1
|
Fu K, Hu H, Zhou X, Li L, Yan L. Regulation of the brain tumor microenvironment by focused ultrasound. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200994. [PMID: 40520576 PMCID: PMC12166810 DOI: 10.1016/j.omton.2025.200994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2025]
Abstract
Glioblastoma and other high-grade primary malignant brain tumors are a serious threat to the life and health of patients; consequently, their accurate diagnosis and treatment are crucial. Brain tumors are usually treated by surgical resection, radiotherapy and drug chemotherapy; however, such treatments have side effects such as trauma, infection, and radiation exposure. Furthermore, owing to limitations in conditions such as the skull and blood-brain barrier, noninvasive treatment and diagnosis of brain tumors have been challenging. In recent years, focused ultrasound (FUS) technology has shown great advantages and application potential because of its noninvasive and energy-focusing characteristics in brain tumors. From the perspective of the brain tumor microenvironment, FUS can produce mechanical and thermal effects by delivering sound waves to brain tissue; these sound waves can induce blood-brain barrier opening, radiation sensitization, targeted substance delivery, immune enhancement, angiogenesis and destruction, oxidative stress, interstitial hydraulic regulation, and brain tumor marker sonobiopsy. The feasibility and safety data from both animal models and clinical trials support FUS as having great potential for use in the diagnosis and treatment of brain tumors.
Collapse
Affiliation(s)
- Kang Fu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiaodong Zhou
- Ultrasound Diagnosis & Treatment Center, Xi’an International Medical Center Hospital, Xi’an 710100, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Li Yan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
2
|
Ni C, Sun Q, Yin H. Comprehensive multi-omics analysis of histone acetylation modulators identifies ASH1L as a novel aggressive marker for osteosarcoma. Discov Oncol 2025; 16:1070. [PMID: 40504347 PMCID: PMC12162460 DOI: 10.1007/s12672-025-02920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 06/05/2025] [Indexed: 06/16/2025] Open
Abstract
BACKGROUND Osteosarcoma, a highly malignant bone tumor prevalent in children and adolescents, continues to have poor long-term survival rates, particularly in metastatic cases. While histone acetylation dysregulation has been implicated in cancer progression, the role of histone acetylation modification-related proteins (HAMRPs) in osteosarcoma immune infiltration and prognosis remains unclear. METHODS The expression patterns, prognostic implications, and clinical correlations of HAMRPs in osteosarcoma were analyzed using the TARGET, GEO, TISCH, and HPA databases. The effectiveness of HAMRPs in predicting the immune landscape of osteosarcoma was confirmed using CIBERSORT, ssGSEA, and ESTIMATE algorithms. The study employed GSEA analysis, wound healing assay, Transwell, and western blot to explore the role and regulatory mechanism of the key gene ASH1L in osteosarcoma progression. RESULTS Two distinct histone acetylation modification patterns were identified, showing significant differences in survival, clinical features, and immune landscape. Comprehensive clinical correlation analysis and Kaplan-Meier analysis of all HAMRPs used for two subtypes revealed that higher ASH1L expression was found in metastatic osteosarcoma cases and indicated poorer survival outcomes. In vitro experiments confirmed that ASH1L promoted osteosarcoma metastasis and epithelial-mesenchymal transition via the AKT/mTOR pathway. Additionally, an ASH1L-derived risk model was developed to aid personalized clinical decisions. CONCLUSIONS This study elucidates the prognostic and immunological significance of HAMRPs and highlights ASH1L as a novel aggressive marker in osteosarcoma.
