malignancies. However, cells in the thymus are fragile and sensitive to changes in the external environment and acute insults such as infections, chemo- and radiation-therapy, resulting in thymic injury and degeneration. Though the thymus has the capacity to self-regenerate, it is often insufficient to reconstitute an intact thymic function. Thymic dysfunction leads to an increased risk of opportunistic infections, tumor relapse, autoimmunity, and adverse clinical outcome. Thus, exploiting the mechanism of thymic regeneration would provide new therapeutic options for these settings. This review summarizes the thymus’s development, factors causing thymic injury, and the strategies for improving thymus regeneration.
Collapse
Affiliation(s)
- Maxwell Duah
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Lingling Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingyi Shen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qiu Lan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
FOXD1 expression in head and neck squamous carcinoma: a study based on TCGA, GEO and meta-analysis. Biosci Rep 2021; 41:229252. [PMID: 34269372 PMCID: PMC8319493 DOI: 10.1042/bsr20210158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 01/19/2023] Open
Abstract
Forkhead box D1 (FOXD1) is a new member of FOX transcription factor family. FOXD1 has demonstrated multi-level roles during normal development and several diseases' pathogenesis. However, litter is known about the role of FOXD1 in the progression of head and neck squamous cancer (HNSC). In the present study, we analyzed FOXD1 expression pattern using TCGA dataset, GEO datasets, HNSC cell lines and HNSC tissues. Then, we analyzed the correlation between FOXD1 expression and clinical characteristics, and evaluated the prognostic value of FOXD1 in HNSC. Moreover, we assessed the relationship between FOXD1 expression and tumor environment (TME) and immune cell infiltration using ESTIMATE and CIBERSORT algorithms. Finally, we predicted the FOXD1-related biological processes and signal pathways. FOXD1 was up-regulated in HNSC tissues in TCGA datasets, validated by GEO datasets, HNSC cell lines and HNSC tissues. FOXD1 expression was significantly associated with tumor site and HPV infection. Univariate and multivariate Cox regression analyses showed that FOXD1 expression was an independent prognostic factor. Moreover, we found that the proportions of naïve B cells, plasma cells, and resting dendritic cells were negatively correlated with FOXD1 expression, otherwise, the proportion of activated mast cells was positively correlated with FOXD1 expression using CIBERSORT algorithm. GSEA analyses revealed that FOXD1 was mainly involved in cancer-related signaling pathway and metabolism-related pathways. FOXD1 was a potential oncogene, and might represent an indicator for predicting overall survival of HNSC patients. Moreover, many cancer-related pathways and metabolism-related processes may be regulated by FOXD1.
Collapse
|
11
|
Song J, Hoenerhoff M, Yang D, Yang Y, Deng C, Wen L, Ma L, Pallas B, Zhao C, Koike Y, Koike T, Lester P, Yang B, Zhang J, Chen YE, Xu J. Development of the Nude Rabbit Model. Stem Cell Reports 2021; 16:656-665. [PMID: 33606990 PMCID: PMC7940256 DOI: 10.1016/j.stemcr.2021.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/25/2022] Open
Abstract
Loss-of-function mutations in the forkhead box N1 (FOXN1) gene lead to nude severe combined immunodeficiency, a rare inherited syndrome characterized by athymia, severe T cell immunodeficiency, congenital alopecia, and nail dystrophy. We recently produced FOXN1 mutant nude rabbits (NuRabbits) by using CRISPR-Cas9. Here we report the establishment and maintenance of the NuRabbit colony. NuRabbits, like nude mice, are hairless, lack thymic development, and are immunodeficient. To demonstrate the functional applications of NuRabbits in biomedical research, we show that they can successfully serve as the recipient animals in xenotransplantation experiments using human induced pluripotent stem cells or tissue-engineered blood vessels. Our work presents the NuRabbit as a new member of the immunodeficient animal model family. The relatively large size and long lifespan of NuRabbits offer unique applications in regenerative medicine, cancer research, and the study of a variety of other human conditions, including immunodeficiency. NuRabbit colony is established and available for the research community NuRabbits are nude and immunodeficient due to a mutation(s) in the FOXN1 gene NuRabbits support iPSC teratoma assay NuRabbits support xenotransplant of tissue-engineered blood vessels
Collapse
Affiliation(s)
- Jun Song
- Center for Advanced Models and Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark Hoenerhoff
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dongshan Yang
- Center for Advanced Models and Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ying Yang
- Department of Cardiac Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Cheng Deng
- Department of Cardiac Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Luan Wen
- Center for Advanced Models and Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Linyuan Ma
- Center for Advanced Models and Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brooke Pallas
- Center for Advanced Models and Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI 48109, USA; Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Changzhi Zhao
- Center for Advanced Models and Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yui Koike
