1
|
Liu X, Xiong H, Lu M, Liu B, Hu C, Liu P. Trans-3, 5, 4'-trimethoxystilbene restrains non-small-cell lung carcinoma progression via suppressing M2 polarization through inhibition of m6A modified circPACRGL-mediated Hippo signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155436. [PMID: 38394728 DOI: 10.1016/j.phymed.2024.155436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Non-small-cell lung carcinoma (NSCLC) accounts for ∼85% of all lung carcinomas. Trans-3,5,4'-trimethoxystilbene (TMS) shows strong anti-tumor activity and induces tumor cell apoptosis. However, its function and mechanism in NSCLC still require investigation. METHODS PMA was used to treated THP-1 cells for macrophage differentiation. The abundance and m6A modification of circPACRGL were examined with qRT-PCR and MeRIP. Colony forming, transwell, wound healing, and Western blotting assays were applied to analyze proliferation, invasion, migration, and EMT. Macrophage polarization was determined through flow cytometry analysis of M1 and M2 markers. The interplay between circPACRGL, IGF2BP2 and YAP1 was validated by RNA pull-down and RIP assays. Mice received subcutaneous injection of NSCLC cells as a mouse model of subcutaneous tumor. RESULTS CircPACRGL was upregulated in NSCLC cells, but it was reduced by TMS treatment. CircPACRGL depletion blocked proliferation, migration, and invasion in H1299 and H1975 cells. TMS suppressed these malignant behaviors, but it was abolished by circPACRGL overexpression. In addition, NSCLC-derived exosomes delivered circPACRGL into THP-1 cells to promote its M2 polarization, but TMS inhibited these effects by downregulating exosomal circPACRGL. Mechanically, exosomal circPACRGL bound to IGF2BP2 to improve the stability of YAP1 mRNA and regulate Hippo signaling in polarized THP-1 cells. TMS inhibited NSCLC growth via suppressing Hippo signaling and M2 polarization in vivo. CONCLUSION TMS restrains M2 polarization and NSCLC progression by reducing circPACRGL and inhibiting exosomal circPACRGL-mediated Hippo signaling. Thus, these findings provide a novel mechanism underlying NSCLC progression and potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, PR China
| | - Hui Xiong
- Department of Oncology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, PR China
| | - Min Lu
- Department of Oncology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, PR China
| | - Bin Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, PR China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, PR China
| | - Ping Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha, Hunan 410011, PR China.
| |
Collapse
|
2
|
Singh S, Sarode G, Sengupta N, Anand R, Sarode S. Comment on "Fibroblast growth factor 5 expression predicts the progression of oral squamous cell carcinoma". J Formos Med Assoc 2024; 123:415. [PMID: 37996324 DOI: 10.1016/j.jfma.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Affiliation(s)
- Shruti Singh
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411018, India
| | - Gargi Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411018, India
| | - Namrata Sengupta
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411018, India
| | - Rahul Anand
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411018, India
| | - Sachin Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411018, India.
| |
Collapse
|
3
|
魏 洁, 徐 思, 周 学, 谢 静. [Research Progress in the Molecular Regulatory Mechanisms of Alveolar Bone Restoration]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:31-38. [PMID: 38322519 PMCID: PMC10839478 DOI: 10.12182/20240160501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Indexed: 02/08/2024]
Abstract
Alveolar bone, the protruding portion of the maxilla and the mandible that surrounds the roots of teeth, plays an important role in tooth development, eruption, and masticatory performance. In oral inflammatory diseases, including apical periodontitis, periodontitis, and peri-implantitis, alveolar bone defects cause the loosening or loss of teeth, impair the masticatory function, and endanger the physical and mental health of patients. However, alveolar bone restoration is confronted with great clinical challenges due to the the complicated effect of the biological, mechanical, and chemical factors in the oral microenvironment. An in-depth understanding of the underlying molecular regulatory mechanisms will contribute to the exploration of new targets for alveolar bone restoration. Recent studies have shown that Notch, Wnt, Toll-like receptor (TLR), and nuclear factor-κB (NF-κB) signaling pathways regulate the proliferation, differentiation, apoptosis, and autophagy of osteoclasts, osteoblasts, osteocytes, periodontal ligament cells, macrophages, and adaptive immune cells, modulate the expression of inflammatory mediators, affect the balance of the receptor activator for nuclear factor-κB ligand/receptor activator for nuclear factor-κB/osteoprotegerin (RANKL/RANK/OPG) system, and ultimately participate in alveolar bone restoration. Additionally, alveolar bone restoration involves AMP-activated protein kinase (AMPK), phosphatidyl inositol 3-kinase/protein kinase B (PI3K/AKT), Hippo/YAP, Janus kinase/signal transducer and activator of transcription (JAK/STAT), and transforming growth factor β (TGF-β) signaling pathways. However, current studies have failed to construct mature molecular regulatory networks for alveolar bone restoration. There is an urgent need for further research on the molecular regulatory mechanisms of alveolar bone restoration by using new technologies such as single-cell transcriptome sequencing and spatial transcriptome sequencing.