Collapse
Affiliation(s)
- Chenlie Ni
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Qiwen Sun
- Haining Yuanhua Township Central Health Hospital, Jiaxing, 314000, China
| | - Haibo Yin
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China.
| |
Collapse
|
3
|
Zhang L, Wang K, Li F, Zhang L, Wu L, Tie R, Litifu K, Fu Y, Liu S, Ni J, Chang P, Xu J, Zhao H, Liu L. Ribosomal protein S3A (RPS3A), as a transcription regulator of colony-stimulating factor 1 (CSF1), promotes glioma progression through regulating the recruitment and autophagy-mediated M2 polarization of tumor-associated macrophages. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5437-5452. [PMID: 39560749 DOI: 10.1007/s00210-024-03601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
Dysregulated expression of ribosomal protein S3A (RPS3A) is associated with the tissue infiltration of immune-related cells in a variety of cancers. However, the role of RPS3A in immune cell infiltration in glioma remains unclear. This study aimed to explore the role of RPS3A in the glioma immune microenvironment. RPS3A expression was detected in tumor tissues from patients with glioma. U251 cells were transfected with RPS3A shRNA (sh-RPS3A) and overexpression vector (pcDNA-RPS3A) and then co-cultured with PMA-induced THP-1 cells. Cell viability, invasion, and apoptosis were detected by Edu staining, Transwell, and flow cytometry, respectively. The expression of tumor-associated macrophage (TAM) M1 and M2 markers was detected with RT-qPCR. Next, the interaction between RPS3A and E4 transcription factor 1 (E4F1) was verified by Co-IP analysis, and the binding of E4F1 to colony-stimulating factor 1 (CSF1) promoter was verified by ChIP analysis. Overexpression vectors of CSF1 and E4F1 were used to treat sh-RPS3A-transfected U251 cells for reversal experiments. Finally, U251 cells transfected with sh-RPS3A adenovirus vectors were subcutaneously injected into nude mice to construct a xenograft tumor model, and the growth and metastasis of glioma in vivo were monitored. RPS3A was significantly upregulated in glioma tissues. Overexpression of RPS3A promoted glioma cell proliferation and invasion and inhibited apoptosis. Moreover, overexpression of RPS3A promoted TAM proliferation, invasion, and M2 polarization. Silencing RPS3A had the opposite effect. Silencing RPS3A inhibited autophagy in U251 cells, whereas rapamycin, an activator of autophagy, reversed the inhibitory effect of RPS3A silencing on TAM M2 polarization. Meanwhile, RPS3A promoted its expression by interacting with E4F1, and E4F1 promoted CSF1 transcriptional activation. Overexpression of CSF1 promoted the proliferation and invasion of U251 cells and reversed the inhibitory effect of RPS3A silencing on TAM proliferation and invasion, but had no effect on TAM M2 polarization. The results of in vivo experiments showed that knockdown of RPS3A significantly inhibited glioma tumor growth and metastasis in vivo. This study revealed that RPS3A recruited TAMs by upregulating E4F1-mediated transcription activation of CSF1, and promoted the M2 polarization of TAMs through autophagy, promoting glioma cell malignant growth and tumor progression.
Collapse
Affiliation(s)
- Liang Zhang
- Northwest University, Guodu Education and Technology Industrial Zone, No. 1 Xuefu Street, Chang'an District, Xi'an, 710127, China
- Xi'an Daxing Hospital, No. 353 Laodong North Road, Lianhu District, Xi'an, 710016, China
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Kun Wang
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Fei Li
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Lingxue Zhang
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Lin Wu
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Ru Tie
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Kamulan Litifu
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Yujie Fu
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Simeng Liu
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Jiaxin Ni
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Pan Chang
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Jun Xu
- Xi'an Daxing Hospital, No. 353 Laodong North Road, Lianhu District, Xi'an, 710016, China
| | - Haikang Zhao
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China.
| | - Lingtong Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, China.
