1
|
El-Emam MA, Sheta E, El-Abhar HS, Abdallah DM, El Kerdawy AM, Eldehna WM, Gowayed MA. Morin suppresses mTORc1/IRE-1α/JNK and IP3R-VDAC-1 pathways: Crucial mechanisms in apoptosis and mitophagy inhibition in experimental Huntington's disease, supported by in silico molecular docking simulations. Life Sci 2024; 338:122362. [PMID: 38141855 DOI: 10.1016/j.lfs.2023.122362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
AIMS Endoplasmic reticulum stress (ERS) with aberrant mitochondrial-ER contact (MERC), mitophagy, and apoptosis are interconnected determinants in neurodegenerative diseases. Previously, we proved the potential of Morin hydrate (MH), a potent antioxidant flavonoid, to mitigate Huntington's disease (HD)-3-nitropropionic acid (3-NP) model by modulating glutamate/calpain/Kidins220/BDNF trajectory. Extending our work, we aimed to evaluate its impact on combating the ERS/MERC, mitophagy, and apoptosis. METHODS Rats were subjected to 3-NP for 14 days and post-treated with MH and/or the ERS inducer WAG-4S for 7 days. Disease progression was assessed by gross inspection and striatal biochemical, histopathological, immunohistochemical, and transmission electron microscopical (TEM) examinations. A molecular docking study was attained to explore MH binding to mTOR, JNK, the kinase domain of IRE1-α, and IP3R. KEY FINDINGS MH decreased weight loss and motor dysfunction using open field and rotarod tests. It halted HD degenerative striatal neurons and nucleus/mitochondria ultra-microscopic alterations reflecting neuroprotection. Mechanistically, MH deactivated striatal mTOR/IRE1-α/XBP1s&JNK/IP3R, PINK1/Ubiquitin/Mfn2, and cytochrome c/caspase-3 signaling pathways, besides enhancing p-PGC-1α and p-VDAC1. WAG-4S was able to ameliorate all effects initiated by MH to different extents. Molecular docking simulations revealed promising binding patterns of MH and hence its potential inhibition of the studied proteins, especially mTOR, IP3R, and JNK. SIGNIFICANCE MH alleviated HD-associated ERS, MERC, mitophagy, and apoptosis. This is mainly achieved by combating the mTOR/IRE1-α signaling, IP3R/VDAC hub, PINK1/Ubiquitin/Mfn2, and cytochrome c/caspase 3 axis to be worsened by WAG-4S. Molecular docking simulations showed the promising binding of MH to mTOR and JNK as novel identified targets.
Collapse
Affiliation(s)
- Mohamed A El-Emam
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
2
|
Gómez-Pineda VG, Nieto-Mendoza E, Torres-Cruz FM, Hernández-Echeagaray E. Neurotrophin-3 Rescues Striatal Synaptic Plasticity in Model of Neurodegeneration by PLC Signaling Activation. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1488-1498. [PMID: 38859788 DOI: 10.2174/0118715273298919240531110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Neurotrophins are essential factors for neural growth and function; they play a crucial role in neurodegenerative diseases where their expression levels are altered. Our previous research has demonstrated changes in synaptic plasticity and neurotrophin expression levels in a pharmacological model of Huntington's disease (HD) induced by 3-nitropropionic acid (3-NP). In the 3-NP-induced HD model, corticostriatal Long Term Depression (LTD) was impaired, but neurotrophin- 3 (NT-3) restored striatal LTD. This study delves into the NT-3-induced signaling pathways involved in modulating and restoring striatal synaptic plasticity in cerebral slices from 3-NPinduced striatal degeneration in mice in vivo. METHODS Phospholipase C (PLC), phosphatidylinositol-3-kinase (PI3K), and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathways activated by NT-3 were analyzed by means of field electrophysiological recordings in brain slices from control and 3-NP treated in the presence of specific inhibitors of the signaling pathways. RESULTS Using specific inhibitors, PLC, PI3K, and MEK/ERK signaling pathways contribute to NT-3-mediated plasticity modulation in striatal tissue slices recorded from control animals. However, in the neurodegeneration model induced by 3-NP, the recovery of striatal LTD induced by NT-3 was prevented only by the PLC inhibitor. Moreover, the PLC signaling pathway appeared to trigger downstream activation of the endocannabinoid system, evidenced by AM 251, an inhibitor of the CB1 receptor, also hindered NT-3 plasticity recovery. CONCLUSION Our finding highlights the specific involvement of the PLC pathway in the neuroprotective effects of NT-3 in mitigating synaptic dysfunction under neurodegenerative conditions.
