1
|
Hidalgo I, Sorolla MA, Sorolla A, Salud A, Parisi E. Secreted Phospholipases A2: Drivers of Inflammation and Cancer. Int J Mol Sci 2024; 25:12408. [PMID: 39596471 PMCID: PMC11594849 DOI: 10.3390/ijms252212408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Secreted phospholipase 2 (sPLA2) is the largest family of phospholipase A2 (PLA2) enzymes with 11 mammalian isoforms. Each sPLA2 exhibits different localizations and specific properties, being involved in a very wide spectrum of biological processes. The enzymatic activity of sPLA2 has been well described; however, recent findings have shown that they could regulate different signaling pathways by acting directly as ligands. Arachidonic acid (AA) and its derivatives are produced by sPLA2 in collaboration with other molecules in the extracellular space, making important impacts on the cellular environment, being especially relevant in the contexts of immunity and cancer. For these reasons, this review focuses on sPLA2 functions in processes such as the promotion of EMT, angiogenesis, and immunomodulation in the context of tumor initiation and progression. Finally, we will also describe how this knowledge has been applied in the search for new sPLA2 inhibitory compounds that can be used for cancer treatment.
Collapse
Affiliation(s)
- Ivan Hidalgo
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), 25198 Lleida, Spain
- Department of Medicine, University of Lleida, 25198 Lleida, Spain
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Biomedical Research Institute of Lleida (IRBLleida), 25198 Lleida, Spain
- Department of Experimental Medicine, University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
2
|
Ibrahim L, Gwarzo DH, Yusuf AA. Secretory Phospholipase A2 Levels Are High in Women with Sickle Cell Disease and Menstruation-Induced Vaso-Occlusive Crises. Hemoglobin 2024; 48:175-181. [PMID: 38961630 DOI: 10.1080/03630269.2024.2371887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Menstruation-induced vaso-occlusive crisis (MIVOC) is a significant cause of morbidity in women with sickle cell disease (SCD). Secretory phospholipase A2 (sPLA2) is an inflammatory biomarker that is elevated in vaso-occlusive events such as acute chest syndrome (ACS), but its role in MIVOC is not previously studied. This study compared the serum level of sPLA2 among women with MIVOC and those without MIVOC. This is a comparative cross-sectional study. 354 women with SCD were screened for MIVOC using a structured questionnaire. sPLA2 levels were assayed using a standard ELISA while full blood counts were performed on an automated hematology analyzer. Data were analyzed using the SPSS software v26.0. Results were summarized as frequencies, percentages, and mean ± standard deviation. Variables were compared using the Student's t-test and Pearson's correlation. A p-value of <.05 was considered significant. The prevalence of MIVOC was 26.8%. Participants with MIVOC (n = 95) had significantly lower mean hemoglobin concentration (8.00 ± 2.03g/dL vs. 9.95 ± 4.15g/dL, p < .000), significantly higher mean platelets count (518.71 ± 84.58 × 109/L vs 322.21 ± 63.80 × 109/L, p < .000) and higher sPLA2 level (6.58 ± 1.94 IU vs 6.03 ± 0.42 IU, p = .008) compared to those without MIVOC (n = 95). Among participants with MIVOC, sPLA2 levels positively correlated with total white blood cell, absolute neutrophil, and lymphocyte counts. This study demonstrates that MIVOC is common among women with SCD and that the pathophysiology of MIVOC may have an inflammatory basis similar to that of ACS. The potential role of anti-inflammatory and antiplatelet agents in preventing and treating MIVOC may be explored.
