1
|
Jeon S, Jeong P, Kang H, Kim MJ, Yun JH, Lim KS, Song B, Kim S, Cho S, Sim B. NEK2 plays an essential role in porcine embryonic development by maintaining mitotic division and DNA damage response via the Wnt/β-catenin signalling pathway. Cell Prolif 2024; 57:e13626. [PMID: 38426218 PMCID: PMC11294417 DOI: 10.1111/cpr.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
NIMA-related kinase 2 (NEK2) is a serine/threonine protein kinase that regulates mitosis and plays pivotal roles in cell cycle regulation and DNA damage repair. However, its function in porcine embryonic development is unknown. In this study, we used an NEK2-specific inhibitor, JH295 (JH), to investigate the role of NEK2 in embryonic development and the underlying regulatory mechanisms. Inhibition of NEK2 after parthenogenesis activation or in vitro fertilization significantly reduced the rates of cleavage and blastocyst formation, the numbers of trophectoderm and total cells and the cellular survival rate compared with the control condition. NEK2 inhibition delayed cell cycle progression at all stages from interphase to cytokinesis during the first mitotic division; it caused abnormal nuclear morphology in two- and four-cell stage embryos. Additionally, NEK2 inhibition significantly increased DNA damage and apoptosis, and it altered the expression levels of DNA damage repair- and apoptosis-related genes. Intriguingly, NEK2 inhibition downregulated the expression of β-catenin and its downstream target genes. To validate the relationship between Wnt/β-catenin signalling and NEK2 during porcine embryonic development, we cultured porcine embryos in JH-treated medium with or without CHIR99021, a Wnt activator. CHIR99021 co-treatment strongly restored the developmental parameters reduced by NEK2 inhibition to control levels. Our findings suggest that NEK2 plays an essential role in porcine embryonic development by regulating DNA damage repair and normal mitotic division via the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Se‐Been Jeon
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
- Department of Animal Science, College of Natural Resources & Life SciencePusan National UniversityMiryangRepublic of Korea
| | - Pil‐Soo Jeong
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
| | - Hyo‐Gu Kang
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
- Department of Animal Science and Biotechnology, College of Agriculture and Life ScienceChungnam National UniversityDaejeonRepublic of Korea
| | - Min Ju Kim
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
- Department of Animal Science, College of Natural Resources & Life SciencePusan National UniversityMiryangRepublic of Korea
| | - Ji Hyeon Yun
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
- Department of Animal BioScience, School of Animal Life ConvergenceHankyong National UniversityAnsungRepublic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
| | - Bong‐Seok Song
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
| | - Sun‐Uk Kim
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
- Department of Functional GenomicsUniversity of Science and TechnologyDaejeonRepublic of Korea
| | - Seong‐Keun Cho
- Department of Animal Science, Life and Industry Convergence Research Institute (RICRI), College of Natural Resources & Life SciencePusan National UniversityMiryangRepublic of Korea
| | - Bo‐Woong Sim
- Futuristic Animal Resource & Research Center (FARRC)Korea Research Institute of Bioscience and Biotechnology (KRIBB)CheongjuRepublic of Korea
| |
Collapse
|
2
|
Altinok Gunes B, Ozkan T, Karadag Gurel A, Dalkilic S, Belder N, Ozkeserli Z, Ozdag H, Beksac M, Sayinalp N, Yagci AM, Sunguroglu A. Transcriptome Analysis of Beta-Catenin-Related Genes in CD34+ Haematopoietic Stem and Progenitor Cells from Patients with AML. Mediterr J Hematol Infect Dis 2024; 16:e2024058. [PMID: 38984092 PMCID: PMC11232677 DOI: 10.4084/mjhid.2024.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/18/2024] [Indexed: 07/11/2024] Open
Abstract
Background Acute myeloid leukaemia (AML) is a disease of the haematopoietic stem cells(HSCs) that is characterised by the uncontrolled proliferation and impaired differentiation of normal haematopoietic stem/progenitor cells. Several pathways that control the proliferation and differentiation of HSCs are impaired in AML. Activation of the Wnt/beta-catenin signalling pathway has been shown in AML and beta-catenin, which is thought to be the key element of this pathway, has been frequently highlighted. The present study was designed to determine beta-catenin expression levels and beta-catenin-related genes in AML. Methods In this study, beta-catenin gene expression levels were determined in 19 AML patients and 3 controls by qRT-PCR. Transcriptome analysis was performed on AML grouped according to beta-catenin expression levels. Differentially expressed genes(DEGs) were investigated in detail using the Database for Annotation Visualisation and Integrated Discovery(DAVID), Gene Ontology(GO), Kyoto Encyclopedia of Genes and Genomes(KEGG), STRING online tools. Results The transcriptome profiles of our AML samples showed different molecular signature profiles according to their beta-catenin levels(high-low). A total of 20 genes have been identified as hub genes. Among these, TTK, HJURP, KIF14, BTF3, RPL17 and RSL1D1 were found to be associated with beta-catenin and poor survival in AML. Furthermore, for the first time in our study, the ELOV6 gene, which is the most highly up-regulated gene in human AML samples, was correlated with a poor prognosis via high beta-catenin levels. Conclusion It is suggested that the identification of beta-catenin-related gene profiles in AML may help to select new therapeutic targets for the treatment of AML.
