1
|
Qing J, Zhang L, Fan R, Zhi H, Li C, Li Y, Wu J, Han C, Li Y. GPX4 expression changes in proximal tubule cells highlight the role of ferroptosis in IgAN. Sci Rep 2025; 15:3886. [PMID: 39890853 PMCID: PMC11785777 DOI: 10.1038/s41598-025-87228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 01/17/2025] [Indexed: 02/03/2025] Open
Abstract
As an important mechanism of renal injury, oxidative stress (OS) is inseparable from the occurrence of renal fibrosis and the rapid progression of renal failure. However, the contribution of OS to IgA nephropathy (IgAN), the primary driver of chronic kidney disease remains uncertain. To investigate the effects of OS in IgAN, and identify the mechanisms of cell and tissue injury and protection, single-cell RNA sequencing (scRNA-seq) data and microarray data of IgAN were collected and analyzed. Through gene set variation analysis (GSVA), we identified significant alterations in the activity of multiple OS pathways within the proximal tubule cells (PTCs) of IgAN patients. Subsequent enrichment analysis revealed that the differentially expressed genes associated with OS in PTCs were primarily linked to the process of ferroptosis. Therefore, regulators of ferroptosis were collected to define the ferroptosis activity of PTCs in IgAN, and we found that the activity of suppressing ferroptosis was significantly enhanced. Moreover, being the central controller of ferroptosis, the expression of GPX4 in the PTCs of IgAN is extremely significant, which has been further verified by immunohistochemistry in kidney tissues of IgAN patients. Additionally, the GSVA of microarray data of IgAN indicated that the activity of driving ferroptosis and suppressing ferroptosis in tubulointerstitium were markedly decreased, however, the inhibition of ferroptosis in the tubulointerstitium of IgAN is relatively stronger. These findings demonstrate that ferroptosis inhibition may be a potential mechanism to alleviate OS injury in IgAN, and GPX4 could not only function as a specific marker for PTCs in IgAN but also represent a potential therapeutic target to halt the progression of the disease.
Collapse
Affiliation(s)
- Jianbo Qing
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan, 030001, China
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Lijuan Zhang
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan, 030001, China
| | - Ru Fan
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan, 030001, China
| | - Huiwen Zhi
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan, 030001, China
| | - Changqun Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan, 030001, China
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yaheng Li
- Laboratory for Molecular Diagnosis and Treatment of Kidney Disease, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan, 030001, China
| | - Junnan Wu
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Chongyang Han
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan, 030001, China.
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital), Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
2
|
Zhang J, Wang Y, Chen C, Liu X, Liu X, Wu Y. Downregulation of CD36 alleviates IgA nephropathy by promoting autophagy and inhibiting extracellular matrix accumulation in mesangial cells. Int Immunopharmacol 2025; 144:113672. [PMID: 39616852 DOI: 10.1016/j.intimp.2024.113672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Immunoglobulin A Nephropathy (IgAN) is a leading cause of end-stage renal disease (ESRD), but its pathogenesis remains unclear, and specific therapies are currently lacking. Consequently, identifying novel differentially expressed genes (DEGs) and therapeutic targets is of paramount importance to IgAN. METHODS The Gene Expression Omnibus (GEO) databases GSE37460 and GSE104948, containing data from renal tissue of patients with IgAN and normal controls, were screened for DEGs, followed by enrichment pathway analysis. The potential key gene for IgAN, CD36, was identified through the single-cell sequencing dataset GSE166793 and histopathological analysis of patients with IgAN. Clinical and pathological data from patients with IgAN were collected to analyze the correlation between CD36 expression and various indicators in renal tissue, thereby evaluating the influence of CD36 on IgAN progression. The accuracy of the risk score model was assessed using receiver operating characteristic (ROC) curve analysis. Finally, CD36 expression was knocked down to explore its regulatory role in polymeric IgA1 (pIgA1)-stimulated mouse mesangial cells (MCs). RESULTS CD36 was identified as a key DEG from two GEO databases and a single-cell sequencing dataset. Compared to peritumoral normal tissues, CD36 expression levels were significantly increased in the IgAN group. Statistically significant differences were observed between M0 and M1, E0 and E1, S0 and S1, C0 and C1-2 in the updated Oxford Classification. CD36 expression showed positive correlations with 24-hour proteinuria, serum creatinine, and levels of fibrosis-related and autophagy-related factors in renal tissue. Additionally, CD36 and fibrosis-related factors were significantly elevated in MCs following pIgA1 stimulation. CD36 knockdown resulted in decreased extracellular matrix (ECM) accumulation in pIgA1-stimulated MCs. RNA-seq analysis of MCs with CD36 knockdown revealed significant alterations in autophagy and CD36 silencing restored autophagy levels in MCs treated with the autophagy inhibitor 3MA. CONCLUSION Our study confirmed that CD36 expression increases with the clinical progression of IgAN and CD36 knockdown alleviates MCs injury by inhibiting ECM accumulation and restoring autophagy.
Collapse
Affiliation(s)
- Jinyu Zhang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Yukai Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Chaoyi Chen
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xinran Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China
| | - Xueqi Liu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, PR China.
| |
Collapse
|
3
|
Yu B, Zeng A, Liu H, Yang Z, Gu C, Luo X, Fu M. LncRNA HOXA11-AS intercepts the POU2F2-mediated downregulation of SLC3A2 in osteoarthritis to suppress ferroptosis. Cell Signal 2024; 124:111399. [PMID: 39251054 DOI: 10.1016/j.cellsig.2024.111399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent ailment characterized by the gradual degradation of joints, resulting in discomfort and restricted movement. The recently proposed mechanism of ferroptosis is intricately associated with the initiation and progression of OA. Our study found that the long non-coding RNA HOXA11-AS reduces ferroptosis by increasing the expression of SLC3A2 through the transcription factor POU2F2. MATERIALS AND METHODS HOXA11-AS was identified through lncRNA microarray analysis, and its impact on chondrocytes and extracellular matrix was assessed using real-time quantitative PCR, western blotting, and CCK8 assays. Subsequently, overexpression of HOXA11-AS in the knee joints of mice confirmed its protective efficacy on chondrocyte phenotype in the OA model. The involvement of HOXA11-AS in regulating ferroptosis via SLC3A2 was further validated through RNA sequencing analysis of mouse cartilage and the assessment of malondialdehyde levels and glutathione peroxidase activity. Finally, a combination of RNA sequencing, pull-down assays, mass spectrometry (MS), and chromatin immunoprecipitation (ChIP) techniques was employed to identify POU2F2 as the crucial transcription factor responsible for repressing the expression of SLC3A2, which can be effectively inhibited by HOXA11-AS. RESULTS Our study demonstrated that HOXA11-AS effectively enhanced the metabolic homeostasis of chondrocytes, and alleviated the progression of OA in vitro and in vivo experiments. Furthermore, HOXA11-AS was found to enhance SLC3A2 expression, a key regulator of ferroptosis, by interacting with the transcriptional repressor POU2F2. CONCLUSIONS HOXA11-AS promotes SLC3A2 expression and inhibits chondrocyte ferroptosis, by binding to the transcriptional repressor POU2F2, offering a promising and innovative therapeutic approach for OA.