| |
Collapse
|
4
|
Liu C, Qiao H, Li H, Hu X, Yan M, Fu Z, Zhang H, Wang Y, Du N. Exploring the role of LOX family in glioma progression and immune modulation. Front Immunol 2025; 16:1512186. [PMID: 40270974 PMCID: PMC12014642 DOI: 10.3389/fimmu.2025.1512186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/11/2025] [Indexed: 04/25/2025] Open
Abstract
Background Glioma is a major cause of mortality among central nervous system tumors, with a generally poor prognosis. The lysyl oxidase (LOX) family, a group of copper-dependent amine oxidases, has been implicated in the progression of various cancers, but its specific role in glioma and its relationship with immune infiltration remains insufficiently explored. This study aims to investigate the LOX family's expression, prognostic significance, and immune infiltration dynamics in glioma to identify potential therapeutic targets. Methods A comprehensive analysis was conducted using public databases to assess gene expression, mutation frequency, and immune infiltration patterns related to the LOX family in glioma. The results were validated through survival analysis and immunohistochemistry. Functional assays, including EdU, Transwell, and flow cytometry, were used to evaluate glioma cell proliferation, migration, invasion, and apoptosis. Co-culture experiments with immune cells, ELISA, and a glioma transplantation model were employed to study the immune-modulatory effects of the LOX family. Gene and protein expression levels were further analyzed using qRT-PCR and Western blotting. Results The LOX family was significantly upregulated in low-grade gliomas and strongly associated with poor clinical outcomes. Although mutation frequencies were low, the LOX family contributed to glioma progression through pathways involving metastasis, hypoxia response, angiogenesis, and immune cell infiltration. LOX expression correlated with increased infiltration of macrophages and eosinophils and decreased presence of Treg and CD8+ T cells. Knockdown of LOX genes impaired glioma cell functions, induced apoptosis, and altered immune cell behavior by reducing M2 macrophage polarization and enhancing CD8+ T cell activity. Conclusions The LOX family is overexpressed in glioma and is associated with poor prognosis and altered immune infiltration patterns. These findings highlight the LOX family as a promising prognostic marker and therapeutic target, particularly for enhancing the effectiveness of immunotherapy in glioma treatment.
Collapse
Affiliation(s)
- Chen Liu
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Oncology, the Fifth Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, People’s Liberation Army (PLA), Beijing, China
| | - Huilian Qiao
- Department of Pathology, Air Force Medical Center, The Fourth Military Medical University, People’s Liberation Army (PLA), Beijing, China
| | - Hongqi Li
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, People’s Liberation Army (PLA), Beijing, China
| | - Xiaolong Hu
- Department of Radiation Oncology, Beijing Geriatric Hospital, Beijing, China
| | - Maohui Yan
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, People’s Liberation Army (PLA), Beijing, China
| | - Zhiguang Fu
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, People’s Liberation Army (PLA), Beijing, China
| | - Hengheng Zhang
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, People’s Liberation Army (PLA), Beijing, China
| | - Yingjie Wang
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, People’s Liberation Army (PLA), Beijing, China
| | - Nan Du
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, People’s Liberation Army (PLA), Beijing, China
| |
Collapse
|
5
|
Liu Z, Song H, Wang Z, Hu Y, Zhong X, Liu H, Zeng J, Ye Z, Ning W, Liang Y, Yuan S, Deng Z, Jin L, Mo J, Ren J, Yao M. A novel optimized orthotopic mouse model for brain metastasis with sustained cerebral blood circulation and capability of multiple delivery. Clin Exp Metastasis 2025; 42:19. [PMID: 40095206 PMCID: PMC11913983 DOI: 10.1007/s10585-025-10336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Brain metastasis is thought to be related to the high mortality and poor prognosis of lung cancer. Despite significant advances in the treatment of primary lung cancer, the unique microenvironment of the brain renders current therapeutic strategies largely ineffective against brain metastasis. The lack of effective drugs for brain metastasis treatment is primarily due to the incomplete understanding of the mechanisms underlying its initiation and progression. Currently, our understanding of brain metastasis remains limited, primarily due to the absence of appropriate models that can realistically simulate the entire process of tumor cell detachment from the primary site, circulation through the bloodstream, and eventual colonization of the brain. Therefore, there is a pressing need to develop more suitable lung cancer brain metastasis models that can effectively replicate these critical stages of metastasis. Here, based on the traditional carotid artery injection model, we established a novel orthotopic mouse model by using a light-controlled hydrogel to repair the puncture site on the carotid artery, with sustained cerebral blood circulation and the capability of multiple delivery cancer cell to mimic lung cancer brain metastasis. The optimized orthotopic mouse model significantly reduced cerebral ischemia and improved cerebral oxygenation by 60% compared to the traditional orthotopic mouse model, enhancing post-operative survival rates. It also showed a reduction in pro-inflammatory cytokines and featured less inflammatory and more resting states of microglial and astrocyte cells. Furthermore, the optimized orthotopic mouse model markedly increased the success rate and absolute number of the metastatic clones in the brain. Additionally, the multiple delivery model based on the optimized orthotopic mouse model substantially augmented the tumor clone number and formation rates compared to single injection in the optimized orthotopic mouse model. This model overcomes previous limitations by maintaining cerebral circulation, providing a more accurate simulation of the continuous entry of tumor cells into cerebral circulation. It offers a robust platform for studying the interactions of cancer cells with the brain microenvironment and testing new therapeutic approaches.