Collapse
Affiliation(s)
- 洁雅 魏
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 思群 徐
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 学东 周
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 静 谢
- 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Identification of a miRNA Panel with a Potential Determinant Role in Patients Suffering from Periodontitis. Curr Issues Mol Biol 2023; 45:2248-2265. [PMID: 36975515 PMCID: PMC10047163 DOI: 10.3390/cimb45030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, the role of microRNA (miRNA) in post-transcriptional gene regulation has advanced and supports strong evidence related to their important role in the regulation of a wide range of fundamental biological processes. Our study focuses on identifying specific alterations of miRNA patterns in periodontitis compared with healthy subjects. In the present study, we mapped the major miRNAs altered in patients with periodontitis (n = 3) compared with healthy subjects (n = 5), using microarray technology followed by a validation step by qRT-PCR and Ingenuity Pathways Analysis. Compared to healthy subjects, 159 differentially expressed miRNAs were identified among periodontitis patients, of which 89 were downregulated, and 70 were upregulated, considering a fold change of ±1.5 as the cut-off value and p ≤ 0.05. Key angiogenic miRNAs (miR-191-3p, miR-221-3p, miR-224-5p, miR-1228-3p) were further validated on a separate cohort of patients with periodontitis versus healthy controls by qRT-PCR, confirming the microarray data. Our findings indicate a periodontitis-specific miRNA expression pattern representing an essential issue for testing new potential diagnostic or prognostic biomarkers for periodontal disease. The identified miRNA profile in periodontal gingival tissue was linked to angiogenesis, with an important molecular mechanism that orchestrates cell fate.
Collapse
|
5
|
Morpho-Functional Effect of a New Collagen-Based Medical Device on Human Gingival Fibroblasts: An In Vitro Study. Biomedicines 2023; 11:biomedicines11030786. [PMID: 36979765 PMCID: PMC10045070 DOI: 10.3390/biomedicines11030786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Maintaining periodontal and peri-implant soft tissues health is crucial for the long-term health of teeth and dental implants. New biomedical strategies aimed at avoiding connective tissue alterations and related diseases (e.g., periodontitis and peri-implantitis) are constantly evolving. Among these, collagen-based medical products have proven to be safe and effective. Accordingly, the aim of the present study was to evaluate the effects of Dental SKIN BioRegulation (Guna S.p.a., Milan, Italy), a new injectable medical device composed of type I collagen of porcine origin, on primary cultures of human gingival fibroblasts (hGF). To this end, hGF were cultured on collagen-coated (COL, 100 µg/2 mL) or uncoated plates (CTRL) before evaluating cell viability (24 h, 48 h, 72 h, and 7 d), wound healing properties (3 h, 6 h, 12 h, 24 h, and 48 h), and the activation of mechanotransduction markers, such as FAK, YAP, and TAZ (48 h). The results proved a significant increase in cell viability at 48 h (p < 0.05) and wound closure at 24 h (p < 0.001) of hGF grown on COL, with an increasing trend at all time-points. Furthermore, COL significantly induced the expression of FAK and YAP/TAZ (p < 0.05), thereby promoting the activation of mechanotransduction signaling pathways. Overall, these data suggest that COL, acting as a mechanical bio-scaffold, could represent a useful treatment for gingival rejuvenation and may possibly help in the resolution of oral pathologies.