Collapse
Affiliation(s)
- Baoxi Yu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Anyu Zeng
- Department of Bone and Soft Tissue Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China.
| | - Hailong Liu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| | - Zhijian Yang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Cheng Gu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Xuming Luo
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Ming Fu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|
4
|
Qian X, Bian S, Guo Q, Zhu D, Bian F, Song Y, Jiang G. Identification of hub fatty acid metabolism-related genes and immune infiltration in IgA nephropathy. Ren Fail 2024; 46:2427158. [PMID: 39540382 PMCID: PMC11565677 DOI: 10.1080/0886022x.2024.2427158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
AIMS To investigate the potential mechanisms of fatty acid metabolism (FAM)-related genes in IgA nephropathy (IgAN) and to explore its immune cell infiltration characteristic. METHODS Datasets for IgAN and FAM-related genes were obtained from GEO and MSigDB database, respectively. We employed differential expression analysis and WGCNA to identify common genes. GO and KEGG analyses were performed to compare the differences between IgAN and control groups. Furthermore, LASSO logistic regression was applied to develop a predictive model based on FAM-related genes. The efficacy of this prognostic model was evaluated using ROC analysis. The infiltration of immune cells and immune-related functions were assessed with CIBERSORT tool. Finally, the identified key genes were validated in blood samples from IgAN and control patients, as well as in human mesangial cells (HMCs) following Gd-IgA stimulation using Real-time PCR. RESULTS A total of 12 hub genes linked to FAM were identified in patients with IgAN. A predictive model consisting of four genes was conducted through COX and LASSO regression analysis, revealing AUC values that indicate a relatively strong diagnostic capability. Immune infiltration analysis indicated that various immune cells have significant associations with IgAN. Additionally, Real-time PCR assays confirmed that the expression levels of hub genes were markedly reduced in IgAN patients and in Gd-IgA treated HMCs compared to controls. CONCLUSION This study employed bioinformatics methods to unveiled the immune cell infiltration associated with IgAN and to explore the potential genetic connection between FAM and IgAN. This could aid in predicting the risk of IgAN and enhance both diagnosis and prognosis of this condition.
Collapse
Affiliation(s)
- Xiaoqian Qian
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | | | - Qin Guo
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Dongdong Zhu
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Fan Bian
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| | - Yinhui Song
- First Breast Surgery Department, Southern Branch of the First Hospital of Qiqihar, Qiqihar, China
| | - Gengru Jiang
- Renal Division, Department of Internal Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Centre for Rare Disease, Shanghai, China
| |
Collapse
|
5
|
Zhu W, Chen Y, Xiao J, Cheng C, Ma G, Wang Y, Zhang Y, Chen M. Ferroptosis-Related Genes in IgA Nephropathy: Screening for Potential Targets of the Mechanism. Int J Genomics 2024; 2024:8851124. [PMID: 39171207 PMCID: PMC11338665 DOI: 10.1155/2024/8851124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/04/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024] Open
Abstract
Aims: Exploring key genes and potential molecular pathways of ferroptosis in immunoglobulin A nephropathy (IgAN). Methods: The IgAN datasets and ferroptosis-related genes (FRGs) were obtained in the Gene Expression Omnibus (GEO) and FerrDb database. Differentially expressed genes (DEGs) were identified using R software and intersected with FRGs to obtain differentially expressed FRGs (DE-FRGs). After that, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis (PEA) and Gene Ontology (GO) functional annotation were performed on DE-FRGs. In the Search Tool for the Retrieval of Interacting Genes (STRING) website, we construct a protein-protein interaction (PPI) network. The PPI network was further investigated with screening hub genes with Cytoscape software. The core genes were then subjected to gene set enrichment analysis (GSEA). Finally, the samples were analyzed for immune infiltration in R, and the correlation between hub genes and immune cells was analyzed. Results: A total of 347 DEGs were identified. CD44, CDO1, CYBB, IL1B, RRM2, AKR1C1, activated transcription factor-3 (ATF3), CDKN1A, GDF15, JUN, MGST1, MIOX, MT1G, NR4A1, PDK4, TNFAIP3, and ZFP36 were determined as DE-FRGs. JUN, IL1B, and ATF3 were then screened as hub genes. GSEA and immune infiltration analysis revealed that the hub genes were closely associated with immune inflammatory responses such as NOD-like receptor signaling, IL-17 signaling, and TNF signaling. Conclusions: Our results show that JUN and ATF3 are possibly critical genes in the process of IgAN ferroptosis and may be related with immune cell infiltration.
Collapse
Affiliation(s)
- Wenhui Zhu
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
- College of Traditional Chinese MedicineChangchun University of Chinese Medicine, Changchun, China
| | - Yao Chen
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jing Xiao
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chuchu Cheng
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Guijie Ma
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yang Wang
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yonggang Zhang
- Department of Renal DivisionFirst People's Hospital of Qiqihar City, Qiqihar, China
| | - Ming Chen
- Department of Renal DivisionHeilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| |
Collapse
|
6
|
Lu KC, Tsai KW, Wang YK, Hu WC. Types of cell death and their relations to host immunological pathways. Aging (Albany NY) 2024; 16:11755-11768. [PMID: 39120579 PMCID: PMC11346778 DOI: 10.18632/aging.206035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Various immune pathways have been identified in the host, including TH1, TH2, TH3, TH9, TH17, TH22, TH1-like, and THαβ immune reactions. While TH2 and TH9 responses primarily target multicellular parasites, host immune pathways directed against viruses, intracellular microorganisms (such as bacteria, protozoa, and fungi), and extracellular microorganisms can employ programmed cell death mechanisms to initiate immune responses or execute effective strategies for pathogen elimination. The types of programmed cell death involved include apoptosis, autophagy, pyroptosis, ferroptosis, necroptosis, and NETosis. Specifically, apoptosis is associated with host anti-virus eradicable THαβ immunity, autophagy with host anti-virus tolerable TH3 immunity, pyroptosis with host anti-intracellular microorganism eradicable TH1 immunity, ferroptosis with host anti-intracellular microorganism tolerable TH1-like immunity, necroptosis with host anti-extracellular microorganism eradicable TH22 immunity, and NETosis with host anti-extracellular microorganism tolerable TH17 immunity.