Collapse
Affiliation(s)
- Lukman Ibrahim
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Bayero University, Kano, Nigeria
| | - Dalha Haliru Gwarzo
- Department of Haematology, Faculty of Clinical Sciences, College of Health Sciences, Bayero University Kano, Kano, Nigeria
- Department of Haematology and Blood Transfusion, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Aminu Abba Yusuf
- Department of Haematology, Faculty of Clinical Sciences, College of Health Sciences, Bayero University Kano, Kano, Nigeria
- Department of Haematology and Blood Transfusion, Aminu Kano Teaching Hospital, Kano, Nigeria
| |
Collapse
|
3
|
de Oliveira ALN, Lacerda MT, Ramos MJ, Fernandes PA. Viper Venom Phospholipase A2 Database: The Structural and Functional Anatomy of a Primary Toxin in Envenomation. Toxins (Basel) 2024; 16:71. [PMID: 38393149 PMCID: PMC10893444 DOI: 10.3390/toxins16020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
Viper venom phospholipase A2 enzymes (vvPLA2s) and phospholipase A2-like (PLA2-like) proteins are two of the principal toxins in viper venom that are responsible for the severe myotoxic and neurotoxic effects caused by snakebite envenoming, among other pathologies. As snakebite envenoming is the deadliest neglected tropical disease, a complete understanding of these proteins' properties and their mechanisms of action is urgently needed. Therefore, we created a database comprising information on the holo-form, cofactor-bound 3D structure of 217 vvPLA2 and PLA2-like proteins in their physiologic environment, as well as 79 membrane-bound viper species from 24 genera, which we have made available to the scientific community to accelerate the development of new anti-snakebite drugs. In addition, the analysis of the sequenced, 3D structure of the database proteins reveals essential aspects of the anatomy of the proteins, their toxicity mechanisms, and the conserved binding site areas that may anchor universal interspecific inhibitors. Moreover, it pinpoints hypotheses for the molecular origin of the myotoxicity of the PLA2-like proteins. Altogether, this study provides an understanding of the diversity of these toxins and how they are conserved, and it indicates how to develop broad, interspecies, efficient small-molecule inhibitors to target the toxin's many mechanisms of action.
Collapse
Affiliation(s)
| | | | | | - Pedro A. Fernandes
- Requimte-Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-000 Porto, Portugal; (A.L.N.d.O.); (M.T.L.); (M.J.R.)
| |
Collapse
|
4
|
Murakami M, Sato H, Taketomi Y. Modulation of immunity by the secreted phospholipase A 2 family. Immunol Rev 2023; 317:42-70. [PMID: 37035998 DOI: 10.1111/imr.13205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Among the phospholipase A2 (PLA2 ) superfamily, which typically catalyzes the sn-2 hydrolysis of phospholipids to yield fatty acids and lysophospholipids, the secreted PLA2 (sPLA2 ) family contains 11 isoforms in mammals. Individual sPLA2 s have unique enzymatic specificity toward fatty acids and polar heads of phospholipid substrates and display distinct tissue/cellular distributions, suggesting their distinct physiological functions. Recent studies using knockout and/or transgenic mice for a full set of sPLA2 s have revealed their roles in modulation of immunity and related disorders. Application of mass spectrometric lipidomics to these mice has enabled to identify target substrates and products of individual sPLA2 s in given tissue microenvironments. sPLA2 s hydrolyze not only phospholipids in the plasma membrane of activated, damaged or dying mammalian cells, but also extracellular phospholipids such as those in extracellular vesicles, microbe membranes, lipoproteins, surfactants, and dietary phospholipids, thereby exacerbating or ameliorating various diseases. The actions of sPLA2 s are dependent on, or independent of, the generation of fatty acid- or lysophospholipid-derived lipid mediators according to the pathophysiological contexts. In this review, we make an overview of our current understanding of the roles of individual sPLA2 s in various immune responses and associated diseases.
Collapse
Affiliation(s)
- Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Hiroyasu Sato
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Alekseeva AS, Boldyrev IA. Alternative Targets for sPLA2 Activity: Role of Membrane-Enzyme Interactions. MEMBRANES 2023; 13:618. [PMID: 37504984 PMCID: PMC10384401 DOI: 10.3390/membranes13070618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Abstract
The secreted phospholipases A2 (sPLA2s) play important roles both physiologically and pathologically, with their expression increasing significantly in diseases such as sepsis, inflammation, different cancers, glaucoma, obesity, Alzheimer's disease and even COVID-19. The fact has led to a large-scale search for inhibitors of these enzymes. In total, several dozen promising molecules have been proposed, but not a single one has successfully passed clinical trials. The failures in clinical studies motivated in-depth fundamental studies of PLA2s. Here we review alternative ways to control sPLA2 activity, outside its catalytic site. The concept can be realized by preventing sPLA2 from attaching to the membrane surface; by binding to an external protein which blocks sPLA2 hydrolytic activity; by preventing sPLA2 from orienting properly on the membrane surface; and by preventing substrate binding to the enzyme, keeping the catalytic site unaltered. Evidence in the literature is summarized in the review with the aim to serve as a starting point for new types of sPLA2 inhibitors.