Collapse
|
6
|
Xia P, Deng F. YAP regulates intestinal epithelial cell proliferation through activation of STAT3 in DSS-induced colitis and associated cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1637-1645. [PMID: 36748373 PMCID: PMC10930267 DOI: 10.11817/j.issn.1672-7347.2022.220001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Ulcerative colitis (UC) is a chronic, relapsing inflammation of the colon. Impaired epithelial repair is an important biological features of UC. Accelerating intestinal epithelial repair to achieve endoscopic mucosal healing has become a key goal in UC. Yes-associated protein (YAP) is a key transcriptional coactivator that regulates organ size, tissue growth and tumorigenesis. Growing studies have focused on the role of YAP in intestinal epithelial regeneration. This study explore the molecular mechanism for the role YAP in modulating colonic epithelial proliferation, repair, and the development of colitis associated cancer. METHODS We constructed the acute colitis mouse model through successive 5 days of 3% dextran sulfate sodium salt (DSS) induction. Then YAP-overexpressed mouse model was constructed by intraperitoneal injection the YAP overexpressed and negative control lentivirus into DSS mice. On the 5th day of DSS induction and the 5th day of normal drinking water after removing DSS (5+5 d), the mice were killed by spinal dislocation. The colon was taken to measure the length, and the bowel 1-2 cm near the anal canal was selected for immunohistochemical and Western blotting. We used YAP over-expressed colonic epithelial cells and small interfering signal transducer and activator of transcription 3 (STAT3) RNA to probe the regulation of YAP on STAT3, using cell counting kit-8 and scratch assays to explore the role of YAP on colonic epithelial cell proliferation. Finally, we conducted co-immunoprecipitation to test the relationship between YAP and STAT3. RESULTS After DSS treatment, the expression of YAP was dramatically diminished in crypts. Compared with the empty control mice, overexpression of YAP drastically accelerated epithelial regeneration after DSS induced colitis, presenting with more intact of structural integrity in intestinal epithelium and a reduction in the number of inflammatory cells in the mucosa. Further Western blotting, functional experiment and co-immunoprecipitation analyses showed that the expression of YAP in nucleus was significantly increased by 2 h post DSS cessation, accompanied with up-regulated total protein levels of STAT3 and phosphorylated-STAT3 (p-STAT3). Overexpression of YAP enhanced the expression of STAT3, p-STAT3, and their transcriptional targets including c-Myc and Cyclin D1. In addition, it promoted the proliferation and the "wound healing" of colonic cells. However, these effects were reversed when silencing STAT3 on YAP-overexpressed FHC cells. Moreover, protein immunoprecipitation indicated that YAP could directly interact with STAT3 in the nucleus, up-regulatvng the expressvon of STAT3. Finally, during the process of CAC, overexpression of YAP mutant caused the down-regulated expression of STAT3 and inhibited the development and progress of CAC. CONCLUSIONS YAP activates STAT3 signaling in regulation of epithelial cell proliferation and promotes mucosal regeneration after DSS induced colitis, which may serve as a potential therapeutic target in UC. However, persistent and excessive YAP activation may promote CAC development.
Collapse
Affiliation(s)
- Pianpian Xia
- Department of Gastroenterology, Second Xiangya Hospital; Research Center of Digestive Disease, Central South University, Changsha 410011, China.
| | - Feihong Deng
- Department of Gastroenterology, Second Xiangya Hospital; Research Center of Digestive Disease, Central South University, Changsha 410011, China.
| |
Collapse
|
7
|
Deng F, Wu Z, Xu M, Xia P. YAP Activates STAT3 Signalling to Promote Colonic Epithelial Cell Proliferation in DSS-Induced Colitis and Colitis Associated Cancer. J Inflamm Res 2022; 15:5471-5482. [PMID: 36164660 PMCID: PMC9508680 DOI: 10.2147/jir.s377077] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/15/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND AIMS Yes-associated protein (YAP) is a key transcriptional coactivator of cell proliferation and differentiation. In this study, we sought to identify the roles of YAP in colonic epithelial regeneration and tumourigenesis. METHODS Murine DSS-induced colitis and YAP overexpression models were constructed via lentiviral intraperitoneal injection. Stable YAP-overexpressing cells, protein immunoprecipitation, and ChIP were used to deeply explore the molecular mechanism. RESULTS We found that the expression of YAP was dramatically diminished in the colonic crypts during the acute colitis phase, while YAP was strikingly enhanced to initiate tissue repair after DSS withdrawal. Overexpressing YAP in mice drastically accelerated epithelial regeneration, presenting with more intact structural integrity and reduced inflammatory cell infiltration in the mucosa. Further mechanistic studies showed that the expression of YAP in the nucleus was significantly increased by 2 h post-DSS removal, accompanied by upregulated protein levels of activated STAT3. Overexpression of YAP (YAPWT) elevated the expression of activated STAT3 and its transcriptional targets and strengthened the proliferation and "wound healing" ability of colonic cells. However, these effects were reversed when STAT3 was silenced in YAPWT cells. Moreover, YAP could directly interact with STAT3 in the nucleus, and c-Myc and CyclinD1 were the transcriptional targets. Finally, during colitis-associated cancer (CAC), YAPWT promoted the progression of CAC, while the phosphomimetic YAP downregulated the expression of STAT3 and inhibited the development and progression of CAC. CONCLUSION YAP activates STAT3 signalling to facilitate mucosal regeneration after DSS-induced colitis. However, excessive YAP activation in the colonic epithelium promotes CAC development.
Collapse
Affiliation(s)
- Feihong Deng
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, 410011, People’s Republic of China
- Correspondence: Feihong Deng, Department of Gastroenterology, the Second Xiangya Hospital of Central South University; Research Center of Digestive Disease, Central South University, Changsha, Hunan, 410011, People’s Republic of China, Email
| | - Zengrong Wu
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, 410011, People’s Republic of China
| | - Mengmeng Xu
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, 410011, People’s Republic of China
| | - Pianpian Xia
- Department of Gastroenterology, the Second Xiangya Hospital of Central South University, Changsha, 410011, People’s Republic of China
- Research Center of Digestive Disease, Central South University, Changsha, 410011, People’s Republic of China
| |
Collapse
|