- Center for Advanced Models and Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomonari Koike
- Center for Advanced Models and Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patrick Lester
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Center for Advanced Models and Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Center for Advanced Models and Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Xu
- Center for Advanced Models and Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Glaubitz J, Wilden A, van den Brandt C, Weiss FU, Bröker BM, Mayerle J, Lerch MM, Sendler M. Experimental pancreatitis is characterized by rapid T cell activation, Th2 differentiation that parallels disease severity, and improvement after CD4 + T cell depletion. Pancreatology 2020; 20:1637-1647. [PMID: 33097430 DOI: 10.1016/j.pan.2020.10.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute pancreatitis is a gastrointestinal disorder of high incidence resulting in life threatening complications in up to 20% of patients. Its severe form is characterized by an extensive and systemic immune response. We investigated the role of the adaptive immune response in two experimental models of pancreatitis. METHODS In C57BI/6-mice mild pancreatitis was induced by 8-hourly injections of caerulein and severe pancreatitis by additional, partial pancreatic duct ligation. T-cell-activation was determined by flow-cytometry of CD25/CD69, T-cell-differentiation by nuclear staining of the transcription-factors Tbet, Gata3 and Foxp3. In vivo CD4+ T-cells were depleted using anti-CD4 antibody. Disease severity was determined by histology, serum amylase and lipase activities, lung MPO and serum cytokine levels (IL-6, TNFα, IL-10). RESULTS In both models T-cells were activated. Th1-differentiation (Tbet) was absent during pancreatitis but we detected a pronounced Th2/Treg (Gata3/Foxp3) response which paralleled disease severity in both models. The complete depletion of CD4+ T-cells via anti-CD4 antibody, surprisingly, reduced disease severity significantly, as well as granulocyte infiltration and pro- and anti-inflammatory cytokine levels. Co-incubation of acini and T-cells did not lead to T-cell-activation by acinar cells but to acinar damage by T-cells. During pancreatitis no significant T-cell-infiltration into the pancreas was observed. CONCLUSION T cells orchestrate the early local as well as the systemic immune responses in pancreatitis and are directly involved in organ damage. The Th2 response appears to increase disease severity, rather than conferring an immunological protection.
Collapse
Affiliation(s)
- Juliane Glaubitz
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Anika Wilden
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Cindy van den Brandt
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Frank U Weiss
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Barbara M Bröker
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine, University of Greifswald, Germany; Medizinische Klinik und Poliklinik II, Klinikum der LMU München-Grosshadern, München, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine, University of Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine, University of Greifswald, Germany.
| |
Collapse
|
13
|
Fiorica C, Palumbo FS, Pitarresi G, Puleio R, Condorelli L, Collura G, Giammona G. A hyaluronic acid/cyclodextrin based injectable hydrogel for local doxorubicin delivery to solid tumors. Int J Pharm 2020; 589:119879. [DOI: 10.1016/j.ijpharm.2020.119879] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
|
14
|
Oh J, Wang W, Thomas R, Su DM. Thymic rejuvenation via FOXN1-reprogrammed embryonic fibroblasts (FREFs) to counteract age-related inflammation. JCI Insight 2020; 5:140313. [PMID: 32790650 PMCID: PMC7526556 DOI: 10.1172/jci.insight.140313] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
Age-associated systemic, chronic inflammation is partially attributed to increased self-autoreactivity, resulting from disruption of central tolerance in the aged, involuted thymus. This involution causally results from gradually decreased expression of the transcription factor FOXN1 in thymic epithelial cells (TECs), whereas exogenous FOXN1 in TECs can partially rescue age-related thymic involution. TECs induced from FOXN1-overexpressing embryonic fibroblasts can generate an ectopic de novo thymus under the kidney capsule, and intrathymic injection of naturally young TECs can lead to middle-aged thymus regrowth. Therefore, as a thymic rejuvenation strategy, we extended these 2 findings by combining them with 2 types of promoter-driven (Rosa26CreERT and FoxN1Cre) Cre-mediated FOXN1-reprogrammed embryonic fibroblasts (FREFs). We engrafted these FREFs directly into the aged murine thymus. We found substantial regrowth of the native aged thymus with rejuvenated architecture and function in both males and females, exhibiting increased thymopoiesis and reinforced thymocyte negative selection, along with reduced senescent T cells and autoreactive T cell–mediated inflammation in old mice. Therefore, this approach has preclinical significance and presents a strategy to potentially rescue decreased thymopoiesis and perturbed negative selection to substantially, albeit partially, restore defective central tolerance and reduce subclinical autoimmune symptoms in elderly people. Engrafting FOXN1-reprogrammed embryonic fibroblast directly into the aged murine thymus promoted regrowth of the native thymus with rejuvenated architecture and function.