Collapse
Affiliation(s)
- Anna S Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Ivan A Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
6
|
Ma X, Liu H, Liu Z, Wang Y, Zhong Z, Peng G, Gu Y. Trichosporon asahii PLA2 Gene Enhances Drug Resistance to Azoles by Improving Drug Efflux and Biofilm Formation. Int J Mol Sci 2023; 24:ijms24108855. [PMID: 37240199 DOI: 10.3390/ijms24108855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Trichosporon asahii is an opportunistic pathogen that can cause severe or even fatal infections in patients with low immune function. sPLA2 plays different roles in different fungi and is also related to fungal drug resistance. However, the mechanism underlying its drug resistance to azoles has not yet been reported in T. asahii. Therefore, we investigated the drug resistance of T. asahii PLA2 (TaPLA2) by constructing overexpressing mutant strains (TaPLA2OE). TaPLA2OE was generated by homologous recombination of the recombinant vector pEGFP-N1-TaPLA2, induced by the CMV promoter, with Agrobacterium tumefaciens. The structure of the protein was found to be typical of sPLA2, and it belongs to the phospholipase A2_3 superfamily. TaPLA2OE enhanced antifungal drug resistance by upregulating the expression of effector genes and increasing the number of arthrospores to promote biofilm formation. TaPLA2OE was highly sensitive to sodium dodecyl sulfate and Congo red, indicating impaired cell wall integrity due to downregulation of chitin synthesis or degradation genes, which can indirectly affect fungal resistance. In conclusion, TaPLA2 overexpression enhanced the resistance to azoles of T. asahii by enhancing drug efflux and biofilm formation and upregulating HOG-MAPK pathway genes; therefore, it has promising research prospects.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
7
|
Farooqui AA, Farooqui T, Sun GY, Lin TN, Teh DBL, Ong WY. COVID-19, Blood Lipid Changes, and Thrombosis. Biomedicines 2023; 11:biomedicines11041181. [PMID: 37189799 DOI: 10.3390/biomedicines11041181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Although there is increasing evidence that oxidative stress and inflammation induced by COVID-19 may contribute to increased risk and severity of thromboses, the underlying mechanism(s) remain to be understood. The purpose of this review is to highlight the role of blood lipids in association with thrombosis events observed in COVID-19 patients. Among different types of phospholipases A2 that target cell membrane phospholipids, there is increasing focus on the inflammatory secretory phospholipase A2 IIA (sPLA2-IIA), which is associated with the severity of COVID-19. Analysis indicates increased sPLA2-IIA levels together with eicosanoids in the sera of COVID patients. sPLA2 could metabolise phospholipids in platelets, erythrocytes, and endothelial cells to produce arachidonic acid (ARA) and lysophospholipids. Arachidonic acid in platelets is metabolised to prostaglandin H2 and thromboxane A2, known for their pro-coagulation and vasoconstrictive properties. Lysophospholipids, such as lysophosphatidylcholine, could be metabolised by autotaxin (ATX) and further converted to lysophosphatidic acid (LPA). Increased ATX has been found in the serum of patients with COVID-19, and LPA has recently been found to induce NETosis, a clotting mechanism triggered by the release of extracellular fibres from neutrophils and a key feature of the COVID-19 hypercoagulable state. PLA2 could also catalyse the formation of platelet activating factor (PAF) from membrane ether phospholipids. Many of the above lipid mediators are increased in the blood of patients with COVID-19. Together, findings from analyses of blood lipids in COVID-19 patients suggest an important role for metabolites of sPLA2-IIA in COVID-19-associated coagulopathy (CAC).