Collapse
Affiliation(s)
- Victor G Gómez-Pineda
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, Facultad de Estudios Superiores Iztacala, Unidad de Investigación en Biomedicina, Universidad Nacional Autónoma de México, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, C.P. 54090, México
| | - Elizabeth Nieto-Mendoza
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, Facultad de Estudios Superiores Iztacala, Unidad de Investigación en Biomedicina, Universidad Nacional Autónoma de México, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, C.P. 54090, México
| | - Francisco M Torres-Cruz
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, Facultad de Estudios Superiores Iztacala, Unidad de Investigación en Biomedicina, Universidad Nacional Autónoma de México, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, C.P. 54090, México
| | - Elizabeth Hernández-Echeagaray
- Laboratorio de Neurofisiología del Desarrollo y la Neurodegeneración, Facultad de Estudios Superiores Iztacala, Unidad de Investigación en Biomedicina, Universidad Nacional Autónoma de México, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, Estado de México, C.P. 54090, México
| |
Collapse
|
3
|
Sharma Y, Garabadu D. Intracerebroventricular streptozotocin administration impairs mitochondrial calcium homeostasis and bioenergetics in memory-sensitive rat brain regions. Exp Brain Res 2020; 238:2293-2306. [PMID: 32728854 DOI: 10.1007/s00221-020-05896-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cardinal manifestation of cognitive dysfunction. The limitation to avail a successful drug candidate encourages researchers to establish an appropriate animal model in the novel anti-AD drug discovery process. In this context, the mechanism of mitochondrial dysfunction in cognitive deficit animals is yet to be established for intracerebroventricular injection of streptozotocin (ICV-STZ). Experimental dementia was induced in male rats by ICV-STZ on day-1 (D-1) of the experimental protocol at a sub-diabetogenic dose (3 mg/kg) twice at an interval of 48 h into both rat lateral ventricles. ICV-STZ caused cognitive decline in terms of increase in the escape latency on D-14 to D-17 and, decrease in the time spent and percentage of distance travelled in the target quadrant during Morris water maze and decrease in the spontaneous alteration behavior during Y-maze tests in rats. Further, ICV-STZ decreased the level of acetylcholine and activity of choline acetyltransferase and increased the activity of acetylcholinesterase in rat hippocampus, pre-frontal cortex and amygdala. Interestingly, ICV-STZ increased the mitochondrial calcium in addition to decrease in the mitochondrial function, integrity and bioenergetics in all rat brain regions. Further, ICV-STZ enhanced the levels of expression of NR1 subunit of N-methyl-D-aspartate receptor, mitochondrial calcium uniporter and sodium-calcium exchanger in these rat brain regions. Thus, NR1-dependent mitochondrial calcium accumulation could be considered as a major attribute to the animal model of ICV-STZ-induced AD-like manifestations. Further, drugs targeting to manage mitochondrial calcium homeostasis could best be studied in this animal model.
Collapse
Affiliation(s)
- Yati Sharma
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281 406, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281 406, India.
| |
Collapse
|
4
|
Torres-Cruz FM, Mendoza E, Vivar-Cortés IC, García-Sierra F, Hernández-Echeagaray E. Do BDNF and NT-4/5 exert synergistic or occlusive effects on corticostriatal transmission in a male mouse model of Huntington's disease? J Neurosci Res 2019; 97:1665-1677. [PMID: 31392756 DOI: 10.1002/jnr.24507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5) are trophic factors belonging to the neurotrophin family; in addition to their trophic role, both neurotrophins play an important role in modulating corticostriatal synaptic transmission. Failures in BDNF supply and mitochondrial dysfunction are among the factors involved in the striatal degeneration that occurs in Huntington's disease (HD). While the effects of BDNF have been widely studied in striatal degeneration, the role of NT-4/5 has been less addressed. NT-4/5 does not appear to exert effects similar to those of BDNF in HD. The physiological roles of these molecules in corticostriatal transmission have been evaluated separately, and we have demonstrated that sequential exposure to both neurotrophins results in different modulatory effects on corticostriatal transmission depending on the exposure order. In the present study, we evaluated the effects of BDNF followed by NT-4/5 or NT-4/5 followed by BDNF on corticostriatal synaptic transmission with field recordings in a male mouse model of HD produced by in vivo treatment with the mitochondrial toxin 3-nitropropionic acid. Here, we show that these neurotrophins elicit an antagonistic or synergistic effect that depends on the activation of the truncated isoform or the stimulation of the full-length isoform of the tropomyosin receptor kinase B.