Collapse
Affiliation(s)
- Kuo-Cheng Lu
- Department of Medicine, Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, ROC
- Department of Medicine, Division of Nephrology, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan, ROC
| | - Yu-Kuen Wang
- Department of Obstetrics and Gynecology, Taoyuan Armed Forced General Hospital, Taiwan, ROC
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wan-Chung Hu
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan, ROC
- Department of Clinical pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan, ROC
- Department of Biotechnology, Ming Chuan University, Taoyuan City 333, Taiwan, ROC
| |
Collapse
|
7
|
Zhang B, Bu C, Wang Q, Chen Q, Shi D, Qiu H, Wang Z, Liu J, Wang Z, Zhang Q, Chi L. Low molecular weight heparin promotes the PPAR pathway by protecting the glycocalyx of cells to delay the progression of diabetic nephropathy. J Biol Chem 2024; 300:107493. [PMID: 38925330 PMCID: PMC11301383 DOI: 10.1016/j.jbc.2024.107493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most important comorbidities for diabetic patients, which is the main factor leading to end-stage renal disease. Heparin analogs can delay the progression of DN, but the mechanism is not fully understood. In this study, we found that low molecular weight heparin therapy significantly upregulated some downstream proteins of the peroxisome proliferator-activated receptor (PPAR) signaling pathway by label-free quantification of the mouse kidney proteome. Through cell model verification, low molecular weight heparin can protect the heparan sulfate of renal tubular epithelial cells from being degraded by heparanase that is highly expressed in a high-glucose environment, enhance the endocytic recruitment of fatty acid-binding protein 1, a coactivator of the PPAR pathway, and then regulate the activation level of intracellular PPAR. In addition, we have elucidated for the first time the molecular mechanism of heparan sulfate and fatty acid-binding protein 1 interaction. These findings provide new insights into understanding the role of heparin in the pathogenesis of DN and developing corresponding treatments.
Collapse
Affiliation(s)
- Bin Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Changkai Bu
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Qingchi Wang
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Qingqing Chen
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Deling Shi
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Zhe Wang
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qunye Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
8
|
Hu T, Yu WP, Wang XQ, Wang ZY, Xu ZQ, Hu FJ, Liu JC, Yu F, Wang LJ. Activation of PPAR-α attenuates myocardial ischemia/reperfusion injury by inhibiting ferroptosis and mitochondrial injury via upregulating 14-3-3η. Sci Rep 2024; 14:15246. [PMID: 38956068 PMCID: PMC11219969 DOI: 10.1038/s41598-024-64638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
This study aimed to explore the effects of peroxisome proliferator-activated receptor α (PPAR-α), a known inhibitor of ferroptosis, in Myocardial ischemia/reperfusion injury (MIRI) and its related mechanisms. In vivo and in vitro MIRI models were established. Our results showed that activation of PPAR-α decreased the size of the myocardial infarct, maintained cardiac function, and decreased the serum contents of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and Fe2+ in ischemia/reperfusion (I/R)-treated mice. Additionally, the results of H&E staining, DHE staining, TUNEL staining, and transmission electron microscopy demonstrated that activation of PPAR-α inhibited MIRI-induced heart tissue and mitochondrial damage. It was also found that activation of PPAR-α attenuated MIRI-induced ferroptosis as shown by a reduction in malondialdehyde, total iron, and reactive oxygen species (ROS). In vitro experiments showed that intracellular contents of malondialdehyde, total iron, LDH, reactive oxygen species (ROS), lipid ROS, oxidized glutathione disulphide (GSSG), and Fe2+ were reduced by the activation of PPAR-α in H9c2 cells treated with anoxia/reoxygenation (A/R), while the cell viability and GSH were increased after PPAR-α activation. Additionally, changes in protein levels of the ferroptosis marker further confirmed the beneficial effects of PPAR-α activation on MIRI-induced ferroptosis. Moreover, the results of immunofluorescence and dual-luciferase reporter assay revealed that PPAR-α achieved its activity via binding to the 14-3-3η promoter, promoting its expression level. Moreover, the cardioprotective effects of PPAR-α could be canceled by pAd/14-3-3η-shRNA or Compound C11 (14-3-3η inhibitor). In conclusion, our results indicated that ferroptosis plays a key role in aggravating MIRI, and PPAR-α/14-3-3η pathway-mediated ferroptosis and mitochondrial injury might be an effective therapeutic target against MIRI.
Collapse
Affiliation(s)
- Tie Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wen-Peng Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xiu-Qi Wang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Zi-Yao Wang
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Zhi-Qiang Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Fa-Jia Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Fan Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Li-Jun Wang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
9
|
Liu Y, Ni F, Huang J, Hu Y, Wang J, Wang X, Du X, Jiang H. PPAR-α inhibits DHEA-induced ferroptosis in granulosa cells through upregulation of FADS2. Biochem Biophys Res Commun 2024; 715:150005. [PMID: 38678785 DOI: 10.1016/j.bbrc.2024.150005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), a prevalent endocrine disorder among women of reproductive age, is characterized by disturbances in hormone levels and ovarian dysfunction. Ferroptosis, a unique form of regulated cell death characterized by iron-dependent lipid peroxidation. Emerging evidence indicates that ferroptosis may have a significant role in the pathogenesis of PCOS, highlighting the importance of studying this mechanism to better understand the disorder and potentially develop novel therapeutic interventions. METHODS To create an in vivo PCOS model, mice were injected with dehydroepiandrosterone (DHEA) and the success of the model was confirmed through further assessments. Ferroptosis levels were evaluated through detecting ferroptosis-related indicators. Ferroptosis-related genes were found through bioinformatic analysis and identified by experiments. An in vitro PCOS model was also established using DHEA treated KGN cells. The molecular binding relationship was confirmed using a chromatin immunoprecipitation (ChIP) assay. RESULTS In PCOS model, various ferroptosis-related indicators such as MDA, Fe2+, and lipid ROS showed an increase, while GSH, GPX4, and TFR1 exhibited a decrease. These findings indicate an elevated level of ferroptosis in the PCOS model. The ferroptosis-related gene FADS2 was identified and validated. FADS2 and PPAR-α were shown to be highly expressed in ovarian tissue and primary granulosa cells (GCs) of PCOS mice. Furthermore, the overexpression of both FADS2 and PPAR-α in KGN cells effectively suppressed the DHEA-induced increase in ferroptosis-related indicators (MDA, Fe2+, and lipid ROS) and the decrease in GSH, GPX4, and TFR1 levels. The ferroptosis agonist erastin reversed the suppressive effect, suggesting the involvement of ferroptosis in this process. Additionally, the FADS2 inhibitor SC26196 was found to inhibit the effect of PPAR-α on ferroptosis. Moreover, the binding of PPAR-α to the FADS2 promoter region was predicted and confirmed. This indicates the regulatory relationship between PPAR-α and FADS2 in the context of ferroptosis. CONCLUSIONS Our study indicates that PPAR-α may have an inhibitory effect on DHEA-induced ferroptosis in GCs by enhancing the expression of FADS2. This discovery provides valuable insights into the pathophysiology and potential therapeutic targets for PCOS.