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Tahira Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Teng-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11929, Taiwan
| | - Daniel B L Teh
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 119260, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
- Neurobiology Research Programme, Life Sciences Institute, National University of Singapore, Singapore 119260, Singapore
| |
Collapse
|
8
|
Osipov A, Utkin Y. What Are the Neurotoxins in Hemotoxic Snake Venoms? Int J Mol Sci 2023; 24:ijms24032919. [PMID: 36769242 PMCID: PMC9917609 DOI: 10.3390/ijms24032919] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Snake venoms as tools for hunting are primarily aimed at the most vital systems of the prey, especially the nervous and circulatory systems. In general, snakes of the Elapidae family produce neurotoxic venoms comprising of toxins targeting the nervous system, while snakes of the Viperidae family and most rear-fanged snakes produce hemotoxic venoms directed mainly on blood coagulation. However, it is not all so clear. Some bites by viperids results in neurotoxic signs and it is now known that hemotoxic venoms do contain neurotoxic components. For example, viperid phospholipases A2 may manifest pre- or/and postsynaptic activity and be involved in pain and analgesia. There are other neurotoxins belonging to diverse families ranging from large multi-subunit proteins (e.g., C-type lectin-like proteins) to short peptide neurotoxins (e.g., waglerins and azemiopsin), which are found in hemotoxic venoms. Other neurotoxins from hemotoxic venoms include baptides, crotamine, cysteine-rich secretory proteins, Kunitz-type protease inhibitors, sarafotoxins and three-finger toxins. Some of these toxins exhibit postsynaptic activity, while others affect the functioning of voltage-dependent ion channels. This review represents the first attempt to systematize data on the neurotoxins from "non-neurotoxic" snake venom. The structural and functional characteristic of these neurotoxins affecting diverse targets in the nervous system are considered.
Collapse
|
9
|
Jayachandra K, Gowda MDM, Rudresha GV, Manjuprasanna VN, Urs AP, Nandana MB, Bharatha M, Jameel NM, Vishwanath BS. Inhibition of sPLA 2 enzyme activity by cell-permeable antioxidant EUK-8 and downregulation of p38, Akt, and p65 signals induced by sPLA 2 in inflammatory mouse paw edema model. J Cell Biochem 2023; 124:294-307. [PMID: 36585945 DOI: 10.1002/jcb.30366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/24/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
The arachidonic acid (AA) metabolic pathway, plays a vital role in the production of eicosanoids by the action of pro-inflammatory secretory phospholipase A2 (PLA2 ). Release of eicosanoids is known to be involved in many inflammatory diseases. Identification of the inhibitory molecules of this AA pathway enzyme along with the regulation of intracellular signaling cascades may be a finer choice to develop as a powerful anti-inflammatory drug. In this regard, we have screened few cell-permeable antioxidant molecules Tempo, Mito-TEMPO, N,N'-Bis(salicylideneamino)ethane-manganese(II) (EUK)-134, and EUK-8 against pro-inflammatory sPLA2 s. Among these, we found EUK-8 is a potent inhibitor with its IC50 value ranges 0.7-2.0 µM for sPLA2 s isolated from different sources. Furthermore, docking studies confirm the strong binding of EUK-8 towards sPLA2 . In vivo effect of EUK-8 was studied in HSF-sPLA2 -induced edema in mouse paw model. In addition to neutralizing the edema, EUK-8 significantly reduces the phosphorylation level of inflammatory proteins such as p38 member of MAPK pathway, Akt, and p65 along with the suppression of pro-inflammatory cytokine (interleukin-6) and chemokine (CXCL1) in edematous tissue. This shows that EUK-8 not only inhibits the sPLA2 activity, it also plays an important role in the regulation of sPLA2 -induced cell signaling cascades. Apart from the sPLA2 inhibition, we also examine the regulatory actions of EUK-8 with other downstream enzymes of AA pathway such as 5-LOX assay in human polymorphonuclear leukocytes (PMNs) and COX-2 expression in carrageenan-λ induced paw edema. Here EUK-8 significantly inhibits 5-LOX enzyme activity and downregulates COX-2 expression. These data indicate that EUK-8 found to be a promising multitargeted inhibitory molecule toward inflammatory pathway. In conclusion, mitochondrial targeted antioxidant EUK-8 is not only the powerful antioxidant, also a potent anti-inflammatory molecule and may be a choice of molecule for pharmacological applications.