Collapse
Affiliation(s)
- Francisco M Torres-Cruz
- Laboratorio de Neurofisiología del desarrollo y la neurodegeneración, Unidad de Investigación en Biomedicina FES-Iztacala, Universidad Nacional Autónoma de México, México, México
| | - Ernesto Mendoza
- Laboratorio de Neurofisiología del desarrollo y la neurodegeneración, Unidad de Investigación en Biomedicina FES-Iztacala, Universidad Nacional Autónoma de México, México, México
| | - Israel C Vivar-Cortés
- Laboratorio de Neurofisiología del desarrollo y la neurodegeneración, Unidad de Investigación en Biomedicina FES-Iztacala, Universidad Nacional Autónoma de México, México, México
| | | | - Elizabeth Hernández-Echeagaray
- Laboratorio de Neurofisiología del desarrollo y la neurodegeneración, Unidad de Investigación en Biomedicina FES-Iztacala, Universidad Nacional Autónoma de México, México, México
| |
Collapse
|
5
|
Flores-Hernández J, Garzón-Vázquez JA, Hernández-Carballo G, Nieto-Mendoza E, Ruíz-Luna EA, Hernández-Echeagaray E. Striatal Neurodegeneration that Mimics Huntington's Disease Modifies GABA-induced Currents. Brain Sci 2018; 8:E217. [PMID: 30563250 PMCID: PMC6316731 DOI: 10.3390/brainsci8120217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022] Open
Abstract
Huntington's Disease (HD) is a degenerative disease which produces cognitive and motor disturbances. Treatment with GABAergic agonists improves the behavior and activity of mitochondrial complexes in rodents treated with 3-nitropropionic acid to mimic HD symptomatology. Apparently, GABA receptors activity may protect striatal medium spiny neurons (MSNs) from excitotoxic damage. This study evaluates whether mitochondrial inhibition with 3-NP that mimics the early stages of HD, modifies the kinetics and pharmacology of GABA receptors in patch clamp recorded dissociated MSNs cells. The results show that MSNs from mice treated with 3-NP exhibited differences in GABA-induced dose-response currents and pharmacological responses that suggests the presence of GABAC receptors in MSNs. Furthermore, there was a reduction in the effect of the GABAC antagonist that demonstrates a lessening of this GABA receptor subtype activity as a result of mitochondria inhibition.
Collapse
Affiliation(s)
- Jorge Flores-Hernández
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla C.P.72570, México.
| | | | | | - Elizabeth Nieto-Mendoza
- Laboratorio de neurofisiología del desarrollo y la neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, México, FES-Iztacala, Av. de Los Barrios #1, Los Reyes Iztacala, Tlalnepantla C.P.54090, México.
| | - Evelyn A Ruíz-Luna
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla C.P.72570, México.
| | - Elizabeth Hernández-Echeagaray
- Laboratorio de neurofisiología del desarrollo y la neurodegeneración, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, México, FES-Iztacala, Av. de Los Barrios #1, Los Reyes Iztacala, Tlalnepantla C.P.54090, México.
| |
Collapse
|
6
|
Gómez-Pineda VG, Torres-Cruz FM, Vivar-Cortés CI, Hernández-Echeagaray E. Neurotrophin-3 restores synaptic plasticity in the striatum of a mouse model of Huntington's disease. CNS Neurosci Ther 2018; 24:353-363. [PMID: 29453932 DOI: 10.1111/cns.12824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 11/30/2022] Open
Abstract
AIMS Neurotrophin-3 (NT-3) is expressed in the mouse striatum; however, it is not clear the NT-3 role in striatal physiology. The expression levels of mRNAs and immune localization of the NT-3 protein and its receptor TrkC are altered in the striatum following damage induced by an in vivo treatment with 3-nitropropionic acid (3-NP), a mitochondrial toxin used to mimic the histopathological hallmarks of Huntington's disease (HD). The aim of this study was to evaluate the role of NT-3 on corticostriatal synaptic transmission and its plasticity in both the control and damaged striatum. METHODS Corticostriatal population spikes were electrophysiologically recorded and striatal synaptic plasticity was induced by high-frequency stimulation. Further, the phosphorylation status of Trk receptors was tested under conditions that imitated electrophysiological experiments. RESULTS NT-3 modulates both synaptic transmission and plasticity in the striatum; nonetheless, synaptic plasticity was modified by the 3-NP treatment, where instead of producing striatal long-term depression (LTD), long-term potentiation (LTP) was obtained. Moreover, the administration of NT-3 in the recording bath restored the plasticity observed under control conditions (LTD) in this model of striatal degeneration. CONCLUSION NT-3 modulates corticostriatal transmission through TrkB stimulation and restores striatal LTD by signaling through its TrkC receptor.