Collapse
|
15
|
Thomas R, Wang W, Su DM. Contributions of Age-Related Thymic Involution to Immunosenescence and Inflammaging. IMMUNITY & AGEING 2020; 17:2. [PMID: 31988649 PMCID: PMC6971920 DOI: 10.1186/s12979-020-0173-8] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/02/2020] [Indexed: 01/10/2023]
Abstract
Immune system aging is characterized by the paradox of immunosenescence (insufficiency) and inflammaging (over-reaction), which incorporate two sides of the same coin, resulting in immune disorder. Immunosenescence refers to disruption in the structural architecture of immune organs and dysfunction in immune responses, resulting from both aged innate and adaptive immunity. Inflammaging, described as a chronic, sterile, systemic inflammatory condition associated with advanced age, is mainly attributed to somatic cellular senescence-associated secretory phenotype (SASP) and age-related autoimmune predisposition. However, the inability to reduce senescent somatic cells (SSCs), because of immunosenescence, exacerbates inflammaging. Age-related adaptive immune system deviations, particularly altered T cell function, are derived from age-related thymic atrophy or involution, a hallmark of thymic aging. Recently, there have been major developments in understanding how age-related thymic involution contributes to inflammaging and immunosenescence at the cellular and molecular levels, including genetic and epigenetic regulation, as well as developments of many potential rejuvenation strategies. Herein, we discuss the research progress uncovering how age-related thymic involution contributes to immunosenescence and inflammaging, as well as their intersection. We also describe how T cell adaptive immunity mediates inflammaging and plays a crucial role in the progression of age-related neurological and cardiovascular diseases, as well as cancer. We then briefly outline the underlying cellular and molecular mechanisms of age-related thymic involution, and finally summarize potential rejuvenation strategies to restore aged thymic function.
Collapse
Affiliation(s)
- Rachel Thomas
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, Fort Worth, Texas 76107 USA
| | - Weikan Wang
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, Fort Worth, Texas 76107 USA
| | - Dong-Ming Su
- 2Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107 USA
| |
Collapse
|
16
|
Valero-Rubio D, Jiménez KM, Fonseca DJ, Payán-Gómez C, Laissue P. Transcriptomic analysis of FUCA1
knock-down in keratinocytes reveals new insights into the pathogenesis of fucosidosis skin lesions. Exp Dermatol 2018. [DOI: 10.1111/exd.13532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Danyela Valero-Rubio
- Center For Research in Genetics and Genomics-CIGGUR; GENIUROS Research Group; School of Medicine and Health Sciences; Universidad del Rosario; Bogotá Colombia
| | - Karen Marcela Jiménez
- Center For Research in Genetics and Genomics-CIGGUR; GENIUROS Research Group; School of Medicine and Health Sciences; Universidad del Rosario; Bogotá Colombia
| | - Dora Janeth Fonseca
- Center For Research in Genetics and Genomics-CIGGUR; GENIUROS Research Group; School of Medicine and Health Sciences; Universidad del Rosario; Bogotá Colombia
| | - César Payán-Gómez
- Facultad de Ciencias Naturales y Matemáticas; Universidad del Rosario; Bogotá Colombia
| | - Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR; GENIUROS Research Group; School of Medicine and Health Sciences; Universidad del Rosario; Bogotá Colombia
| |
Collapse
|
17
|
Su M, Hu R, Song Y, Liu Y, Lai L. Targeted deletion of c-Met in thymic epithelial cells leads to an autoimmune phenotype. Immunol Cell Biol 2017; 96:229-235. [PMID: 29363160 PMCID: PMC5825253 DOI: 10.1111/imcb.1026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/01/2022]
Abstract
Hepatocyte growth factor (HGF) and its receptor c-Met signaling have been implicated in regulating various types of cells including epithelial cells. We have previously reported that c-Met is expressed by thymic epithelial cells (TECs), and that in vivo administration of hybrid cytokines containing IL-7 and the beta- or alpha-chain of HGF significantly increase the number of TECs. In order to study the role of c-Met signaling in TECs, we generated conditional knockout (cKO) mice in which c-Met was specifically deleted in TECs using a Foxn1-Cre transgene. We show here that c-Met deficiency in TECs results in age-progressive reduction in TEC number and reduced number of regulatory T cells. Consequently, c-Met TEC cKO mice displayed an autoimmune phenotype. Thus, c-Met signaling in TECs is important for the maintenance of TECs and immune self-tolerance.
Collapse
Affiliation(s)
- Min Su
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA.,Guizhou Medical University, Guizhou, China
| | - Rong Hu
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Yinhong Song
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA.,Medical college, Three Gorges University, Yichang, China
| | - Yalan Liu
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA.,University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
18
|
MicroRNAs as regulators and mediators of forkhead box transcription factors function in human cancers. Oncotarget 2017; 8:12433-12450. [PMID: 27999212 PMCID: PMC5355356 DOI: 10.18632/oncotarget.14015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
Evidence has shown that microRNAs are widely implicated as indispensable components of tumor suppressive and oncogenic pathways in human cancers. Thus, identification of microRNA targets and their relevant pathways will contribute to the development of microRNA-based therapeutics. The forkhead box transcription factors regulate numerous processes including cell cycle progression, metabolism, metastasis and angiogenesis, thereby facilitating tumor initiation and progression. A complex network of protein and non-coding RNAs mediates the expression and activity of forkhead box transcription factors. In this review, we summarize the current knowledge and concepts concerning the involvement of microRNAs and forkhead box transcription factors and describe the roles of microRNAs-forkhead box axis in various disease states including tumor initiation and progression. Additionally, we describe some of the technical challenges in the use of the microRNA-forkhead box signaling pathway in cancer treatment.