Collapse
Affiliation(s)
- Zihao Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, People's Republic of China
| | - Huisheng Song
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Zhenning Wang
- Department of Neurosurgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Yang Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, People's Republic of China
| | - Xiaoxuan Zhong
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing andCommunication, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Huiling Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jianhao Zeng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Zhiming Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, People's Republic of China
| | - Wenfeng Ning
- Ningyuan County People's Hospital, Yongzhou, 425699, Hunan, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing andCommunication, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Shengfang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, People's Republic of China
| | - Zijun Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, People's Republic of China
| | - Long Jin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing andCommunication, Institute of Photonics Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Jieying Mo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, People's Republic of China
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Maojin Yao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Kiran S, Xue Y, Sarker DB, Sang QXA. Effects of Induced Pluripotent Stem Cell-Derived Astrocytes on Cisplatin Sensitivity in Pediatric Brain Cancer Cells. Cancers (Basel) 2025; 17:997. [PMID: 40149331 PMCID: PMC11940393 DOI: 10.3390/cancers17060997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background: ATRTs and DIPGs are deadly pediatric brain tumors with poor prognosis. These tumors can develop resistance to chemotherapies, which may be significantly influenced by their microenvironment. Since astrocytes are the most abundant glial cell type in the brain microenvironment and may support tumor growth and chemoresistance, this study investigated the effects of induced pluripotent stem cell-derived astrocytes (iPSC-astrocytes) on cisplatin sensitivity in CHLA-05-ATRT and SF8628 (DIPG) cells. iPSCs provide an unlimited and standardized source of nascent astrocytes, which enables modeling the interaction between childhood brain tumor cells and iPSC-astrocytes within a controlled coculture system. Methods: To study the effects on tumor growth, the iPSC-astrocytes were cocultured with tumor cells. Additionally, the tumor cells were exposed to various concentrations of cisplatin to evaluate their chemosensitivity in the presence of astrocytes. Results: The paracrine interaction of iPSC-astrocytes with tumor cells upregulated astrocyte activation markers GFAP and STAT3 and promoted tumor cell proliferation. Moreover, the cisplatin treatment significantly decreased the viability of CHLA-05-ATRT and SF8628 cells. However, tumor cells exhibited reduced sensitivity to cisplatin in the coculture with iPSC-astrocytes. During cisplatin treatment, DIPG cells in particular showed upregulation of resistance markers, ERK1, STAT3, and MTDH, which are associated with enhanced proliferation and invasion. They also had increased expression of APEX1, which is involved in the base excision repair pathway following cisplatin-induced DNA damage. Conclusion: These findings underscore the significance of the tumor microenvironment in modulating tumor cell survival and chemosensitivity.
Collapse
Affiliation(s)
- Sonia Kiran
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; (S.K.); (Y.X.); (D.B.S.)
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; (S.K.); (Y.X.); (D.B.S.)
| | - Drishty B. Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; (S.K.); (Y.X.); (D.B.S.)
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA; (S.K.); (Y.X.); (D.B.S.)