Collapse
Affiliation(s)
- Ying Liu
- Reproductive Medicine Center, Clinical College of PLA, Anhui Medical University, Hefei, 230031, China; Reproductive Medicine Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China; Prenatal Diagnosis Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China
| | - Feng Ni
- Reproductive Medicine Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China; Prenatal Diagnosis Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China
| | - Jing Huang
- Reproductive Medicine Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China; Prenatal Diagnosis Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China
| | - Yuqin Hu
- Reproductive Medicine Center, Clinical College of PLA, Anhui Medical University, Hefei, 230031, China; Reproductive Medicine Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China; Prenatal Diagnosis Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China
| | - Jing Wang
- Reproductive Medicine Center, Clinical College of PLA, Anhui Medical University, Hefei, 230031, China; Reproductive Medicine Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China; Prenatal Diagnosis Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China
| | - Xuemei Wang
- Reproductive Medicine Center, Clinical College of PLA, Anhui Medical University, Hefei, 230031, China; Reproductive Medicine Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China; Prenatal Diagnosis Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China
| | - Xin Du
- Reproductive Medicine Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China; Prenatal Diagnosis Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China
| | - Hong Jiang
- Reproductive Medicine Center, Clinical College of PLA, Anhui Medical University, Hefei, 230031, China; Reproductive Medicine Center, The 901th Hospital of PLA Joint Logistics Support Force, Hefei, 230031, China.
| |
Collapse
|
10
|
Zhou J, Shi W, Wu D, Wang S, Wang X, Min J, Wang F. Mendelian Randomization Analysis of Systemic Iron Status and Risk of Different Types of Kidney Disease. Nutrients 2024; 16:1978. [PMID: 38999730 PMCID: PMC11243746 DOI: 10.3390/nu16131978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
With rapid increases in incidence, diverse subtypes, and complicated etiologies, kidney disease remains a global public health problem. Iron, as an essential trace element, has pleiotropic effects on renal function and the progression of kidney diseases. A two-sample Mendelian randomization (MR) analysis was implemented to determine the potential causal effects between systemic iron status on different kidney diseases. Systemic iron status was represented by four iron-related biomarkers: serum iron, ferritin, transferrin saturation (TfSat), and total iron binding capacity (TIBC). For systemic iron status, 163,511, 246,139, 131,471, and 135,430 individuals were included in the genome-wide association study (GWAS) of serum iron, ferritin, TfSat, and TIBC, respectively. For kidney diseases, 653,143 individuals (15,658 cases and 637,485 controls), 657,076 individuals (8160 cases and 648,916 controls), and 659,320 individuals (10,404 cases and 648,916 controls) were included for immunoglobulin A nephropathy (IgAN), acute kidney disease (AKD), and chronic kidney disease (CKD), respectively. Our MR results showed that increased serum iron [odds ratio (OR): 1.10; 95% confidence interval (95% CI): 1.04, 1.16; p < 0.0042], ferritin (OR: 1.30; 95% CI: 1.14, 1.48; p < 0.0042), and TfSat (OR: 1.07; 95% CI: 1.04, 1.11; p < 0.0042)] and decreased TIBC (OR: 0.92; 95% CI: 0.88, 0.97; p < 0.0042) were associated with elevated IgAN risk. However, no significant associations were found between systemic iron status and AKD or CKD. In our MR study, the genetic evidence supports elevated systemic iron status as a causal effect on IgAN, which suggests a potential protective effect of iron chelation on IgAN patients.
Collapse
Affiliation(s)
- Jiahui Zhou
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wanting Shi
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dongya Wu
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shujie Wang
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinhui Wang
- Sir Run Run Shaw Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
11
|
Xie T, Yao L, Li X. Advance in Iron Metabolism, Oxidative Stress and Cellular Dysfunction in Experimental and Human Kidney Diseases. Antioxidants (Basel) 2024; 13:659. [PMID: 38929098 PMCID: PMC11200795 DOI: 10.3390/antiox13060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function. Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory proteins and altering the expression and activity of key iron transport and storage proteins. This creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other, ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between these two factors in the context of kidney diseases. Understanding the underlying mechanisms should help to identify potential therapeutic targets and develop novel and effective therapeutic strategies to combat the burden of kidney diseases.
Collapse
Affiliation(s)
- Tiancheng Xie
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Jiang J, Li H, Tang M, Lei L, Li HY, Dong B, Li JR, Wang XK, Sun H, Li JY, Xu JC, Gong Y, Jiang JD, Peng ZG. Upregulation of Hepatic Glutathione S-Transferase Alpha 1 Ameliorates Metabolic Dysfunction-Associated Steatosis by Degrading Fatty Acid Binding Protein 1. Int J Mol Sci 2024; 25:5086. [PMID: 38791126 PMCID: PMC11120891 DOI: 10.3390/ijms25105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common metabolic disease of the liver, characterized by hepatic steatosis in more than 5% of hepatocytes. However, despite the recent approval of the first drug, resmetirom, for the management of metabolic dysfunction-associated steatohepatitis, decades of target exploration and hundreds of clinical trials have failed, highlighting the urgent need to find new druggable targets for the discovery of innovative drug candidates against MASLD. Here, we found that glutathione S-transferase alpha 1 (GSTA1) expression was negatively associated with lipid droplet accumulation in vitro and in vivo. Overexpression of GSTA1 significantly attenuated oleic acid-induced steatosis in hepatocytes or high-fat diet-induced steatosis in the mouse liver. The hepatoprotective and anti-inflammatory drug bicyclol also attenuated steatosis by upregulating GSTA1 expression. A detailed mechanism showed that GSTA1 directly interacts with fatty acid binding protein 1 (FABP1) and facilitates the degradation of FABP1, thereby inhibiting intracellular triglyceride synthesis by impeding the uptake and transportation of free fatty acids. Conclusion: GSTA1 may be a good target for the discovery of innovative drug candidates as GSTA1 stabilizers or enhancers against MASLD.
Collapse
Affiliation(s)
- Jing Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Lei Lei
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Hong-Ying Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jian-Rui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xue-Kai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Jia-Yu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Jing-Chen Xu
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Yue Gong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
| | - Jian-Dong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zong-Gen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China (H.-Y.L.)
- Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
13
|
Yang S, Hu C, Chen X, Tang Y, Li J, Yang H, Yang Y, Ying B, Xiao X, Li SZ, Gu L, Zhu Y. Crosstalk between metabolism and cell death in tumorigenesis. Mol Cancer 2024; 23:71. [PMID: 38575922 PMCID: PMC10993426 DOI: 10.1186/s12943-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
It is generally recognized that tumor cells proliferate more rapidly than normal cells. Due to such an abnormally rapid proliferation rate, cancer cells constantly encounter the limits of insufficient oxygen and nutrient supplies. To satisfy their growth needs and resist adverse environmental events, tumor cells modify the metabolic pathways to produce both extra energies and substances required for rapid growth. Realizing the metabolic characters special for tumor cells will be helpful for eliminating them during therapy. Cell death is a hot topic of long-term study and targeting cell death is one of the most effective ways to repress tumor growth. Many studies have successfully demonstrated that metabolism is inextricably linked to cell death of cancer cells. Here we summarize the recently identified metabolic characters that specifically impact on different types of cell deaths and discuss their roles in tumorigenesis.