Collapse
|
19
|
Abstract
FOXN1 is a prodifferentiation transcription factor in the skin epithelium. Recently, it has also emerged as an important player in controlling the skin wound healing process, as it actively participates in reepithelialization and is thought to be responsible for scar formation. FOXN1 positivity is also a feature of pigmented keratinocytes, including nevi, and FOXN1 is an attribute of benign epithelial tumors. The lack of FOXN1 favors the skin regeneration process displayed by nude mice, pointing to FOXN1 as a switch between regeneration and reparative processes. The stem cell niche provides a functional source of cells after the loss of tissue following wounding. The involvement of prodifferentiation factors in the regulation of this pool of stem cells is suggested. However, the exact mechanism is still under question, and we speculate that the FOXN1 transcription factor is involved in this process. This review analyzes the pleiotropic effects of FOXN1 in the skin, its function in the tumorigenesis process, and its potential role in depletion of the stem cell niche after injury, as well as its suggested mechanistic role, acting in a cell-autonomous and a non-cell-autonomous manner during skin self-renewal.
Collapse
|
20
|
Oosterhuis NR, Papazova DA, Gremmels H, Joles JA, Verhaar MC. T-cells contribute to hypertension but not to renal injury in mice with subtotal nephrectomy. BMC Nephrol 2017; 18:153. [PMID: 28482823 PMCID: PMC5422945 DOI: 10.1186/s12882-017-0555-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/13/2017] [Indexed: 11/16/2022] Open
Abstract
Background The pathological condition of chronic kidney disease may not be adequately recapitulated in immunocompromised mice due to the lack of T-cells, which are important for the development of hypertension and renal injury. We studied the role of the immune system in relation to salt-sensitive hypertension and renal injury in mice with subtotal nephrectomy (SNX). Methods Wild-type immunocompetent (WT) and Foxn1nu/nu athymic immunodeficient (AT) CD-1 mice underwent SNX to induce renal injury after which they received standard chow or a high salt diet (HSD). Four weeks after SNX blood pressure and kidney function parameters were measured. Results HSD increased albumin excretion independent of immune status. Systolic blood pressure increased only in WT mice on HSD, not in AT mice. Uremia and morphological damage after SNX were not affected by either HSD or immune status. Conclusions For the development of hypertension after SNX in CD-1 mice mature T-cells and a high salt diet are required. SNX induced albuminuria was independent of the presence of T-cells. Electronic supplementary material The online version of this article (doi:10.1186/s12882-017-0555-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nynke R Oosterhuis
- Nephrology & Hypertension, University Medical Center Utrecht, PO Box 85500, 3508GA, Utrecht, Netherlands
| | - Diana A Papazova
- Nephrology & Hypertension, University Medical Center Utrecht, PO Box 85500, 3508GA, Utrecht, Netherlands
| | - Hendrik Gremmels
- Nephrology & Hypertension, University Medical Center Utrecht, PO Box 85500, 3508GA, Utrecht, Netherlands
| | - Jaap A Joles
- Nephrology & Hypertension, University Medical Center Utrecht, PO Box 85500, 3508GA, Utrecht, Netherlands
| | - Marianne C Verhaar
- Nephrology & Hypertension, University Medical Center Utrecht, PO Box 85500, 3508GA, Utrecht, Netherlands.
| |
Collapse
|
21
|
Microbial lysate upregulates host oxytocin. Brain Behav Immun 2017; 61:36-49. [PMID: 27825953 PMCID: PMC5431580 DOI: 10.1016/j.bbi.2016.11.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
Neuropeptide hormone oxytocin has roles in social bonding, energy metabolism, and wound healing contributing to good physical, mental and social health. It was previously shown that feeding of a human commensal microbe Lactobacillus reuteri (L. reuteri) is sufficient to up-regulate endogenous oxytocin levels and improve wound healing capacity in mice. Here we show that oral L. reuteri-induced skin wound repair benefits extend to human subjects. Further, dietary supplementation with a sterile lysate of this microbe alone is sufficient to boost systemic oxytocin levels and improve wound repair capacity. Oxytocin-producing cells were found to be increased in the caudal paraventricular nucleus [PVN] of the hypothalamus after feeding of a sterile lysed preparation of L. reuteri, coincident with lowered blood levels of stress hormone corticosterone and more rapid epidermal closure, in mouse models. We conclude that microbe viability is not essential for regulating host oxytocin levels. The results suggest that a peptide or metabolite produced by bacteria may modulate host oxytocin secretion for potential public or personalized health goals.
Collapse
|
22
|
Hu R, Liu Y, Su M, Song Y, Rood D, Lai L. Transplantation of Donor-Origin Mouse Embryonic Stem Cell-Derived Thymic Epithelial Progenitors Prevents the Development of Chronic Graft-versus-Host Disease in Mice. Stem Cells Transl Med 2016; 6:121-130. [PMID: 28170174 PMCID: PMC5442732 DOI: 10.5966/sctm.2016-0012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/16/2016] [Indexed: 01/03/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many malignant and nonmalignant diseases. However, chronic graft-versus-host disease (cGVHD) remains a significant cause of late morbidity and mortality after allogeneic HSCT. cGVHD often manifests as autoimmune syndrome. Thymic epithelial cells (TECs) play a critical role in supporting negative selection and regulatory T-cell (Treg) generation. Studies have shown that damage in TECs is sufficient to induce cGVHD. We have previously reported that mouse embryonic stem cells (mESCs) can be selectively induced to generate thymic epithelial progenitors (TEPs) in vitro. When transplanted in vivo, mESC-TEPs further develop into TECs that support T-cell development. We show here that transplantation of donor-origin mESC-TEPs into cGVHD recipients induces immune tolerance to both donor and host antigens and prevents the development of cGVHD. This is associated with more TECs and Tregs. Our results suggest that embryonic stem cell-derived TEPs may offer a new tool to control cGVHD. Stem Cells Translational Medicine 2017;6:121-130.