Collapse
Affiliation(s)
- Krishnegowda Jayachandra
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - M D Milan Gowda
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Gotravalli V Rudresha
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Amog P Urs
- Comprehensive Cancer Centre, The Ohio State University, Columbus, Ohio, USA
| | | | - Madeva Bharatha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Noor Mohamed Jameel
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| |
Collapse
|
10
|
Secretory Phospholipases A2, from Snakebite Envenoming to a Myriad of Inflammation Associated Human Diseases-What Is the Secret of Their Activity? Int J Mol Sci 2023; 24:ijms24021579. [PMID: 36675102 PMCID: PMC9863470 DOI: 10.3390/ijms24021579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Secreted phospholipases of type A2 (sPLA2s) are proteins of 14-16 kDa present in mammals in different forms and at different body sites. They are involved in lipid transformation processes, and consequently in various immune, inflammatory, and metabolic processes. sPLA2s are also major components of snake venoms, endowed with various toxic and pharmacological properties. The activity of sPLA2s is not limited to the enzymatic one but, through interaction with different types of molecules, they exert other activities that are still little known and explored, both outside and inside the cells, as they can be endocytosed. The aim of this review is to analyze three features of sPLA2s, yet under-explored, knowledge of which could be crucial to understanding the activity of these proteins. The first feature is their disulphide bridge pattern, which has always been considered immutable and necessary for their stability, but which might instead be modulable. The second characteristic is their ability to undergo various post-translational modifications that would control their interaction with other molecules. The third feature is their ability to participate in active molecular condensates both on the surface and within the cell. Finally, the implications of these features in the design of anti-inflammatory drugs are discussed.
Collapse
|
11
|
Mangini M, D’Angelo R, Vinciguerra C, Payré C, Lambeau G, Balestrieri B, Charles JF, Mariggiò S. Multimodal regulation of the osteoclastogenesis process by secreted group IIA phospholipase A 2. Front Cell Dev Biol 2022; 10:966950. [PMID: 36105351 PMCID: PMC9467450 DOI: 10.3389/fcell.2022.966950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023] Open
Abstract
Increasing evidence points to the involvement of group IIA secreted phospholipase A2 (sPLA2-IIA) in pathologies characterized by abnormal osteoclast bone-resorption activity. Here, the role of this moonlighting protein has been deepened in the osteoclastogenesis process driven by the RANKL cytokine in RAW264.7 macrophages and bone-marrow derived precursor cells from BALB/cJ mice. Inhibitors with distinct selectivity toward sPLA2-IIA activities and recombinant sPLA2-IIA (wild-type or catalytically inactive forms, full-length or partial protein sequences) were instrumental to dissect out sPLA2-IIA function, in conjunction with reduction of sPLA2-IIA expression using small-interfering-RNAs and precursor cells from Pla2g2a knock-out mice. The reported data indicate sPLA2-IIA participation in murine osteoclast maturation, control of syncytium formation and resorbing activity, by mechanisms that may be both catalytically dependent and independent. Of note, these studies provide a more complete understanding of the still enigmatic osteoclast multinucleation process, a crucial step for bone-resorbing activity, uncovering the role of sPLA2-IIA interaction with a still unidentified receptor to regulate osteoclast fusion through p38 SAPK activation. This could pave the way for the design of specific inhibitors of sPLA2-IIA binding to interacting partners implicated in osteoclast syncytium formation.