Collapse
Affiliation(s)
- Shichao Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Caden Hu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Xiaomei Chen
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, P. R. China
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Juanjuan Li
- Department of breast and thyroid surgery, Renmin hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Hanqing Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Yang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Key Laboratory of Tumor Immunopathology, Third Military Medical University (Army Medical University, Ministry of Education of China, Chongqing, 400038, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| | - Li Gu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| |
Collapse
|
14
|
Jiayi H, Ziyuan T, Tianhua X, Mingyu Z, Yutong M, Jingyu W, Hongli Z, Li S. Copper homeostasis in chronic kidney disease and its crosstalk with ferroptosis. Pharmacol Res 2024; 202:107139. [PMID: 38484857 DOI: 10.1016/j.phrs.2024.107139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Chronic kidney disease (CKD) has become a global public health problem with high morbidity and mortality. Renal fibrosis can lead to end-stage renal disease (ESRD). However, there is still no effective treatment to prevent or delay the progression of CKD into ESRD. Therefore, exploring the pathogenesis of CKD is essential for preventing and treating CKD. There are a variety of trace elements in the human body that interact with each other within a complex regulatory network. Iron and copper are both vital trace elements in the body. They are critical for maintaining bodily functions, and the dysregulation of their metabolism can cause many diseases, including kidney disease. Ferroptosis is a new form of cell death characterized by iron accumulation and lipid peroxidation. Studies have shown that ferroptosis is closely related to kidney disease. However, the role of abnormal copper metabolism in kidney disease and its relationship with ferroptosis remains unclear. Here, our current knowledge regarding copper metabolism, its regulatory mechanism, and the role of abnormal copper metabolism in kidney diseases is summarized. In addition, we discuss the relationship between abnormal copper metabolism and ferroptosis to explore the possible pathogenesis and provide a potential therapeutic target for CKD.
Collapse
Affiliation(s)
- Huang Jiayi
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Tong Ziyuan
- China Medical University, Shenyang 110122, People's Republic of China
| | - Xu Tianhua
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Zhang Mingyu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Ma Yutong
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Wang Jingyu
- Renal Division, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Zhou Hongli
- Department of Nephrology, The First Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province 110004, People's Republic of China
| | - Sun Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.
| |
Collapse
|
15
|
Li X, Gao L, Li X, Xia J, Pan Y, Bai C. Autophagy, Pyroptosis and Ferroptosis are Rising Stars in the Pathogenesis of Diabetic Nephropathy. Diabetes Metab Syndr Obes 2024; 17:1289-1299. [PMID: 38505538 PMCID: PMC10949337 DOI: 10.2147/dmso.s450695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetes and can potentially develop into end-stage renal disease. Its pathogenesis is complex and not fully understood. Podocytes, glomerular endothelial cells (GECs), glomerular mesangial cells (GMCs) and renal tubular epithelial cells (TECs) play important roles in the normal function of glomerulus and renal tubules, and their injury is involved in the progression of DN. Although our understanding of the mechanisms leading to DN has substantially improved, we still need to find more effective therapeutic targets. Autophagy, pyroptosis and ferroptosis are programmed cell death processes that are associated with inflammation and are closely related to a variety of diseases. Recently, a growing number of studies have reported that autophagy, pyroptosis and ferroptosis regulate the function of podocytes, GECs, GMCs and TECs. This review highlights the contributions of autophagy, pyroptosis, and ferroptosis to DN injury in these cells, offering potential therapeutic targets for DN treatment.
Collapse
Affiliation(s)
- Xiudan Li
- Department of Endocrinology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| | - Lifeng Gao
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| | - Xuyang Li
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| | - Jingdong Xia
- Department of Endocrinology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
| | - Yurong Pan
- Department of Endocrinology, Affiliated Hospital of Chifeng University, Chifeng, 024000, China
| | - Chunying Bai
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, 024000, China
| |
Collapse
|
16
|
Yang Y, Ye Y, Deng Y, Gao L. Uridine and its role in metabolic diseases, tumors, and neurodegenerative diseases. Front Physiol 2024; 15:1360891. [PMID: 38487261 PMCID: PMC10937367 DOI: 10.3389/fphys.2024.1360891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Uridine is a pyrimidine nucleoside found in plasma and cerebrospinal fluid with a concentration higher than the other nucleosides. As a simple metabolite, uridine plays a pivotal role in various biological processes. In addition to nucleic acid synthesis, uridine is critical to glycogen synthesis through the formation of uridine diphosphate glucose in which promotes the production of UDP-GlcNAc in the hexosamine biosynthetic pathway and supplies UDP-GlcNAc for O-GlcNAcylation. This process can regulate protein modification and affect its function. Moreover, Uridine has an effect on body temperature and circadian rhythms, which can regulate the metabolic rate and the expression of metabolic genes. Abnormal levels of blood uridine have been found in people with diabetes and obesity, suggesting a link of uridine dysregulation and metabolic disorders. At present, the role of uridine in glucose metabolism and lipid metabolism is controversial, and the mechanism is not clear, but it shows the trend of long-term damage and short-term benefit. Therefore, maintaining uridine homeostasis is essential for maintaining basic functions and normal metabolism. This article summarizes the latest findings about the metabolic effects of uridine and the potential of uridine metabolism as therapeutic target in treatment of metabolic disorders.
Collapse
Affiliation(s)
- Yueyuan Yang
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yahong Ye
- Department of Internal Medicine, QuanZhou Women’s and Children’s Hospital, QuanZhou, China
| | - Yingfeng Deng
- Department of Diabetes and Cancer Metabolism, City of Hope, Duarte, CA, United States
| | - Ling Gao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Jimenez-Uribe AP, Mangos S, Hahm E. Type I IFN in Glomerular Disease: Scarring beyond the STING. Int J Mol Sci 2024; 25:2497. [PMID: 38473743 PMCID: PMC10931919 DOI: 10.3390/ijms25052497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The field of nephrology has recently directed a considerable amount of attention towards the stimulator of interferon genes (STING) molecule since it appears to be a potent driver of chronic kidney disease (CKD). STING and its activator, the cyclic GMP-AMP synthase (cGAS), along with intracellular RIG-like receptors (RLRs) and toll-like receptors (TLRs), are potent inducers of type I interferon (IFN-I) expression. These cytokines have been long recognized as part of the mechanism used by the innate immune system to battle viral infections; however, their involvement in sterile inflammation remains unclear. Mounting evidence pointing to the involvement of the IFN-I pathway in sterile kidney inflammation provides potential insights into the complex interplay between the innate immune system and damage to the most sensitive segment of the nephron, the glomerulus. The STING pathway is often cited as one cause of renal disease not attributed to viral infections. Instead, this pathway can recognize and signal in response to host-derived nucleic acids, which are also recognized by RLRs and TLRs. It is still unclear, however, whether the development of renal diseases depends on subsequent IFN-I induction or other processes involved. This review aims to explore the main endogenous inducers of IFN-I in glomerular cells, to discuss what effects autocrine and paracrine signaling have on IFN-I induction, and to identify the pathways that are implicated in the development of glomerular damage.