Collapse
Affiliation(s)
- B Altinok Gunes
- Vocational School of Health Services, Ankara University, Ankara, Turkey
| | - T Ozkan
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - A Karadag Gurel
- Department of Medical Biology, Faculty of Medicine, Usak University, Usak, Turkey
| | - S Dalkilic
- Department of Molecular Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - N Belder
- Ankara University Biotechnology Institute, Ankara, Turkey
| | - Z Ozkeserli
- Ankara University Biotechnology Institute, Ankara, Turkey
| | - H Ozdag
- Ankara University Biotechnology Institute, Ankara, Turkey
| | - M Beksac
- Department of Hematology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - N Sayinalp
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - A M Yagci
- Department of Internal Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - A Sunguroglu
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
3
|
Kalkan BM, Ozcan SC, Cicek E, Gonen M, Acilan C. Nek2A prevents centrosome clustering and induces cell death in cancer cells via KIF2C interaction. Cell Death Dis 2024; 15:222. [PMID: 38493150 PMCID: PMC10944510 DOI: 10.1038/s41419-024-06601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Unlike normal cells, cancer cells frequently exhibit supernumerary centrosomes, leading to formation of multipolar spindles that can trigger cell death. Nevertheless, cancer cells with supernumerary centrosomes escape the deadly consequences of unequal segregation of genomic material by coalescing their centrosomes into two poles. This unique trait of cancer cells presents a promising target for cancer therapy, focusing on selectively attacking cells with supernumerary centrosomes. Nek2A is a kinase involved in mitotic regulation, including the centrosome cycle, where it phosphorylates linker proteins to separate centrosomes. In this study, we investigated if Nek2A also prevents clustering of supernumerary centrosomes, akin to its separation function. Reduction of Nek2A activity, achieved through knockout, silencing, or inhibition, promotes centrosome clustering, whereas its overexpression results in inhibition of clustering. Significantly, prevention of centrosome clustering induces cell death, but only in cancer cells with supernumerary centrosomes, both in vitro and in vivo. Notably, none of the known centrosomal (e.g., CNAP1, Rootletin, Gas2L1) or non-centrosomal (e.g., TRF1, HEC1) Nek2A targets were implicated in this machinery. Additionally, Nek2A operated via a pathway distinct from other proteins involved in centrosome clustering mechanisms, like HSET and NuMA. Through TurboID proximity labeling analysis, we identified novel proteins associated with the centrosome or microtubules, expanding the known interaction partners of Nek2A. KIF2C, in particular, emerged as a novel interactor, confirmed through coimmunoprecipitation and localization analysis. The silencing of KIF2C diminished the impact of Nek2A on centrosome clustering and rescued cell viability. Additionally, elevated Nek2A levels were indicative of better patient outcomes, specifically in those predicted to have excess centrosomes. Therefore, while Nek2A is a proposed target, its use must be specifically adapted to the broader cellular context, especially considering centrosome amplification. Discovering partners such as KIF2C offers fresh insights into cancer biology and new possibilities for targeted treatment.