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
7
|
Sandhanam K, Tamilanban T, Bhattacharjee B, Manasa K. Exploring miRNA therapies and gut microbiome-enhanced CAR-T cells: advancing frontiers in glioblastoma stem cell targeting. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2169-2207. [PMID: 39382681 DOI: 10.1007/s00210-024-03479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Glioblastoma multiforme (GBM) presents a formidable challenge in oncology due to its aggressive nature and resistance to conventional treatments. Recent advancements propose a novel therapeutic strategy combining microRNA-based therapies, chimeric antigen receptor-T (CAR-T) cells, and gut microbiome modulation to target GBM stem cells and transform cancer treatment. MicroRNA therapies show promise in regulating key signalling pathways implicated in GBM progression, offering the potential to disrupt GBM stem cell renewal. CAR-T cell therapy, initially successful in blood cancers, is being adapted to target GBM by genetically engineering T cells to recognise and eliminate GBM stem cell-specific antigens. Despite early successes, challenges like the immunosuppressive tumour microenvironment persist. Additionally, recent research has uncovered a link between the gut microbiome and GBM, suggesting that gut dysbiosis can influence systemic inflammation and immune responses. Novel strategies to modulate the gut microbiome are emerging, enhancing the efficacy of microRNA therapies and CAR-T cell treatments. This combined approach highlights the synergistic potential of these innovative therapies in GBM treatment, aiming to eradicate primary tumours and prevent recurrence, thereby improving patient prognosis and quality of life. Ongoing research and clinical trials are crucial to fully exploit this promising frontier in GBM therapy, offering hope to patients grappling with this devastating disease.
Collapse
Affiliation(s)
- K Sandhanam
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India
| | - T Tamilanban
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, 603203, Tamil Nadu, India.
| | - Bedanta Bhattacharjee
- Department of Pharmacology, Girijananda Chowdhury University-Tezpur Campus, 784501, Assam, India
| | - K Manasa
- Department of Pharmacology, MNR College of Pharmacy, Sangareddy, 502294, Telangana, India
| |
Collapse
|
8
|
Jiang Z, Huang H, Guo Y, Wang Z, Huang H, Yin W, Huang H, Wang L, Liu W, Jiang X, Ren C. Unveiling the Role of Protein Posttranslational Modifications in Glioma Prognosis. CNS Neurosci Ther 2025; 31:e70330. [PMID: 40090864 PMCID: PMC11911106 DOI: 10.1111/cns.70330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/18/2025] Open
Abstract
BACKGROUND Gliomas represent the most aggressive malignancies of the central nervous system, with posttranslational modifications (PTMs) emerging as critical regulators of oncogenic processes through dynamic protein functional modulation. Despite their established role in tumor biology, the systematic characterization of PTM-mediated molecular mechanisms driving glioma progression remains unexplored. This study aims to uncover the molecular mechanisms of glioma, with a focus on the role of PTMs. METHODS We analyzed the PTM pathway to classify glioma patients into distinct clusters. Comprehensive analyses compared intercluster differences in clinical outcomes, mutational landscapes, and immune microenvironment profiles. Differentially expressed genes (DEGs) were identified to construct a robust prognostic prediction model with machine learning approaches. Among the genes included in the model, TOM1L1 (Target of Myb1 Like 1 Membrane Trafficking Protein) was selected for in vitro experimental validation to assess its role in glioma progression. RESULTS PTMs were found to influence glioma prognosis significantly. Dysregulation in specific pathways, such as glutathionylation and citrullination, was correlated with more aggressive clinical features. The prognostic model, comprising DEGs such as TOM1L1, demonstrated high predictive accuracy (c-index = 0.867)-the scores derived from the model strongly correlated with glioma progression indicators. In vitro experiments revealed that TOM1L1 facilitates malignant progression by modulating PTM pathways, confirming its functional role in glioma. CONCLUSION Our study establishes the first comprehensive PTM atlas in gliomas, revealing subtype-specific modification patterns with clinical and therapeutic implications. TOM1L1 emerges as a promising prognostic biomarker and a potential therapeutic intervention target. Targeting PTM pathways may offer novel strategies for glioma treatment, enhancing patient outcomes.