Collapse
Affiliation(s)
- Victor G Gómez-Pineda
- Laboratorio de neurofisiología del desarrollo y la neurodegeneración, Unidad de Investigación en Biomedicina, Universidad Nacional Autónoma de México, FES Iztacala, Tlalnepantla, México
| | - Francisco M Torres-Cruz
- Laboratorio de neurofisiología del desarrollo y la neurodegeneración, Unidad de Investigación en Biomedicina, Universidad Nacional Autónoma de México, FES Iztacala, Tlalnepantla, México
| | - César I Vivar-Cortés
- Laboratorio de neurofisiología del desarrollo y la neurodegeneración, Unidad de Investigación en Biomedicina, Universidad Nacional Autónoma de México, FES Iztacala, Tlalnepantla, México
| | - Elizabeth Hernández-Echeagaray
- Laboratorio de neurofisiología del desarrollo y la neurodegeneración, Unidad de Investigación en Biomedicina, Universidad Nacional Autónoma de México, FES Iztacala, Tlalnepantla, México
| |
Collapse
|
7
|
Alarcón-Herrera N, Flores-Maya S, Bellido B, García-Bores AM, Mendoza E, Ávila-Acevedo G, Hernández-Echeagaray E. Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity. Food Chem Toxicol 2017; 109:1018-1025. [DOI: 10.1016/j.fct.2017.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/29/2017] [Accepted: 04/30/2017] [Indexed: 01/28/2023]
|
8
|
Cobb CA, Cole MP. Oxidative and nitrative stress in neurodegeneration. Neurobiol Dis 2015; 84:4-21. [PMID: 26024962 DOI: 10.1016/j.nbd.2015.04.020] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/19/2022] Open
Abstract
Aerobes require oxygen for metabolism and normal free radical formation. As a result, maintaining the redox homeostasis is essential for brain cell survival due to their high metabolic energy requirement to sustain electrochemical gradients, neurotransmitter release, and membrane lipid stability. Further, brain antioxidant levels are limited compared to other organs and less able to compensate for reactive oxygen and nitrogen species (ROS/RNS) generation which contribute oxidative/nitrative stress (OS/NS). Antioxidant treatments such as vitamin E, minocycline, and resveratrol mediate neuroprotection by prolonging the incidence of or reversing OS and NS conditions. Redox imbalance occurs when the antioxidant capacity is overwhelmed, consequently leading to activation of alternate pathways that remain quiescent under normal conditions. If OS/NS fails to lead to adaptation, tissue damage and injury ensue, resulting in cell death and/or disease. The progression of OS/NS-mediated neurodegeneration along with contributions from microglial activation, dopamine metabolism, and diabetes comprise a detailed interconnected pathway. This review proposes a significant role for OS/NS and more specifically, lipid peroxidation (LPO) and other lipid modifications, by triggering microglial activation to elicit a neuroinflammatory state potentiated by diabetes or abnormal dopamine metabolism. Subsequently, sustained stress in the neuroinflammatory state overwhelms cellular defenses and prompts neurotoxicity resulting in the onset or amplification of brain damage.