Collapse
Affiliation(s)
- Batuhan Mert Kalkan
- Koç University, Graduate School of Health Sciences, Istanbul, Turkey
- Koç University, Research Center for Translational Medicine, Istanbul, Turkey
| | | | - Enes Cicek
- Koç University, Graduate School of Health Sciences, Istanbul, Turkey
- Koç University, Research Center for Translational Medicine, Istanbul, Turkey
| | - Mehmet Gonen
- Koç University, School of Medicine, Istanbul, Turkey
- Koç University, College of Engineering, Department of Industrial Engineering, Istanbul, Turkey
| | - Ceyda Acilan
- Koç University, Research Center for Translational Medicine, Istanbul, Turkey.
- Koç University, School of Medicine, Istanbul, Turkey.
| |
Collapse
|
4
|
Liu X, Zhang H, Shi G, Zheng X, Chang J, Lin Q, Tian Z, Yang H. The impact of gut microbial signals on hematopoietic stem cells and the bone marrow microenvironment. Front Immunol 2024; 15:1338178. [PMID: 38415259 PMCID: PMC10896826 DOI: 10.3389/fimmu.2024.1338178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Hematopoietic stem cells (HSCs) undergo self-renewal and differentiation in the bone marrow, which is tightly regulated by cues from the microenvironment. The gut microbiota, a dynamic community residing on the mucosal surface of vertebrates, plays a crucial role in maintaining host health. Recent evidence suggests that the gut microbiota influences HSCs differentiation by modulating the bone marrow microenvironment through microbial products. This paper comprehensively analyzes the impact of the gut microbiota on hematopoiesis and its effect on HSCs fate and differentiation by modifying the bone marrow microenvironment, including mechanical properties, inflammatory signals, bone marrow stromal cells, and metabolites. Furthermore, we discuss the involvement of the gut microbiota in the development of hematologic malignancies, such as leukemia, multiple myeloma, and lymphoma.
Collapse
Affiliation(s)
- Xiru Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Hao Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Guolin Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Xinmin Zheng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Jing Chang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
- Medical Service, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Quande Lin
- Medical Service, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhenhao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
5
|
Liu X, Zhang Q, Liang Y, Xiong S, Cai Y, Cao J, Xu Y, Xu X, Wu Y, Lu Q, Xu X, Luo B. Nanoparticles (NPs)-mediated Siglec15 silencing and macrophage repolarization for enhanced cancer immunotherapy. Acta Pharm Sin B 2023; 13:5048-5059. [PMID: 38045048 PMCID: PMC10692376 DOI: 10.1016/j.apsb.2023.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 12/05/2023] Open
Abstract
T cell infiltration and proliferation in tumor tissues are the main factors that significantly affect the therapeutic outcomes of cancer immunotherapy. Emerging evidence has shown that interferon-gamma (IFNγ) could enhance CXCL9 secretion from macrophages to recruit T cells, but Siglec15 expressed on TAMs can attenuate T cell proliferation. Therefore, targeted regulation of macrophage function could be a promising strategy to enhance cancer immunotherapy via concurrently promoting the infiltration and proliferation of T cells in tumor tissues. We herein developed reduction-responsive nanoparticles (NPs) made with poly (disulfide amide) (PDSA) and lipid-poly (ethylene glycol) (lipid-PEG) for systemic delivery of Siglec15 siRNA (siSiglec15) and IFNγ for enhanced cancer immunotherapy. After intravenous administration, these cargo-loaded could highly accumulate in the tumor tissues and be efficiently internalized by tumor-associated macrophages (TAMs). With the highly concentrated glutathione (GSH) in the cytoplasm to destroy the nanostructure, the loaded IFNγ and siSiglec15 could be rapidly released, which could respectively repolarize macrophage phenotype to enhance CXCL9 secretion for T cell infiltration and silence Siglec15 expression to promote T cell proliferation, leading to significant inhibition of hepatocellular carcinoma (HCC) growth when combining with the immune checkpoint inhibitor. The strategy developed herein could be used as an effective tool to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaodi Liu
- Department of Ultrasound, Laboratory of Ultrasound Imaging and Drug, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qi Zhang
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yixia Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shiyu Xiong
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yan Cai
- Department of Ultrasound, Central People's Hospital of Zhanjiang, Zhanjiang 524045, China
| | - Jincheng Cao