Collapse
Affiliation(s)
- Rong Hu
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
- Guizhou Medical University, Guizhou, People's Republic of China
| | - Yalan Liu
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Min Su
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
- Guizhou Medical University, Guizhou, People's Republic of China
| | - Yinhong Song
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Debra Rood
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
23
|
Long X, Xie J, Zhao K, Li W, Tang W, Chen S, Zang N, Ren L, Deng Y, Xie X, Wang L, Fu Z, Liu E. NK cells contribute to persistent airway inflammation and AHR during the later stage of RSV infection in mice. Med Microbiol Immunol 2016; 205:459-70. [PMID: 27329138 DOI: 10.1007/s00430-016-0459-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/24/2016] [Indexed: 01/18/2023]
Abstract
RSV can lead to persistent airway inflammation and AHR and is intimately associated with childhood recurrent wheezing and asthma, but the underlying mechanisms remain unclear. There are high numbers of NK cells in the lung, which not only play important roles in the acute stage of RSV infection, but also are pivotal in regulating the pathogenesis of asthma. Therefore, in this study, we assumed that NK cells might contribute to persistent airway disease during the later stage of RSV infection. Mice were killed at serial time points after RSV infection to collect samples. Leukocytes in bronchoalveolar lavage fluid (BALF) were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. Cytokines were detected by ELISA, and NK cells were determined by flow cytometry. Rabbit anti-mouse asialo-GM-1 antibodies and resveratrol were used to deplete or suppress NK cells. Inflammatory cells in BALF, lung tissue damage and AHR were persistent for 60 days post-RSV infection. Type 2 cytokines and NK cells were significantly increased during the later stage of infection. When NK cells were decreased by the antibodies or resveratrol, type 2 cytokines, the persistent airway inflammation and AHR were all markedly reduced. NK cells can contribute to the RSV-associated persistent airway inflammation and AHR at least partially by promoting type 2 cytokines. Therefore, therapeutic targeting of NK cells may provide a novel approach to alleviating the recurrent wheezing subsequent to RSV infection.
Collapse
Affiliation(s)
- Xiaoru Long
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Jun Xie
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Keting Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Wei Li
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Wei Tang
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Sisi Chen
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Na Zang
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Luo Ren
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002; Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital, Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Yu Deng
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Xiaohong Xie
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Lijia Wang
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No. 136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
24
|
Thymic and Postthymic Regulation of Naïve CD4(+) T-Cell Lineage Fates in Humans and Mice Models. Mediators Inflamm 2016; 2016:9523628. [PMID: 27313405 PMCID: PMC4904118 DOI: 10.1155/2016/9523628] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022] Open
Abstract
Our understanding of how thymocytes differentiate into many subtypes has been increased progressively in its complexity. At early life, the thymus provides a suitable microenvironment with specific combination of stromal cells, growth factors, cytokines, and chemokines to induce the bone marrow lymphoid progenitor T-cell precursors into single-positive CD4+ and CD8+ T effectors and CD4+CD25+ T-regulatory cells (Tregs). At postthymic compartments, the CD4+ T-cells acquire distinct phenotypes which include the classical T-helper 1 (Th1), T-helper 2 (Th2), T-helper 9 (Th9), T-helper 17 (Th17), follicular helper T-cell (Tfh), and induced T-regulatory cells (iTregs), such as the regulatory type 1 cells (Tr1) and transforming growth factor-β- (TGF-β-) producing CD4+ T-cells (Th3). Tregs represent only a small fraction, 5–10% in mice and 1-2% in humans, of the overall CD4+ T-cells in lymphoid tissues but are essential for immunoregulatory circuits mediating the inhibition and expansion of all lineages of T-cells. In this paper, we first provide an overview of the major cell-intrinsic developmental programs that regulate T-cell lineage fates in thymus and periphery. Next, we introduce the SV40 immortomouse as a relevant mice model for implementation of new approaches to investigate thymus organogenesis, CD4 and CD8 development, and thymus cells tumorogenesis.