Collapse
Affiliation(s)
- Catherine A Cobb
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Marsha P Cole
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
9
|
Circadian dysfunction in response to in vivo treatment with the mitochondrial toxin 3-nitropropionic acid. ASN Neuro 2014; 6:e00133. [PMID: 24328694 PMCID: PMC3891360 DOI: 10.1042/an20130042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sleep disorders are common in neurodegenerative diseases including Huntington's disease (HD) and develop early in the disease process. Mitochondrial alterations are believed to play a critical role in the pathophysiology of neurodegenerative diseases. In the present study, we evaluated the circadian system of mice after inhibiting mitochondrial complex II of the respiratory chain with the toxin 3-nitropropionic acid (3-NP). We found that a subset of mice treated with low doses of 3-NP exhibited severe circadian deficit in behavior. The temporal patterning of sleep behavior is also disrupted in some mice with evidence of difficulty in the initiation of sleep behavior. Using the open field test during the normal sleep phase, we found that the 3-NP-treated mice were hyperactive. The molecular clockwork responsible for the generation of circadian rhythms as measured by PER2::LUCIFERASE was disrupted in a subset of mice. Within the SCN, the 3-NP treatment resulted in a reduction in daytime firing rate in the subset of mice which had a behavioral deficit. Anatomically, we confirmed that all of the treated mice showed evidence for cell loss within the striatum but we did not see evidence for gross SCN pathology. Together, the data demonstrates that chronic treatment with low doses of the mitochondrial toxin 3-NP produced circadian deficits in a subset of treated mice. This work does raise the possibility that the neural damage produced by mitochondrial dysfunction can contribute to the sleep/circadian dysfunction seen so commonly in neurodegenerative diseases.
Collapse
|
10
|
Gopinath K, Sudhandiran G. Naringin modulates oxidative stress and inflammation in 3-nitropropionic acid-induced neurodegeneration through the activation of nuclear factor-erythroid 2-related factor-2 signalling pathway. Neuroscience 2012; 227:134-43. [PMID: 22871521 DOI: 10.1016/j.neuroscience.2012.07.060] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/23/2012] [Accepted: 07/26/2012] [Indexed: 12/22/2022]
Abstract
Nuclear factor-erythroid 2-related factor-2 (Nrf2) mediated regulation of cellular antioxidant production and the anti-inflammatory mechanism play an important role in neuroprotection against neurodegenerative diseases. Naringin a citrus flavonone, has been reported to possess neuroprotective effect against Huntington's disease, and other neurodegenerative disorders, however the mechanisms underlying its beneficial effects on 3-nitropropionic acid (3-NP)-induced neurodegeneration are poorly defined. The objective of the present study was to investigate the neuroprotective role of naringin and delineate the mechanism of action on 3-NP-induced neurodegeneration. Rats were injected with 3-NP (10mg/kg body weight/day, i.p.) for 2 weeks to develop neurodegeneration, while naringin (80 mg/kg body weight/day, orally) was administered throughout the experimental period, 1h prior to 3-NP exposure. Thereafter rats were euthanized for biochemical, histological, and molecular studies. Treatment with naringin ameliorated the reduced glutathione/oxidized glutathione ratio with concomitant decrease in the levels of hydroxyl radical, hydroperoxide and nitrite in 3-NP-induced rats. Nissl staining and transmission electron microscopic studies showed that naringin modulated 3-NP-induced histological changes. Naringin induces NAD(P)H:quinone oxidoreductase-1, heme oxygenase-1, glutathione S-transferase P1 and gamma-glutamylcysteine ligase mRNA expressions through the activation of Nrf2 and decreased the expressions of pro-inflammatory mediators like tumour necrosis factor-alpha, cyclooxygenase-2 and inducible nitric oxide synthase. These results indicate that naringin might be beneficial in mitigating 3-NP-induced neurodegeneration through the enhancement of phase II and antioxidant gene expressions via Nrf2 activation; thereby modulating the oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- K Gopinath
- Department of Biochemistry, Cell Biology Laboratory, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu, India
| | | |
Collapse
|
11
|
Espíndola S, Vilches-Flores A, Hernández-Echeagaray E. 3-Nitropropionic acid modifies neurotrophin mRNA expression in the mouse striatum: 18S-rRNA is a reliable control gene for studies of the striatum. Neurosci Bull 2012; 28:517-31. [PMID: 22961474 DOI: 10.1007/s12264-012-1259-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 06/04/2012] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The aim of the present study was to determine the changes in the mRNA levels of neurotrophins and their receptors in the striatal tissue of mice treated with 3-nitropropionic acid (3-NP). METHODS At 1 and 48 h after the last drug administration, the mRNA expression of nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 as well as their receptors p75, TrkA, TrkB and TrkC, was evaluated using semi-quantitative (semi-Q) and real-time RT-PCR. β-actin mRNA and ribosomal 18S (18S rRNA) were tested as internal controls. RESULTS 3-NP treatment did not affect mRNA expression of all neurotrophins and their respective receptors equally. Also, differences in neurotrophin and receptor mRNA expression were observed between semi-Q and real-time RT-PCR. Real-time RT-PCR was more accurate in evaluating the mRNA expression of the neurotrophins than semi-Q, and 18S rRNA was more reliable than β-actin as an internal control. CONCLUSION Neurotrophins and their receptors expression is differentially affected by neuronal damage produced by inhibition of mitochondrial respiration with 3-NP treatment in low, sub-chronic doses in vivo.