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yanni Xu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaolin Xu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ye Wu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qiang Lu
- Department of Ultrasound, Laboratory of Ultrasound Imaging and Drug, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoding Xu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Baoming Luo
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
6
|
Hsieh MC, Lai CY, Cho WL, Lin LT, Yeh CM, Yang PS, Cheng JK, Wang HH, Lin KH, Nie ST, Lin TB, Peng HY. Phosphate NIMA-Related Kinase 2-Dependent Epigenetic Pathways in Dorsal Root Ganglion Neurons Mediates Paclitaxel-Induced Neuropathic Pain. Anesth Analg 2023; 137:1289-1301. [PMID: 36753440 DOI: 10.1213/ane.0000000000006397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
BACKGROUND The microtubule-stabilizing drug paclitaxel (PTX) is an important chemotherapeutic agent for cancer treatment and causes peripheral neuropathy as a common side effect that substantially impacts the functional status and quality of life of patients. The mechanistic role for NIMA-related kinase 2 (NEK2) in the progression of PTX-induced neuropathic pain has not been established. METHODS Adult male Sprague-Dawley rats intraperitoneally received PTX to induce neuropathic pain. The protein expression levels in the dorsal root ganglion (DRG) of animals were measured by biochemical analyses. Nociceptive behaviors were evaluated by von Frey tests and hot plate tests. RESULTS PTX increased phosphorylation of the important microtubule dynamics regulator NEK2 in DRG neurons and induced profound neuropathic allodynia. PTX-activated phosphorylated NEK2 (pNEK2) increased jumonji domain-containing 3 (JMJD3) protein, a histone demethylase protein, to specifically catalyze the demethylation of the repressive histone mark H3 lysine 27 trimethylation (H3K27me3) at the Trpv1 gene, thereby enhancing transient receptor potential vanilloid subtype-1 (TRPV1) expression in DRG neurons. Moreover, the pNEK2-dependent PTX response program is regulated by enhancing p90 ribosomal S6 kinase 2 (RSK2) phosphorylation. Conversely, intrathecal injections of kaempferol (a selective RSK2 activation antagonist), NCL 00017509 (a selective NEK2 inhibitor), NEK2-targeted siRNA, GSK-J4 (a selective JMJD3 inhibitor), or capsazepine (an antagonist of TRPV1 receptor) into PTX-treated rats reversed neuropathic allodynia and restored silencing of the Trpv1 gene, suggesting the hierarchy and interaction among phosphorylated RSK2 (pRSK2), pNEK2, JMJD3, H3K27me3, and TRPV1 in the DRG neurons in PTX-induced neuropathic pain. CONCLUSIONS pRSK2/JMJD3/H3K27me3/TRPV1 signaling in the DRG neurons plays as a key regulator for PTX therapeutic approaches.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Wen-Long Cho
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Li-Ting Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chou-Ming Yeh
- Division of Thoracic Surgery, Department of Health, Taichung Hospital, Executive Yuan, Taichung, Taiwan
- Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Po-Sheng Yang
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Departments of Surgery
| | - Jen-Kun Cheng
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Hsueh-Hsiao Wang
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Kuan-Hung Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Siao-Tong Nie
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Yu Peng
- From the Department of Medicine, Mackay Medical College, New Taipei, Taiwan
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
7
|
Elsayed WSH, Harb OA, Alabiad MA, Faraj Saad RH, Anbaig A, Alorini M, Hemeda R, Negm M, Gertallah LM, Abdelhady WA, Ali RM. Protein Expression of NEK2, JMJD4, and REST in Clear Cell Renal Cell Carcinoma (ccRCC): Clinical, Pathological, and Prognostic Findings. IRANIAN JOURNAL OF PATHOLOGY 2023; 18:180-192. [PMID: 37600577 PMCID: PMC10439757 DOI: 10.30699/ijp.2023.1974154.3022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/15/2023] [Indexed: 08/22/2023]
Abstract