Collapse
Affiliation(s)
- Zhipeng Jiang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Hanxue Huang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaP.R. China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of EducationCentral South UniversityChangshaP.R. China
| | - Youwei Guo
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Zihan Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Hailong Huang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Wen Yin
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Haoxuan Huang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Lei Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaHunanP.R. China
| | - Weidong Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaHunanP.R. China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
| | - Caiping Ren
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanP.R. China
- Cancer Research Institute, Xiangya School of Basic Medical ScienceCentral South UniversityChangshaHunanP.R. China
- The NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCentral South UniversityChangshaHunanP.R. China
| |
Collapse
|
9
|
Du R, Zhang J, Lukas RV, Tripathi S, Ahrendsen JT, Curran MA, Dmello C, Zhang P, Stupp R, Rao G, Heimberger AB. Is modulation of immune checkpoints on glioblastoma-infiltrating myeloid cells a viable therapeutic strategy? Neuro Oncol 2025; 27:33-49. [PMID: 39427326 PMCID: PMC11726257 DOI: 10.1093/neuonc/noae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
The field of immunology has traditionally focused on immune checkpoint modulation of adaptive immune cells. However, many malignancies such as glioblastoma are mostly devoid of T cells and rather are enriched with immunosuppressive myeloid cells of the innate immune system. While some immune checkpoint targets are shared between adaptive and innate immunity, myeloid-specific checkpoints could also serve as potential therapeutics. To better understand the impact of immune checkpoint blockade on myeloid cells, we systematically summarize the current literature focusing on the direct immunological effects of PD-L1/PD-1, CD24/Siglec-10, collagen/LAIR-1, CX3CL1/CX3CR1, and CXCL10/CXCR3. By synthesizing the molecular mechanisms and the translational implications, we aim to prioritize agents in this category of therapeutics for glioblastoma.
Collapse
Affiliation(s)
- Ruochen Du
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jianzhong Zhang
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rimas V Lukas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shashwat Tripathi
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jared T Ahrendsen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA (J.T.A.)
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael A Curran
- Department of Immunology, MD Anderson Cancer Center, the University of Texas, Houston, Texas, USA
| | - Crismita Dmello
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peng Zhang
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Roger Stupp
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Amy B Heimberger
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
10
|
Arnold SA, Low WC, Pluhar GE. Breed-Associated Differences in Differential Gene Expression Following Immunotherapy-Based Treatment of Canine High-Grade Glioma. Animals (Basel) 2024; 15:28. [PMID: 39794971 PMCID: PMC11718890 DOI: 10.3390/ani15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Canine high-grade glioma (HGG) is among the deadliest and most treatment-resistant forms of canine cancer. Successful, widespread treatment is challenged by heterogeneity in tumor cells and the tumor microenvironment and tumor evolution following treatment. Immunotherapy is theoretically a strong novel therapy, since HGG-generated immunosuppression is a substantial malignancy mechanism. Immunotherapy has improved survival times overall, but has been associated with extremely poor outcomes in French bulldogs. Given this breed-specific observation, we hypothesized that within the French bulldog breed, there are key transcriptomic differences when compared to other breeds, and that their tumors change differently in response to immunotherapy. Using bulk RNA sequencing, French bulldog tumors were confirmed to differ substantially from boxer and Boston terrier tumors, with only 15.9% overlap in significant differentially expressed genes (DEGs). In upregulated DEGs, the magnitude of changes in expression post-treatment compared to pre-treatment was markedly greater in French bulldogs. Gene set enrichment analysis confirmed that following treatment, French bulldog tumors showed enrichment of key immune-associated pathways previously correlated with poor prognosis. Overall, this study confirmed that French bulldog HGG transcriptomes differ from boxer and Boston terrier transcriptomes, further refining description of the canine glioma transcriptome and providing important information to guide novel therapy development, both for specific dog breeds and for possible correlative variants of human glioblastoma.