Collapse
Affiliation(s)
- S Espíndola
- Unidad de Biomedicina, FES-I, Universidad Nacional Autónoma de México, Los Reyes Iztacala, C. P. 54090, Tlalnepantla, México
| | | | | |
Collapse
|
12
|
Cano-Ramírez D, Torres-Vargas CE, Guerrero-Castillo S, Uribe-Carvajal S, Hernández-Pando R, Pedraza-Chaverri J, Orozco-Ibarra M. Effect of glycolysis inhibition on mitochondrial function in rat brain. J Biochem Mol Toxicol 2012; 26:206-11. [PMID: 22539072 DOI: 10.1002/jbt.21404] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/22/2011] [Accepted: 12/30/2011] [Indexed: 11/06/2022]
Abstract
Inhibition of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase enhances the neural vulnerability to excitotoxicity both in vivo and in vitro through an unknown mechanism possibly related to mitochondrial failure. However, as the effect of glycolysis inhibition on mitochondrial function in brain has not been studied, the aim of the present work was to evaluate the effect of glycolysis inhibition induced by iodoacetate on mitochondrial function and oxidative stress in brain. Mitochondria were isolated from brain cortex, striatum and cerebellum of rats treated systemically with iodoacetate (25 mg/kg/day for 3 days). Oxygen consumption, ATP synthesis, transmembrane potential, reactive oxygen species production, lipoperoxidation, glutathione levels, and aconitase activity were assessed. Oxygen consumption and aconitase activity decreased in the brain cortex and striatum, showing that glycolysis inhibition did not trigger severe mitochondrial impairment, but a slight mitochondrial malfunction and oxidative stress were present.
Collapse
Affiliation(s)
- D Cano-Ramírez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, DF, Mexico
| | | | | | | | | | | | | |
Collapse
|
13
|
Mahdy HM, Tadros MG, Mohamed MR, Karim AM, Khalifa AE. The effect of Ginkgo biloba extract on 3-nitropropionic acid-induced neurotoxicity in rats. Neurochem Int 2011; 59:770-8. [DOI: 10.1016/j.neuint.2011.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 06/15/2011] [Accepted: 07/24/2011] [Indexed: 01/15/2023]
|
14
|
Laço MN, Oliveira CR, Paulson HL, Rego AC. Compromised mitochondrial complex II in models of Machado-Joseph disease. Biochim Biophys Acta Mol Basis Dis 2011; 1822:139-49. [PMID: 22037589 DOI: 10.1016/j.bbadis.2011.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 10/03/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
Abstract
Machado-Joseph disease (MJD), also known as Spinocerebellar Ataxia type 3, is an inherited dominant autosomal neurodegenerative disorder. An expansion of Cytosine-Adenine-Guanine (CAG) repeats in the ATXN3 gene is translated as an expanded polyglutamine domain in the disease protein, ataxin-3. Selective neurodegeneration in MJD is evident in several subcortical brain regions including the cerebellum. Mitochondrial dysfunction has been proposed as a mechanism of neurodegeneration in polyglutamine disorders. In this study, we used different cell models and transgenic mice to assess the importance of mitochondria on cytotoxicity observed in MJD. Transiently transfected HEK cell lines with expanded (Q84) ataxin-3 exhibited a higher susceptibility to 3-nitropropionic acid (3-NP), an irreversible inhibitor of mitochondrial complex II. Increased susceptibility to 3-NP was also detected in stably transfected PC6-3 cells that inducibly express expanded (Q108) ataxin-3 in a tetracycline-regulated manner. Moreover, cerebellar granule cells from MJD transgenic mice were more sensitive to 3-NP inhibition than wild-type cerebellar neurons. PC6-3 (Q108) cells differentiated into a neuronal-like phenotype with nerve growth factor (NGF) exhibited a significant decrease in mitochondrial complex II activity. Mitochondria from MJD transgenic mouse model and lymphoblast cell lines derived from MJD patients also showed a trend toward reduced complex II activity. Our results suggest that mitochondrial complex II activity is moderately compromised in MJD, which may designate a common feature in polyglutamine toxicity.
Collapse
Affiliation(s)
- Mário N Laço
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | |
Collapse
|