Background & Objective Cells of renal cell carcinoma (RCC) are resistant to the most currently used chemotherapeutic agents and targeted therapies; hence, we evaluated the expression of NEK2, JMJD4, and REST in cases of clear cell renal cell carcinoma (ccRCC) and benign adjacent tissues of kidney to detect associations between their expression and clinicopathological features, prognostic data, tumor recurrence, and survival rates. Methods We collected 200 samples including tumoral and adjacent non-neoplastic tissues related to 100 ccRCC patients. All samples were evaluated for the expression of NEK2, JMJD4, and REST, and the patients were followed up for about 5 years. Tumor recurrence and survival data were documented and analyzed. Results NEK2 and JMJD4 expression showed increase in ccRCC tissues (P=0.002 and 0.006), while REST was downregulated (P<0.001). The elevated expression of NEK2 was positively related ro the tumor size (P=0.015), higher grades (P=0.002), higher stages (P=0.013), distant spread (P=0.004), tumor recurrence, shorter progression-free survival (PFS) rate, and overall survival (OS) rate (P<0.001). Likewise, the high expression of JMJD4 showed positive correlation with the tumor size (P=0.047), higher grades (P=0.003), higher stages (P=0.043), distant spread (P=0.001), tumor recurrence, shorter PFS rate, and OS rate (P<0.001). Conversely, low expression of REST demonstrated positive relationship with the tumor size, higher grades, higher stages, distant spread, tumor recurrence, and shorter PFS and OS rates (P<0.001). Conclusion Overexpression of NEK2 and JMJD4 and downregulation of REST may be noted in malignant renal tissues compared to benign renal tissues and may be correlated with unfavorable pathological findings, poor clinical parameters, and poor patient outcomes.
Collapse
Affiliation(s)
- Walid S H Elsayed
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ola A Harb
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Ali Alabiad
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rema H Faraj Saad
- Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | - Amal Anbaig
- Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | - Mohammed Alorini
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Rehab Hemeda
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Negm
- Department of General Surgery, Faculty of Medicine, Zagazig University Zagazig, Egypt
| | - Loay M Gertallah
- Department of General Surgery, Faculty of Medicine, Zagazig University Zagazig, Egypt
| | - Waleed A Abdelhady
- Department of General Surgery, Faculty of Medicine, Zagazig University Zagazig, Egypt
| | - Ramadan M Ali
- Department of General Surgery, Faculty of Medicine, Zagazig University Zagazig, Egypt
| |
Collapse
|
8
|
Wan S, Cui Z, Wu L, Zhang F, Liu T, Hu J, Tian J, Yu B, Liu F, Kou J, Li F. Ginsenoside Rd promotes omentin secretion in adipose through TBK1-AMPK to improve mitochondrial biogenesis via WNT5A/Ca 2+ pathways in heart failure. Redox Biol 2023; 60:102610. [PMID: 36652744 PMCID: PMC9860421 DOI: 10.1016/j.redox.2023.102610] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Ginsenoside Rd is an active ingredient in Panax ginseng CA Mey and can be absorbed into the adipose tissue. Adipokines play an important role in the treatment of cardiovascular diseases. However, the potential benefit of Rd on heart failure (HF) and the underlying mechanism associated with the crosstalk between adipocytes and cardiomyocytes remains to be illustrated. Here, the results identified that Rd improved cardiac function and inhibited cardiac pathological changes in transverse aortic constriction (TAC), coronary ligation (CAL) and isoproterenol (ISO)-induced HF mice. And Rd promoted the release of omentin from the adipose tissue and up-regulated omentin expression in lipopolysaccharide (LPS)-induced 3T3-L1 adipocytes. Further, Rd could increase TBK1 and AMPK phosphorylation in adipocytes. And also, the TBK1-AMPK signaling pathway regulated the expression of omentin in LPS-induced adipocytes. Moreover, the omentin mRNA expression was significantly decreased by TBK1 knockdown in LPS-induced 3T3-L1 adipocytes. Additionally, molecular docking and SPR analysis confirmed that Rd had a certain binding ability with TBK1, and co-treatment with TBK1 inhibitors or TBK1 knockdown partially abolished the effect of Rd on increasing the omentin expression and the ratio of p-AMPK to AMPK in adipocytes. Moreover, we found that circulating omentin level diminished in the HF patients compared with healthy subjects. Meanwhile, the adipose tissue-specific overexpression of omentin improved cardiac function, reduced myocardial infarct size and ameliorated cardiac pathological features in CAL-induced HF mice. Consistently, exogenous omentin reduced mtROS levels and restored ΔψM to improve oxygen and glucose deprivation (OGD)-induced cardiomyocytes injury. Further, omentin inhibited the WNT5A/Ca2+ signaling pathway and promoted mitochondrial biogenesis function to ameliorate myocardial ischemia injury. However, WNT5A knockdown inhibited the impairment of mitochondrial biogenesis and partially counteracted the cardioprotective effect of omentin in vitro. Therefore, this study indicated that Rd promoted omentin secretion from adipocytes through the TBK1-AMPK pathway to improve mitochondrial biogenesis function via WNT5A/Ca2+ signaling pathway to ameliorate myocardial ischemia injury, which provided a new therapeutic mechanism and potential drugs for the treatment of HF.