Collapse
|
25
|
Song Y, Su M, Zhu J, Di W, Liu Y, Hu R, Rood D, Lai L. FOXN1 recombinant protein enhances T-cell regeneration after hematopoietic stem cell transplantation in mice. Eur J Immunol 2016; 46:1518-28. [PMID: 27125859 DOI: 10.1002/eji.201546196] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/22/2016] [Accepted: 04/22/2016] [Indexed: 12/26/2022]
Abstract
A prolonged period of T-cell recovery is the major challenge in hematopoietic stem cell transplantation (HSCT). Thymic epithelial cells (TECs) are the major component of the thymic microenvironment for T-cell generation. However, TECs undergo degeneration over time. FOXN1 plays a critical role in TEC development and is required to maintain adult TECs for thymopoiesis. To investigate the potential application of FOXN1, we have cloned and expressed recombinant FOXN1 protein (rFOXN1) that was fused with cell-penetrating peptides. We show here that the rFOXN1 protein can translocate from the cell surface into the cytoplasm and nucleus. Administration of rFOXN1 into both congenic and allogeneic HSCT recipient mice increased the number of TECs, resulting in enhanced thymopoiesis that led to an increased number of functional T cells in the periphery. The increased number of TECs is due to the enhanced survival and proliferation of TECs. Our results suggest that rFOXN1 has the potential to be used in enhancing T-cell regeneration in patients following HSCT.
Collapse
Affiliation(s)
- Yinhong Song
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Min Su
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Jing Zhu
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA.,Department of Obstetrics and Gynecology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Wen Di
- Department of Obstetrics and Gynecology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yalan Liu
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Rong Hu
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Debra Rood
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA.,University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
26
|
Varian BJ, Goureshetti S, Poutahidis T, Lakritz JR, Levkovich T, Kwok C, Teliousis K, Ibrahim YM, Mirabal S, Erdman SE. Beneficial bacteria inhibit cachexia. Oncotarget 2016; 7:11803-16. [PMID: 26933816 PMCID: PMC4914249 DOI: 10.18632/oncotarget.7730] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/05/2016] [Indexed: 12/18/2022] Open
Abstract
Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny.
Collapse
Affiliation(s)
- Bernard J. Varian
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sravya Goureshetti
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Theofilos Poutahidis
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jessica R. Lakritz
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tatiana Levkovich
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caitlin Kwok
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Konstantinos Teliousis
- Laboratory of Pathology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Yassin M. Ibrahim
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sheyla Mirabal
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Susan E. Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
27
|
Efficient in vitro generation of functional thymic epithelial progenitors from human embryonic stem cells. Sci Rep 2015; 5:9882. [PMID: 26044259 PMCID: PMC4456731 DOI: 10.1038/srep09882] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 03/24/2015] [Indexed: 12/29/2022] Open
Abstract
Thymic epithelial cells (TECs) are the major components of the thymic microenvironment for T cell development. TECs are derived from thymic epithelial progenitors (TEPs). It has been reported that human ESCs (hESCs) can be directed to differentiate into TEPs in vitro. However, the efficiency for the differentiation is low. Furthermore, transplantation of hESC-TEPs in mice only resulted in a very low level of human T cell development from co-transplanted human hematopoietic precursors. We show here that we have developed a novel protocol to efficiently induce the differentiation of hESCs into TEPs in vitro. When transplanted into mice, hESC-TEPs develop into TECs and form a thymic architecture. Most importantly, the hESC-TECs support the long-term development of functional mouse T cells or a higher level of human T cell development from co-transplanted human hematopoietic precursors. The hESC-TEPs may provide a new approach to prevent or treat patients with T cell immunodeficiency.
Collapse
|
28
|
Abitbol M, Bossé P, Thomas A, Tiret L. A deletion in FOXN1 is associated with a syndrome characterized by congenital hypotrichosis and short life expectancy in Birman cats. PLoS One 2015; 10:e0120668. [PMID: 25781316 PMCID: PMC4363148 DOI: 10.1371/journal.pone.0120668] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/05/2015] [Indexed: 11/18/2022] Open
Abstract
An autosomal recessive syndrome characterized by congenital hypotrichosis and short life expectancy has been described in the Birman cat breed (Felis silvestris catus). We hypothesized that a FOXN1 (forkhead box N1) loss-of-function allele, associated with the nude phenotype in humans, mice and rats, may account for the syndrome observed in Birman cats. To the best of our knowledge, spontaneous mutations in FOXN1 have never been described in non-human, non-rodent mammalian species. We identified a recessive c.1030_1033delCTGT deletion in FOXN1 in Birman cats. This 4-bp deletion was associated with the syndrome when present in two copies. Percentage of healthy carriers in our French panel of genotyped Birman cats was estimated to be 3.2%. The deletion led to a frameshift and a premature stop codon at position 547 in the protein. In silico, the truncated FOXN1 protein was predicted to lack the activation domain and critical parts of the forkhead DNA binding domain, both involved in the interaction between FOXN1 and its targets, a mandatory step to promote normal hair and thymic epithelial development. Our results enlarge the panel of recessive FOXN1 loss-of-function alleles described in mammals. A DNA test is available; it will help owners avoid matings at risk and should prevent the dissemination of this morbid mutation in domestic felines.