Collapse
Affiliation(s)
| | | | - Eunsil Hahm
- Department of Internal Medicine, Division of Nephrology, Rush University Medical Center, Chicago, IL 60612, USA; (A.P.J.-U.); (S.M.)
| |
Collapse
|
18
|
Mann J, Reznik E, Santer M, Fongheiser MA, Smith N, Hirschhorn T, Zandkarimi F, Soni RK, Dafré AL, Miranda-Vizuete A, Farina M, Stockwell BR. Ferroptosis inhibition by oleic acid mitigates iron-overload-induced injury. Cell Chem Biol 2024; 31:249-264.e7. [PMID: 37944523 PMCID: PMC10922137 DOI: 10.1016/j.chembiol.2023.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/24/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Iron overload, characterized by accumulation of iron in tissues, induces a multiorgan toxicity whose mechanisms are not fully understood. Using cultured cell lines, Caenorhabditis elegans, and mice, we found that ferroptosis occurs in the context of iron-overload-mediated damage. Exogenous oleic acid protected against iron-overload-toxicity in cell culture and Caenorhabditis elegans by suppressing ferroptosis. In mice, oleic acid protected against FAC-induced liver lipid peroxidation and damage. Oleic acid changed the cellular lipid composition, characterized by decreased levels of polyunsaturated fatty acyl phospholipids and decreased levels of ether-linked phospholipids. The protective effect of oleic acid in cells was attenuated by GW6471 (PPAR-α antagonist), as well as in Caenorhabditis elegans lacking the nuclear hormone receptor NHR-49 (a PPAR-α functional homologue). These results highlight ferroptosis as a driver of iron-overload-mediated damage, which is inhibited by oleic acid. This monounsaturated fatty acid represents a potential therapeutic approach to mitigating organ damage in iron overload individuals.
Collapse
Affiliation(s)
- Josiane Mann
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Eduard Reznik
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Melania Santer
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Mark A Fongheiser
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Nailah Smith
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Tal Hirschhorn
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Rajesh Kumar Soni
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Alcir Luiz Dafré
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA; Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York. NY 10032, USA.
| |
Collapse
|
19
|
Li S, Han Q, Liu C, Wang Y, Liu F, Pan S, Zuo L, Gao D, Chen K, Feng Q, Liu Z, Liu D. Role of ferroptosis in chronic kidney disease. Cell Commun Signal 2024; 22:113. [PMID: 38347570 PMCID: PMC10860320 DOI: 10.1186/s12964-023-01422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/03/2023] [Indexed: 02/15/2024] Open
Abstract
Chronic kidney disease (CKD) has historically been a significant global health concern, profoundly impacting both life and well-being. In the process of CKD, with the gradual loss of renal function, the incidence of various life-threatening complications, such as cardiovascular diseases, cerebrovascular accident, infection and stroke, is also increasing rapidly. Unfortunately, existing treatments exhibit limited ability to halt the progression of kidney injury in CKD, emphasizing the urgent need to delve into the precise molecular mechanisms governing the occurrence and development of CKD while identifying novel therapeutic targets. Renal fibrosis, a typical pathological feature of CKD, plays a pivotal role in disrupting normal renal structures and the loss of renal function. Ferroptosis is a recently discovered iron-dependent form of cell death characterized by lipid peroxide accumulation. Ferroptosis has emerged as a potential key player in various diseases and the initiation of organ fibrosis. Substantial evidence suggests that ferroptosis may significantly contribute to the intricate interplay between CKD and its progression. This review comprehensively outlines the intricate relationship between CKD and ferroptosis in terms of iron metabolism and lipid peroxidation, and discusses the current landscape of pharmacological research on ferroptosis, shedding light on promising avenues for intervention. It further illustrates recent breakthroughs in ferroptosis-related regulatory mechanisms implicated in the progression of CKD, thereby providing new insights for CKD treatment. Video Abstract.
Collapse
Affiliation(s)
- Shiyang Li
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Qiuxia Han
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Chang Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yixue Wang
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Fengxun Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Shaokang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Dan Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China
| | - Kai Chen
- Kaifeng Renmin Hospital, Kaifeng, 475000, Henan, People's Republic of China
| | - Qi Feng
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Dongwei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, Henan, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, Henan, People's Republic of China.
| |
Collapse
|
20
|
Pan H, Sun Y, Qian LH, Liao YN, Gai YZ, Huo YM, Li ZQ, Nie HZ. A Nutrient-Deficient Microenvironment Facilitates Ferroptosis Resistance via the FAM60A-PPAR Axis in Pancreatic Ductal Adenocarcinoma. RESEARCH (WASHINGTON, D.C.) 2024; 7:0300. [PMID: 38314086 PMCID: PMC10836236 DOI: 10.34133/research.0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024]
Abstract
Ferroptosis, a nonapoptotic form of cell death, is an emerging potential therapeutic target for various diseases, including cancer. However, the role of ferroptosis in pancreatic cancer remains poorly understood. Pancreatic ductal adenocarcinoma (PDAC) is characterized by a poor prognosis and chemotherapy resistance, attributed to its high Kirsten rats arcomaviral oncogene homolog mutation rate and severe nutritional deficits resulting from a dense stroma. Several studies have linked rat sarcoma (RAS) mutations to ferroptosis, suggesting that inducing ferroptosis may be an effective strategy against oncogenic RAS-bearing tumors. We investigated the role of Family With Sequence Similarity 60 Member A (FAM60A) in this study, a protein closely associated with a poor prognosis and highly expressed in PDAC and tumor tissue from KrasG12D/+;Trp53R172H/+; Pdx1-Cre mice, in regulating ferroptosis, tumor growth, and gemcitabine sensitivity in vitro and in vivo. Our results demonstrate that FAM60A regulates 3 essential metabolic enzymes, ACSL1/4 and GPX4, to protect PDAC cells from ferroptosis. Furthermore, we found that YY1 transcriptionally regulates FAM60A expression by promoting its transcription, and the Hippo-YY1 pathway is restricted in the low-amino-acid milieu in the context of nutrient deprivation, leading to downstream suppression of peroxisome proliferator-activated receptor and ACSL1/4 and activation of GPX4 pathways. Importantly, FAM60A knockdown sensitized PDAC cells to gemcitabine treatment. A new understanding of FAM60A transcriptional regulation pattern in PDAC and its dual function in ferroptosis reliever and chemotherapy resistance is provided by our study. Targeting FAM60A may therefore offer a promising therapeutic approach for PDAC by simultaneously addressing 2 major features of the disease (high RAS mutation rate and tumor microenvironment nutrient deficiency) and preventing tumor cell metabolic adaptation.