Collapse
Affiliation(s)
- Susan A. Arnold
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Grace Elizabeth Pluhar
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, MN 55108, USA;
| |
Collapse
|
11
|
Toader C, Tataru CP, Munteanu O, Covache-Busuioc RA, Serban M, Ciurea AV, Enyedi M. Revolutionizing Neuroimmunology: Unraveling Immune Dynamics and Therapeutic Innovations in CNS Disorders. Int J Mol Sci 2024; 25:13614. [PMID: 39769374 PMCID: PMC11728275 DOI: 10.3390/ijms252413614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Neuroimmunology is reshaping the understanding of the central nervous system (CNS), revealing it as an active immune organ rather than an isolated structure. This review delves into the unprecedented discoveries transforming the field, including the emerging roles of microglia, astrocytes, and the blood-brain barrier (BBB) in orchestrating neuroimmune dynamics. Highlighting their dual roles in both repair and disease progression, we uncover how these elements contribute to the intricate pathophysiology of neurodegenerative diseases, cerebrovascular conditions, and CNS tumors. Novel insights into microglial priming, astrocytic cytokine networks, and meningeal lymphatics challenge the conventional paradigms of immune privilege, offering fresh perspectives on disease mechanisms. This work introduces groundbreaking therapeutic innovations, from precision immunotherapies to the controlled modulation of the BBB using nanotechnology and focused ultrasound. Moreover, we explore the fusion of immune modulation with neuromodulatory technologies, underscoring new frontiers for personalized medicine in previously intractable diseases. By synthesizing these advancements, we propose a transformative framework that integrates cutting-edge research with clinical translation, charting a bold path toward redefining CNS disease management in the era of precision neuroimmunology.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Calin Petru Tataru
- Department of Opthamology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Central Military Emergency Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania
| | - Octavian Munteanu
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (M.S.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
- Medical Section, Romanian Academy, 010071 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
12
|
You H, Geng S, Li S, Imani M, Brambilla D, Sun T, Jiang C. Recent advances in biomimetic strategies for the immunotherapy of glioblastoma. Biomaterials 2024; 311:122694. [PMID: 38959533 DOI: 10.1016/j.biomaterials.2024.122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Immunotherapy is regarded as one of the most promising approaches for treating tumors, with a multitude of immunotherapeutic thoughts currently under consideration for the lethal glioblastoma (GBM). However, issues with immunotherapeutic agents, such as limited in vivo stability, poor blood-brain barrier (BBB) penetration, insufficient GBM targeting, and represented monotherapy, have hindered the success of immunotherapeutic interventions. Moreover, even with the aid of conventional drug delivery systems, outcomes remain suboptimal. Biomimetic strategies seek to overcome these formidable drug delivery challenges by emulating nature's intelligent structures and functions. Leveraging the variety of biological structures and functions, biomimetic drug delivery systems afford a versatile platform with enhanced biocompatibility for the co-delivery of diverse immunotherapeutic agents. Moreover, their inherent capacity to traverse the BBB and home in on GBM holds promise for augmenting the efficacy of GBM immunotherapy. Thus, this review begins by revisiting the various thoughts and agents on immunotherapy for GBM. Then, the barriers to successful GBM immunotherapy are analyzed, and the corresponding biomimetic strategies are explored from the perspective of function and structure. Finally, the clinical translation's current state and prospects of biomimetic strategy are addressed. This review aspires to provide fresh perspectives on the advancement of immunotherapy for GBM.
Collapse
Affiliation(s)
- Haoyu You
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuo Geng
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shangkuo Li
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mohammad Imani
- Department of Science, Iran Polymer and Petrochemical Institute, Tehran 14977-13115, Iran; Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Tehran 14588-89694, Iran
| | - Davide Brambilla
- Faculty of Pharmacy, University of Montreal, Montreal Quebec H3T 1J4, Canada
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
13
|
Al Shboul S, Singh A, Kobetic R, Goodlett DR, Brennan PM, Hupp T, Dapic I. Mass Spectrometry Advances in Analysis of Glioblastoma. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39529217 DOI: 10.1002/mas.21912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Some cancers such as glioblastoma (GBM), show minimal response to medical interventions, often only capable of mitigating tumor growth or alleviating symptoms. High metabolic activity in the tumor microenvironment marked by immune responses and hypoxia, is a crucial factor driving tumor progression. The many developments in mass spectrometry (MS) over the last decades have provided a pivotal tool for studying proteins, along with their posttranslational modifications. It is known that the proteomic landscape of GBM comprises a wide range of proteins involved in cell proliferation, survival, migration, and immune evasion. Combination of MS imaging and microscopy has potential to reveal the spatial and molecular characteristics of pathological tissue sections. Moreover, integration of MS in the surgical process in form of techniques such as DESI-MS or rapid evaporative ionization MS has been shown as an effective tool for rapid measurement of metabolite profiles, providing detailed information within seconds. In immunotherapy-related research, MS plays an indispensable role in detection and targeting of cancer antigens which serve as a base for antigen-specific therapies. In this review, we aim to provide detailed information on molecular profile in GBM and to discuss recent MS advances and their clinical benefits for targeting this aggressive disease.