Collapse
Affiliation(s)
- Shiyao Wan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - ZeKun Cui
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Lingling Wu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tao Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingui Hu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiangwei Tian
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fuming Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
9
|
Duan HP, Yan JH, Nie L, Wang Y, Xie H. A noval prognostic signature of the N7-methylguanosine (m7G)-related miRNA in lung adenocarcinoma. BMC Pulm Med 2023; 23:14. [PMID: 36635678 PMCID: PMC9838007 DOI: 10.1186/s12890-022-02290-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is characterized by high morbidity and mortality rates and poor prognosis. N7-methylguanosine play an increasingly vital role in lung adenocarcinoma. However, the prognostic value of N7-methylguanosine related-miRNAs in lung adenocarcinoma remains unclear. METHODS In the study, the mRNA and miRNA expression profiles and corresponding clinical informations were downloaded from the public database. The prognostic signature was built using least absolute shrinkage and selection operator Cox analysis. The Kaplan-Meier method was used to compare survival outcomes between the high- and low-risk groups. Signatures for the development of lung adenocarcinoma were tested using univariate and multivariate Cox regression models. Single-sample gene set enrichment analysis was used to determine the immune cell infiltration score. First, we predicted METTL1 and WDR4 chemosensitivities based on a public pharmacogenomics database. The area under the receiver operating characteristic curve showed that the performance of signature in 1-,3-, and 5-year survival predictions were 0.68, 0.65, and 0.683, respectively. RESULTS We established a novel prognostic signature consisting of 9 N7-Methylguanosine related miRNAs using least absolute shrinkage and selection operator Cox analysis. Patients in the high-risk group had shorter survival times than those in the low-risk group did. The calibration curves at 1, 3, and 5-year also illustrate the high predictive power of the structure. Signature was corrected using the Toumor stage. The expression levels of METTL1 and WDR4 significantly correlated with the sensitivity of cancer cells to antitumor drugs. CONCLUSIONS A novel signature constructed using 9 N7-methylguanosine related-miRNAs can be used for prognostic prediction.