Collapse
Affiliation(s)
- Maria Mangini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Rosa D’Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Caterina Vinciguerra
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Christine Payré
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne Sophia Antipolis, France
| | - Gérard Lambeau
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne Sophia Antipolis, France
| | - Barbara Balestrieri
- Jeff and Penny Vinik Center for Translational Immunology Research, Department of Medicine, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Julia F. Charles
- Departments of Orthopaedic Surgery and Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Naples, Italy,*Correspondence: Stefania Mariggiò,
| |
Collapse
|
12
|
Treatment of Mouse Sperm with a Non-Catalytic Mutant of PLA2G10 Reveals That PLA2G10 Improves In Vitro Fertilization through Both Its Enzymatic Activity and as Ligand of PLA2R1. Int J Mol Sci 2022; 23:ijms23148033. [PMID: 35887380 PMCID: PMC9320362 DOI: 10.3390/ijms23148033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
The group X secreted phospholipase A2 (PLA2G10) is present at high levels in mouse sperm acrosome. The enzyme is secreted during capacitation and amplifies the acrosome reaction and its own secretion via an autocrine loop. PLA2G10 also improves the rate of fertilization. In in vitro fertilization (IVF) experiments, sperm from Pla2g10-deficient mice produces fewer two-cell embryos, and the absence of PLA2G10 is rescued by adding recombinant enzymes. Moreover, wild-type (WT) sperm treated with recombinant PLA2G10 produces more two-cell embryos. The effects of PLA2G10 on mouse fertility are inhibited by sPLA2 inhibitors and rescued by products of the enzymatic reaction such as free fatty acids, suggesting a role of catalytic activity. However, PLA2G10 also binds to mouse PLA2R1, which may play a role in fertility. To determine the relative contribution of enzymatic activity and PLA2R1 binding in the profertility effect of PLA2G10, we tested H48Q-PLA2G10, a catalytically-inactive mutant of PLA2G10 with low enzymatic activity but high binding properties to PLA2R1. Its effect was tested in various mouse strains, including Pla2r1-deficient mice. H48Q-PLA2G10 did not trigger the acrosome reaction but was as potent as WT-PLA2G10 to improve IVF in inbred C57Bl/6 mice; however, this was not the case in OF1 outbred mice. Using gametes from these mouse strains, the effect of H48Q-PLA2G10 appeared dependent on both spermatozoa and oocytes. Moreover, sperm from C57Bl/6 Pla2r1-deficient mice were less fertile and lowered the profertility effects of H48Q-PLA2G10, which were completely suppressed when sperm and oocytes were collected from Pla2r1-deficient mice. Conversely, the effect of WT-PLA2G10 was not or less sensitive to the absence of PLA2R1, suggesting that the effect of PLA2G10 is polymodal and complex, acting both as an enzyme and a ligand of PLA2R1. This study shows that the action of PLA2G10 on gametes is complex and can simultaneously activate the catalytic pathway and the PLA2R1-dependent receptor pathway. This work also shows for the first time that PLA2G10 binding to gametes’ PLA2R1 participates in fertilization optimization.
Collapse
|
13
|
The Phospholipase Activity of Ammodytoxin, a Prototype Snake Venom β-Neurotoxin, Is Not Obligatory for Cell Internalisation and Translocation to Mitochondria. Toxins (Basel) 2022; 14:toxins14060375. [PMID: 35737036 PMCID: PMC9228470 DOI: 10.3390/toxins14060375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
β-Neurotoxins are secreted phospholipase A2 molecules that inhibit transmission in neuromuscular synapses by poisoning the motor neurons. These toxins specifically and rapidly internalise into the nerve endings of motor neurons. Ammodytoxin (Atx) is a prototype β-neurotoxin from the venom of the nose-horned viper (Vipera ammodytes ammodytes). Here, we studied the relevance of the enzymatic activity of Atx in cell internalisation and subsequent intracellular movement using transmission electron microscopy (TEM). We prepared a recombinant, enzymatically inactive mutant of Atx, Atx(D49S), labelled with gold nanoparticles (GNP), and incubated this with PC12 cells, to analyse its localisation by TEM. Atx(D49S)-GNP internalised into the cells. Inside the cells, Atx(D49S)-GNP was detected in different vesicle-like structures, cytosol, endoplasmic reticulum and mitochondria, where it was spotted in the intermembrane space and matrix. Co-localization of fluorescently labelled Atx(D49S) with mitochondria in PC12 cells by confocal fluorescence microscopy confirmed the reliability of results generated using Atx(D49S)-GNP and TEM and allowed us to conclude that the phospholipase activity of Atx is not obligatory for its cell internalisation and translocation into the mitochondrial intermembrane space and matrix.
Collapse
|