Collapse
Affiliation(s)
- Hong Pan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Heng Qian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying-Na Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan-Zhi Gai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan-Miao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zuo-Qing Li
- Innomodels Biotechnology Co., Ltd., 51 Xinpei Road, Jiading District, Shanghai, China
| | - Hui-Zhen Nie
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine,
Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
21
|
Chen Y, Huang G, Qin T, Zhang Z, Wang H, Xu Y, Shen X. Ferroptosis: A new view on the prevention and treatment of diabetic kidney disease with traditional Chinese medicine. Biomed Pharmacother 2024; 170:115952. [PMID: 38056233 DOI: 10.1016/j.biopha.2023.115952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Diabetic kidney disease is one of the complications of diabetes mellitus, which can eventually progress to end-stage kidney disease. The increasing prevalence of diabetic kidney disease has brought huge economic burden to society and seriously jeopardized public health. Ferroptosis is an iron-dependent, non-apoptosis-regulated form of cell death. The regulation of ferroptosis involves different molecular mechanisms and multiple cellular metabolic pathways. In recent years, ferroptosis has been proved to be closely related to the occurrence and development of diabetic kidney disease, and can interact with pathological changes such as fibrosis, inflammation, oxidative stress, and disorders of glucose and lipid metabolism, destroying the structure, form and function of the inherent cells of the kidney, and promoting the progression of the disease. Traditional Chinese medicine has a long history of treating diabetic kidney disease with remarkable curative effect. Current scholars have shown that the oral administration of traditional Chinese medicine and the external treatment of Chinese medicine can regulate GPX4, Nrf2, ACSL4, PTGS2, TFR1 and other key signaling molecules, curb ferroptosis, and prevent the progressive deterioration of diabetic kidney disease. In this paper, the mechanism of ferroptosis and diabetic kidney disease and the prevention and treatment of traditional Chinese medicine are analyzed and summarized, in order to provide new ideas and new plans for the treatment of diabetic kidney disease.
Collapse
Affiliation(s)
- Yu Chen
- Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Guodong Huang
- Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China.
| | - Ting Qin
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000 China
| | - Zechao Zhang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000 China
| | - Huiling Wang
- Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Yitan Xu
- Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Xiaonan Shen
- Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530000, China
| |
Collapse
|
22
|
Shi X, Zhang Q, Chang M, Zhang Y, Zhao M, Yang B, Li P, Zhang Y. Ferroptosis is involved in passive Heymann nephritis in rats. Heliyon 2023; 9:e21050. [PMID: 37886789 PMCID: PMC10597846 DOI: 10.1016/j.heliyon.2023.e21050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Ferroptosis is found to be involved in some experimental models of kidney diseases, but its role in membrane nephropathy (MN) is still unclear. The purpose of this study is to explore whether ferroptosis occurred in MN, and the role of ferritinophagy. In this study, passive Heymann nephritis (PHN) rats were induced by single tail vein injection of anti-Fx1A serum, and normal rats were used as control. The changes of 24 h urinary protein, serum biochemical parameters, renal pathological damage, iron content, lipid peroxidation parameters, ferroptosis markers, and ferritinophagy markers were evaluated in the two groups. Compared with the control group, PHN rats showed obvious proteinuria, hypoproteinemia, and hyperlipidemia. Besides, more severe renal pathological damage and higher Fe2+ levels were observed in PHN rats, and the levels of malondialdehyde (MDA) increased significantly, while the levels of superoxide Dismutase (SOD) and glutathione (GSH) decreased. In addition, the expression of glutathione peroxidase 4 (GPX4) in renal tissues of PHN rats decreased significantly, while the expression of transferrin receptor (TFR) and acyl-CoA synthetase long-chain family member 4 (ACSL4) increased. The expression of microtubule associated protein 1 light chain 3 (LC3) II/LC3I and nuclear receptor coactivator 4 (NCOA4) increased significantly. Therefore, our study shows that ferroptosis is involved in the pathological damage of MN, and companied by activation of ferritinophagy.
Collapse
Affiliation(s)
- Xiujie Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Qi Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yifan Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - MingMing Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Bin Yang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Peng Li
- Experimental Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, 510535, China
| |
Collapse
|
23
|
Li J, Zheng S, Fan Y, Tan K. Emerging significance and therapeutic targets of ferroptosis: a potential avenue for human kidney diseases. Cell Death Dis 2023; 14:628. [PMID: 37739961 PMCID: PMC10516929 DOI: 10.1038/s41419-023-06144-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
Kidney diseases remain one of the leading causes of human death and have placed a heavy burden on the medical system. Regulated cell death contributes to the pathology of a plethora of renal diseases. Recently, with in-depth studies into kidney diseases and cell death, a new iron-dependent cell death modality, known as ferroptosis, has been identified and has attracted considerable attention among researchers in the pathogenesis of kidney diseases and therapeutics to treat them. The majority of studies suggest that ferroptosis plays an important role in the pathologies of multiple kidney diseases, such as acute kidney injury (AKI), chronic kidney disease, and renal cell carcinoma. In this review, we summarize recently identified regulatory molecular mechanisms of ferroptosis, discuss ferroptosis pathways and mechanisms of action in various kidney diseases, and describe the protective effect of ferroptosis inhibitors against kidney diseases, especially AKI. By summarizing the prominent roles of ferroptosis in different kidney diseases and the progress made in studying ferroptosis, we provide new directions and strategies for future research on kidney diseases. In summary, ferroptotic factors are potential targets for therapeutic intervention to alleviate different kidney diseases, and targeting them may lead to new treatments for patients with kidney diseases.