Collapse
Affiliation(s)
- Han-ping Duan
- grid.449838.a0000 0004 1757 4123Department of Nuclear Medicine, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000 Hunan Province People’s Republic of China
| | - Jian-hui Yan
- grid.449838.a0000 0004 1757 4123Department of General Medicine, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000 Hunan Province People’s Republic of China
| | - Lin Nie
- grid.449838.a0000 0004 1757 4123Department of Radiology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000 Hunan Province People’s Republic of China
| | - Ye Wang
- grid.449838.a0000 0004 1757 4123Department of Thoracic Surgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000 Hunan Province People’s Republic of China
| | - Hui Xie
- grid.449838.a0000 0004 1757 4123Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, No. 25, Renmin West Road, Chenzhou, 423000 Hunan Province People’s Republic of China ,Key Laboratory of Medical Imaging and Artifical Intelligence of Hunan Province, 423000 Chenzhou, People’s Republic of China
| |
Collapse
|
10
|
Feng X, Jiang Y, Cui Y, Xu Y, Zhang Q, Xia Q, Chen Y. NEK2 is associated with poor prognosis of clear cell renal cell carcinoma and promotes tumor cell growth and metastasis. Gene 2022; 851:147040. [PMID: 36370999 DOI: 10.1016/j.gene.2022.147040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
11
|
NEK2 Serves as a Novel Biomarker and Enhances the Tumorigenicity of Clear-CellRenal-Cell Carcinoma by Activating WNT/β-Catenin Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1890823. [PMID: 36212952 PMCID: PMC9536896 DOI: 10.1155/2022/1890823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Objective. Currently, cumulative evidence has shown that loss of NEK2 function suppresses tumor growth. However, complete studies on the regulatory role of NEK2 in clear-cellrenal-cell carcinoma (ccRCC) are rarely reported. Methods. The GEPIA database was used for information mining to analyze the gene expression differences between ccRCC tumor and normal tissues. At the same time, we analyzed the protein expression of NEK2 in clinical ccRCC samples and ccRCC cell lines. We detected the effect of NEK2 on the biological behavior of ccRCC at the cell level and further verified the biological effect of NEK2 on ccRCC cells in vivo by nude mouse tumorigenesis experiment. The expression of WNT/β-cateninpathway-related proteins and downstream proteins related to cell function were detected by Western blotting. Results. Using the GEPIA database, we observed that NEK2 expression level in ccRCC tissues was significantly higher than that in normal kidney tissues and was also related to tumor grade. The survival time of patients with ccRCC with high NEK2 expression was shorter than that of patients with low NEK2 expression. Compared with adjacent carcinoma and normal renal tubular epithelial cells, NEK2 levels were highly expressed in ccRCC tissues and ccRCC cell lines. NEK2 interference restrained ccRCC cell growth, migration, and invasion. NEK2 regulated the malignant behavior of ccRCC cells through the WNT/β-catenin pathway. Nude mouse tumorigenesis assay results showed that the transplanted tumors from NEK2 silenced mice grew more slowly and were smaller in size than those from control mice. Conclusions. NEK2 elevation may be associated with poor prognosis in ccRCC, and NEK2 enhances ccRCC cell proliferation, migration, and invasion ability by activating the WNT/β-catenin signaling pathway.
Collapse
|
12
|
Li C, Zhu H, Zhao K, Li X, Tan Z, Zhang W, Cai Q, Wu X, Mo J, Zhang L. Chemical constituents, biological activities and anti-rheumatoid arthritic properties of four citrus essential oils. Phytother Res 2022; 36:2908-2920. [PMID: 35583855 DOI: 10.1002/ptr.7484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/27/2022] [Accepted: 04/19/2022] [Indexed: 11/07/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease with predominant synovitis that has no complete cure or preventive treatment. Citrus essential oils, used in natural fragrances, contain a variety of functional ingredients that are worthy of investigation for their potential as natural anti-inflammatory drug sources. In this study, essential oils were hydro distilled from the peels of four citrus species: Citrus sinensis (L.) Osbeck (CSEOs), Citrus paradisi Macfad. (CPEOs), Citrus limon (L.) Osbeck (CLEOs) and Citri Reticulatae Pericarpium (CREOs). Altogether, 81 compounds were identified using gas chromatography-mass spectrometry (GC-MS), of which d-limonene (17.96%-94.66%) was an abundant component of all four oils. The stable 1,1-diphenyl-2-pyrrole hydrazine (DPPH) free radical test showed that all four essential oils had excellent antioxidant properties (IC50 , 0.76-13.86 μg/mL). Furthermore, the oils remarkably increased the first G1 phase of the cell cycle, which inhibited the pro-inflammatory factor expression. An immunohistochemical analysis indicated that the four essential oils inhibited the expression of tumor necrosis factor-α and cyclooxygenase-2 and they exhibited anti-inflammatory activity in a rat model that was similar to that of the common drug, Ibuprofen. These results show that the CSEOs, CPEOs, CLEOs, and CREOs have significant antirheumatic activities and thus have great potential in developing functional food or drugs for treating RA.