Collapse
Affiliation(s)
- Marie Abitbol
- U955 IMRB, INSERM, Équipe 10, Créteil, France
- BNMS—Génétique Médicale Comparée des Affections Neuromusculaires, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
- * E-mail:
| | - Philippe Bossé
- U955 IMRB, INSERM, Équipe 10, Créteil, France
- BNMS—Génétique Médicale Comparée des Affections Neuromusculaires, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Laurent Tiret
- U955 IMRB, INSERM, Équipe 10, Créteil, France
- BNMS—Génétique Médicale Comparée des Affections Neuromusculaires, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| |
Collapse
|
29
|
Long X, Li S, Xie J, Li W, Zang N, Ren L, Deng Y, Xie X, Wang L, Fu Z, Liu E. MMP-12-mediated by SARM-TRIF signaling pathway contributes to IFN-γ-independent airway inflammation and AHR post RSV infection in nude mice. Respir Res 2015; 16:11. [PMID: 25652021 PMCID: PMC4332892 DOI: 10.1186/s12931-015-0176-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/19/2015] [Indexed: 11/18/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) is one of the most frequently observed pathogens during infancy and childhood. However, the corresponding pathogenesis has not been determined to date. We previously demonstrated that IFN-γ plays an important role in RSV pathogenesis, and SARM-TRIF-signaling pathway could regulate the production of IFN-γ. This study is to investigate whether T cells or innate immune cells are the predominant producers of IFN-γ, and further to explore other culprits in addition to IFN-γ in the condition of RSV infection. Methods Normal BALB/c mice and nude mice deficient in T cells were infected intranasally with RSV. Leukocytes in bronchoalveolar lavage fluid were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. IFN-γ and MMP-12 were detected by ELISA. MMP408, a selective MMP-12 inhibitor, was given intragastrically. Resveratrol, IFN-γ neutralizing antibody and recombinant murine IFN-γ were administered intraperitoneally. SARM and TRIF protein were semi-quantified by Western blot. siRNA was used to knock-down SARM expression. Results RSV induced significant airway inflammation and AHR in both mice; IFN-γ was significantly increased in BALB/c mice but not in nude mice. MMP-12 was dramatically increased in both mice but earlier in nude mice. When MMP-12 was inhibited by MMP408, RSV-induced respiratory symptoms were alleviated. SARM was significantly suppressed while TRIF was significantly enhanced in both mice strains. Following resveratrol administration in nude mice, 1) SARM inhibition was prevented, 2) TRIF and MMP-12 were correspondingly down-regulated and 3) airway disorders were subsequently alleviated. Moreover, when SARM was efficiently knocked down using siRNA, TRIF and MMP-12 were markedly enhanced, and the anti-RSV effects of resveratrol were remarkably abrogated. MMP-12 was significantly increased in the IFN-γ neutralizing antibody-treated BALB/c mice but reduced in the recombinant murine IFN-γ-treated nude mice. Conclusions MMP-12 can result in at least part of the airway inflammation and AHR independent of IFN-γ. And SARM-TRIF- signaling pathway is involved in regulating the overproduction of MMP-12. To the best of our knowledge, this study is the first that has examined the effects of SARM on MMP-12 and further highlights the potential to target SARM-TRIF-MMP-12 cascades to treat RSV infection. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0176-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoru Long
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, P.R. China.
| | - Simin Li
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, P.R. China.
| | - Jun Xie
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, P.R. China.
| | - Wei Li
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, P.R. China.
| | - Na Zang
- Ministry of Education Key Laboratory of Child Development and Disorders; Key Laboratory of Pediatrics in Chongqing, CSTC2009CA5002, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, 400014, P.R. China.
| | - Luo Ren
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, P.R. China.
| | - Yu Deng
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, P.R. China.
| | - Xiaohong Xie
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, P.R. China.
| | - Lijia Wang
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, P.R. China.
| | - Zhou Fu
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, P.R. China.
| | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital, Chongqing Medical University, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400014, P.R. China.
| |
Collapse
|
30
|
Biological significance of FoxN1 gain-of-function mutations during T and B lymphopoiesis in juvenile mice. Cell Death Dis 2014; 5:e1457. [PMID: 25299782 PMCID: PMC4237256 DOI: 10.1038/cddis.2014.432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 08/31/2014] [Accepted: 09/05/2014] [Indexed: 12/12/2022]
Abstract
FoxN1 is cell-autonomously expressed in skin and thymic epithelial cells (TECs), essential for their development. Inborn mutation of FoxN1 results in hair follicle and TEC development failure, whereas insufficient postnatal FoxN1 expression induces thymic atrophy, resulting in declined T lymphopoiesis. Although upregulating FoxN1 expression in the aged FoxN1-declined thymus rejuvenates T lymphopoiesis, whether its over- and ectopic-expression in early life is beneficial for T lymphopoiesis is unknown. Using our newly generated Rosa26-STOPflox–FoxN1 mice, in which over- and ectopic-expression of FoxN1 can be induced by various promoter-driven Cre-mediated deletions of the roadblock STOPflox in early life, we found that K14Cre-mediated inborn FoxN1 overexpression induced neonatal lethality, exhibited abnormal permeability in the skin and abnormal nursing. Ubiquitous deletion of the STOPflox mediated by progressive uCreERT leakage in juvenile mice affected thymus and bone marrow normality, resulting in an increased ratio of medullary/cortical TECs, along with declined T and B lymphopoiesis. Although the K5CreERT-mediated FoxN1 overexpression mice had a normal lifespan, induction of K5CreERT activation in juveniles adversely influenced total thymoycte development and produced ichthyosis-like skin. Therefore, FoxN1 has temporal and tissue-specific activity. Over- and ectopic-expression of FoxN1 in early life adversely influence immature TEC, T and B cell, and skin epithelial development.