Collapse
Affiliation(s)
- Jinghan Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Sujuan Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| |
Collapse
|
24
|
Feng H, Deng Z, Huang Y, Liu Z, Ruan Y, Wang T, Liu J. A novel cuproptosis pattern and tumor immune microenvironment characterization in urothelial carcinoma of the bladder. Front Immunol 2023; 14:1219209. [PMID: 37662947 PMCID: PMC10469981 DOI: 10.3389/fimmu.2023.1219209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Background Urothelial carcinoma of the bladder (UCB) is the most prevalent malignant tumor of the urinary system worldwide, which has a significant recurrence rate despite multiple treatment options available. As a unique and novel copper-dependent programmed cell death mechanism, the comprehensive impact of cuproptosis on the tumor immune microenvironment, clinicopathological characteristics and the prognosis of patients remains largely unclear. Methods A total of 568 UCB samples were thoroughly examined for cuproptosis patterns using data downloaded from TCGA and GEO, based on 10 cuproptosis-related genes reported previously. Then, the univariate COX regression analysis was performed on the genes that differed across the various patterns. To measure individual cuproptosis pattern, a cuproptosis score system was constructed using a principal component analysis algorithm. To validate the scoring system, immunohistochemical staining was performed on tumor tissues with different pathological grades, and experiments in vitro were conducted about the differentially expressed genes related to prognosis. Finally, the capacity of scoring system to predict the response to immunotherapy was verified by using data from IMvigor 210 cohort. Results Four unique cuproptosis clusters and two gene clusters were finally found by the investigation. The clinical features and prognosis of patients, as well as the mRNA transcriptome, pathway enrichment, and immune cell infiltration in TME, varied dramatically between various cuproptosis clusters and gene clusters. To identify individual cuproptosis patterns in UCB patients, we also established a cuproptosis scoring system. After validation with multiple methods, it was indicated that the score system could predict the prognosis of UCB patients and was significantly connected to clinical features such TNM category, tumor grade, molecular type and ultimate survival status. The clinical outcomes of UCB patients were predicted effectively according to the tumor mutation burden in conjunction with the scoring system. Furthermore, we found that the cuproptosis score had a significant correlation with the response to immunotherapy and the sensitivity to chemotherapy. Conclusion This study revealed the potential impact of cuproptosis on the UCB tumor immune microenvironment and clinical pathological characteristics. The cuproptosis score system could effectively predict the prognosis of patients and the response to chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Huan Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyao Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
| | - Yibao Huang
- Department of Gynaecology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhuo Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yajun Ruan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
25
|
Feng Q, Yang Y, Ren K, Qiao Y, Sun Z, Pan S, Liu F, Liu Y, Huo J, Liu D, Liu Z. Broadening horizons: the multifaceted functions of ferroptosis in kidney diseases. Int J Biol Sci 2023; 19:3726-3743. [PMID: 37564215 PMCID: PMC10411478 DOI: 10.7150/ijbs.85674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death pattern that is characterized by iron overload, reactive oxygen species (ROS) accumulation and lipid peroxidation. Growing viewpoints support that the imbalance of iron homeostasis and the disturbance of lipid metabolism contribute to tissue or organ injury in various kidney diseases by triggering ferroptosis. At present, the key regulators and complicated network mechanisms associated with ferroptosis have been deeply studied; however, its role in the initiation and progression of kidney diseases has not been fully revealed. Herein, we aim to discuss the features, key regulators and complicated network mechanisms associated with ferroptosis, explore the emerging roles of organelles in ferroptosis, gather its pharmacological progress, and systematically summarize the most recent discoveries about the crosstalk between ferroptosis and kidney diseases, including renal cell carcinoma (RCC), acute kidney injury (AKI), diabetic kidney disease (DKD), autosomal dominant polycystic kidney disease (ADPKD), renal fibrosis, lupus nephritis (LN) and IgA nephropathy. We further conclude the potential therapeutic strategies by targeting ferroptosis for the prevention and treatment of kidney diseases and hope that this work will provide insight for the further study of ferroptosis in the pathogenesis of kidney-related diseases.
Collapse
Affiliation(s)
- Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yang Yang
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Zhi Sun
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Fengxun Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Jinling Huo
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| |
Collapse
|
26
|
Chen F, Kang R, Liu J, Tang D. The ACSL4 Network Regulates Cell Death and Autophagy in Diseases. BIOLOGY 2023; 12:864. [PMID: 37372148 DOI: 10.3390/biology12060864] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Lipid metabolism, cell death, and autophagy are interconnected processes in cells. Dysregulation of lipid metabolism can lead to cell death, such as via ferroptosis and apoptosis, while lipids also play a crucial role in the regulation of autophagosome formation. An increased autophagic response not only promotes cell survival but also causes cell death depending on the context, especially when selectively degrading antioxidant proteins or organelles that promote ferroptosis. ACSL4 is an enzyme that catalyzes the formation of long-chain acyl-CoA molecules, which are important intermediates in the biosynthesis of various types of lipids. ACSL4 is found in many tissues and is particularly abundant in the brain, liver, and adipose tissue. Dysregulation of ACSL4 is linked to a variety of diseases, including cancer, neurodegenerative disorders, cardiovascular disease, acute kidney injury, and metabolic disorders (such as obesity and non-alcoholic fatty liver disease). In this review, we introduce the structure, function, and regulation of ACSL4; discuss its role in apoptosis, ferroptosis, and autophagy; summarize its pathological function; and explore the potential implications of targeting ACSL4 in the treatment of various diseases.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511436, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
27
|
Yang L, Liu Y, Zhou S, Feng Q, Lu Y, Liu D, Liu Z. Novel Insight into Ferroptosis in Kidney Diseases. Am J Nephrol 2023; 54:184-199. [PMID: 37231767 DOI: 10.1159/000530882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Various kidney diseases such as acute kidney injury, chronic kidney disease, polycystic kidney disease, renal cancer, and kidney stones, are an important part of the global burden, bringing a huge economic burden to people around the world. Ferroptosis is a type of nonapoptotic iron-dependent cell death caused by the excess of iron-dependent lipid peroxides and accompanied by abnormal iron metabolism and oxidative stress. Over the past few decades, several studies have shown that ferroptosis is associated with many types of kidney diseases. Studying the mechanism of ferroptosis and related agonists and inhibitors may provide new ideas and directions for the treatment of various kidney diseases. SUMMARY In this review, we discuss the differences between ferroptosis and other types of cell death such as apoptosis, necroptosis, pyroptosis, cuprotosis, pathophysiological features of the kidney, and ferroptosis-induced kidney injury. We also provide an overview of the molecular mechanisms involved in ferroptosis and events that lead to ferroptosis. Furthermore, we summarize the possible clinical applications of this mechanism among various kidney diseases. KEY MESSAGE The current research suggests that future therapeutic efforts to treat kidney ailments would benefit from a focus on ferroptosis.
Collapse
Affiliation(s)
- Liu Yang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China,
- Henan Province Research Center for Kidney Disease, Zhengzhou, China,
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,
| | - Yong Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Sijie Zhou
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Qi Feng
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yanfang Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
28
|
Zhang H, Deng Z, Wang Y. Molecular insight in intrarenal inflammation affecting four main types of cells in nephrons in IgA nephropathy. Front Med (Lausanne) 2023; 10:1128393. [PMID: 36968836 PMCID: PMC10034350 DOI: 10.3389/fmed.2023.1128393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis and the leading cause of kidney failure in the world. The current widely accepted framework for its pathogenesis is the "multi-hit hypothesis." In this review, we mainly discussed the intrarenal inflammation in IgAN, which is initiated by immune complex deposition with complement molecule activation, by focusing on four main types of cells in nephrons including mesangial cells, endothelial cells, podocytes, and tubular epithelial cells (TECs). Galactose-deficient IgA1 (Gd-IgA1)-containing immune complexes deposit in the mesangium and activate complement molecules and mesangial cells. Activation of mesangial cells by Gd-IgA1 deposition with enhanced cellular proliferation, extracellular matrix (ECM) expansion, and inflammatory response plays a central role in the pathogenesis of IgAN. Regional immune complex deposition and mesangial-endothelial crosstalk result in hyperpermeability of endothelium with loss of endothelial cells and infiltration barrier proteins, and recruitment of inflammatory cells. Podocyte damage is mainly derived from mesangial-podocyte crosstalk, in which tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), renin-angiotensin-aldosterone system (RAAS), and micro-RNAs are the major players in podocyte apoptosis and disorganization of slit diaphragm (SD) related to proteinuria in patients with IgAN. In addition to filtrated proteins into tubulointerstitium and mesangial-tubular crosstalk involved in the injury of TECs, retinoic acid has been discovered innovatively participating in TEC injury.
Collapse
|