Collapse
Affiliation(s)
- Chunlian Li
- School of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Haiping Zhu
- School of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Kai Zhao
- School of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xuetong Li
- School of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zekai Tan
- School of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Weicheng Zhang
- School of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Qiuyang Cai
- School of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xianyi Wu
- School of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Jinzhe Mo
- School of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Lanyue Zhang
- School of Biomedical & Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
13
|
Huang X, Zhang G, Tang T, Gao X, Liang T. One shoot, three birds: Targeting NEK2 orchestrates chemoradiotherapy, targeted therapy, and immunotherapy in cancer treatment. Biochim Biophys Acta Rev Cancer 2022; 1877:188696. [PMID: 35157980 DOI: 10.1016/j.bbcan.2022.188696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
Combinational therapy has improved the cancer therapeutic landscape but is associated with a concomitant increase in adverse side reactions. Emerging evidence proposes that targeting one core target with multiple critical roles in tumors can achieve combined anti-tumor effects. This review focuses on NEK2, a member of serine/threonine kinases, with broad sequence identity to the mitotic regulator NIMA of the filamentous fungus Aspergillus nidulans. Elevated expression of NEK2 was initially found to promote tumorigeneses through abnormal regulation of the cell cycle. Subsequent studies report that NEK2 is overexpressed in a broad spectrum of tumor types and is associated with tumor progression and therapeutic resistance. Intriguingly, NEK2 has recently been revealed to mediate tumor immune escape by stabilizing the expression of PD-L1. Targeting NEK2 is thus becoming a promising approach for cancer treatment by orchestrating chemoradiotherapy, targeted therapy, and immunotherapy. It represents a novel strategy for inducing combined anti-cancer effects using a mono-agent.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiang Gao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
14
|
Wang C, Huang Y, Ma X, Wang B, Zhang X. Overexpression of NEK2 is correlated with poor prognosis in human clear cell renal cell carcinoma. Int J Immunopathol Pharmacol 2021; 35:20587384211065893. [PMID: 34910592 PMCID: PMC8689635 DOI: 10.1177/20587384211065893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objectives: Never in mitosis gene A-related kinase 2 (NEK2) has been implicated in tumorigenesis in various tissues, but its function in clear cell renal cell carcinoma (ccRCC) tumorigenesis is unclear. We evaluated the correlation between NEK2 expression and ccRCC. Methods: Immunohistochemistry analysis of NEK2 protein was done on high-density multi-organ Human Cancer tissue microarray derived from the patient samples from clear cell renal cell carcinoma. We used multiple clinical cohorts to analyze the NEK2 immunohistochemical staining expression across human cancers. The cancer genome atlas (TCGA) data analysis of NEK2 was done through UALCAN web servers. Association of NEK2 and Kaplan–Meier survival analysis was done on both of our clinical database and available TCGA datasets. Results: Using the UALCAN cancer transcriptional data analysis website, we found that NEK2 is overexpressed in ccRCC, and its expression was associated with overall survival. According to the analyses of our own clinical database and immunohistochemical staining, protein levels of NEK2 were elevated in renal carcinoma compared to adjacent normal tissues. Kaplan–Meier survival analysis of both UALCAN and our database showed that high expression of NEK2 was associated with a poor prognosis. Multivariate and univariate analyses showed that NEK2 expression was closely related to a poor prognosis. The findings suggest that NEK2 is associated with ccRCC. Conclusion: These studies show that NEK2 is over-expressed in clear cell renal cell carcinoma and plays an essential role in cancer cell survival, as such NEK2 could serve as a novel potential target for therapeutic intervention in ccRCC.
Collapse
Affiliation(s)
- Chenfeng Wang
- Medical School of Chinese PLA, Beijing, China.,Department of Urology/State Key Laboratory of Kidney Diseases, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Huang
- Department of Urology/State Key Laboratory of Kidney Diseases, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Ma
- Department of Urology/State Key Laboratory of Kidney Diseases, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Baojun Wang
- Department of Urology/State Key Laboratory of Kidney Diseases, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xu Zhang
- Department of Urology/State Key Laboratory of Kidney Diseases, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|