Collapse
|
31
|
Human cancer xenografts in outbred nude mice can be confounded by polymorphisms in a modifier of tumorigenesis. Genetics 2014; 197:1365-76. [PMID: 24913681 DOI: 10.1534/genetics.114.166587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tumorigenicity studies often employ outbred nude mice, in the absence of direct evidence that this mixed genetic background will negatively affect experimental outcome. Here we show that outbred nude mice carry two different alleles of Pla2g2a, a genetic modifier of intestinal tumorigenesis in mice. Here, we identify previous unreported linked polymorphisms in the promoter, noncoding and coding sequences of Pla2g2a and show that outbred nude mice from different commercial providers are heterogeneous for this polymorphic Pla2g2a allele. This heterogeneity even extends to mice obtained from a single commercial provider, which display mixed Pla2g2a genotypes. Notably, we demonstrated that the polymorphic Pla2g2a allele affects orthotopic xenograft establishment of human colon cancer cells in outbred nude mice. This finding establishes a non-cell-autonomous role for Pla2g2a in suppressing intestinal tumorigenesis. Using in vitro reporter assays and pharmacological inhibitors, we show promoter polymorphisms and nonsense-mediated RNA decay (NMD) as underlying mechanisms that lead to low Pla2g2a mRNA levels in tumor-sensitive mice. Together, this study provides mechanistic insight regarding Pla2g2a polymorphisms and demonstrates a non-cell-autonomous role for Pla2g2a in suppressing tumors. Moreover, our direct demonstration that mixed genetic backgrounds of outbred nude mice can significantly affect baseline tumorigenicity cautions against future use of outbred mice for tumor xenograft studies.
Collapse
|
32
|
Gentek R, Munneke JM, Helbig C, Blom B, Hazenberg MD, Spits H, Amsen D. Modulation of Signal Strength Switches Notch from an Inducer of T Cells to an Inducer of ILC2. Front Immunol 2013; 4:334. [PMID: 24155745 PMCID: PMC3804867 DOI: 10.3389/fimmu.2013.00334] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/02/2013] [Indexed: 11/20/2022] Open
Abstract
Innate lymphoid cells (ILCs) are emerging key players of the immune system with close lineage relationship to T cells. ILC2 play an important role in protective immunity against multicellular parasites, but are also involved in the pathogenesis of type 2 immune diseases. Here, we have studied the developmental requirements for human ILC2. We report that ILC2 are present in the thymus of young human donors, possibly reflecting local differentiation. Furthermore, we show that uncommitted lineage−CD34+CD1a−human thymic progenitors have the capacity to develop into ILC2 in vitro under the influence of Notch signaling, either by stimulation with the Notch ligand Delta like 1 (Dll1) or by expression of the active intracellular domain of NOTCH1 (NICD1). The capacity of NICD1 to mobilize the ILC2 differentiation program was sufficiently potent to override commitment to the T cell lineage in CD34+CD1a+ progenitors and force them into the ILC2 lineage. As Notch is an important factor also for T cell development, these results raise the question how one and the same signaling pathway can elicit such distinct developmental outcomes from the same precursors. We provide evidence that Notch signal strength is a critical determinant in this decision: by tuning signal amplitude, Notch can be converted from a T cell inducer (low signal strength) to an ILC2 inducer (high signal strength). Thus, this study enhances our understanding of human ILC2 development and identifies a mechanism determining specificity of Notch signal output during T cell and ILC2 differentiation.
Collapse
Affiliation(s)
- Rebecca Gentek
- Department of Cell Biology and Histology, Academic Medical Center , Amsterdam , Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Foxn4: a multi-faceted transcriptional regulator of cell fates in vertebrate development. SCIENCE CHINA-LIFE SCIENCES 2013; 56:985-93. [PMID: 24008385 DOI: 10.1007/s11427-013-4543-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/12/2013] [Indexed: 12/12/2022]
Abstract
Vertebrate development culminates in the generation of proper proportions of a large variety of different cell types and subtypes essential for tissue, organ and system functions in the right place at the right time. Foxn4, a member of the forkhead box/winged-helix transcription factor superfamily, is expressed in mitotic progenitors and/or postmitotic precursors in both neural (e.g., retina and spinal cord) and non-neural tissues (e.g., atrioventricular canal and proximal airway). During development of the central nervous system, Foxn4 is required to specify the amacrine and horizontal cell fates from multipotent retinal progenitors while suppressing the alternative photoreceptor cell fates through activating Dll4-Notch signaling. Moreover, it activates Dll4-Notch signaling to drive commitment of p2 progenitors to the V2b and V2c interneuron fates during spinal cord neurogenesis. In development of non-neural tissues, Foxn4 plays an essential role in the specification of the atrioventricular canal and is indirectly required for patterning the distal airway during lung development. In this review, we highlight current understanding of the structure, expression and developmental functions of Foxn4 with an emphasis on its cell-autonomous and non-cell-autonomous roles in different tissues and animal model systems.
Collapse
|