Collapse
Affiliation(s)
- Sofian Al Shboul
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ashita Singh
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - David R Goodlett
- University of Victoria-Genome BC Proteomics Centre, Victoria, British Columbia, Canada
| | - Paul M Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ted Hupp
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | | |
Collapse
|
14
|
Xu J, Yu B, Wang F, Yang J. Single-cell RNA sequencing to map tumor heterogeneity in gastric carcinogenesis paving roads to individualized therapy. Cancer Immunol Immunother 2024; 73:233. [PMID: 39271545 PMCID: PMC11399521 DOI: 10.1007/s00262-024-03820-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Gastric cancer (GC) is a highly heterogeneous disease with a complex tumor microenvironment (TME) that encompasses multiple cell types including cancer cells, immune cells, stromal cells, and so on. Cancer-associated cells could remodel the TME and influence the progression of GC and therapeutic response. Single-cell RNA sequencing (scRNA-seq), as an emerging technology, has provided unprecedented insights into the complicated biological composition and characteristics of TME at the molecular, cellular, and immunological resolutions, offering a new idea for GC studies. In this review, we discuss the novel findings from scRNA-seq datasets revealing the origin and evolution of GC, and scRNA-seq is a powerful tool for investigating transcriptional dynamics and intratumor heterogeneity (ITH) in GC. Meanwhile, we demonstrate that the vital immune cells within TME, including T cells, B cells, macrophages, and stromal cells, play an important role in the disease progression. Additionally, we also overview that how scRNA-seq facilitates our understanding about the effects on individualized therapy of GC patients. Spatial transcriptomes (ST) have been designed to determine spatial distribution and capture local intercellular communication networks, enabling a further understanding of the relationship between the spatial background of a particular cell and its functions. In summary, scRNA-seq and other single-cell technologies provide a valuable perspective for molecular and pathological disease characteristics and hold promise for advancing basic research and clinical practice in GC.
Collapse
Affiliation(s)
- Jiao Xu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road., Xi'an, 710061, Shaanxi, People's Republic of China
| | - Bixin Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road., Xi'an, 710061, Shaanxi, People's Republic of China
| | - Fan Wang
- Phase I Clinical Trial Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Jin Yang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road., Xi'an, 710061, Shaanxi, People's Republic of China.
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road., Xi'an, 710061, Shaanxi, People's Republic of China.
- Phase I Clinical Trial Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
15
|
Liu Y, Zhao Y, Song H, Li Y, Liu Z, Ye Z, Zhao J, Wu Y, Tang J, Yao M. Metabolic reprogramming in tumor immune microenvironment: Impact on immune cell function and therapeutic implications. Cancer Lett 2024; 597:217076. [PMID: 38906524 DOI: 10.1016/j.canlet.2024.217076] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Understanding of the metabolic reprogramming has revolutionized our insights into tumor progression and potential treatment. This review concentrates on the aberrant metabolic pathways in cancer cells within the tumor microenvironment (TME). Cancer cells differ from normal cells in their metabolic processing of glucose, amino acids, and lipids in order to adapt to heightened biosynthetic and energy needs. These metabolic shifts, which crucially alter lactic acid, amino acid and lipid metabolism, affect not only tumor cell proliferation but also TME dynamics. This review also explores the reprogramming of various immune cells in the TME. From a therapeutic standpoint, targeting these metabolic alterations represents a novel cancer treatment strategy. This review also discusses approaches targeting the regulation of metabolism of different nutrients in tumor cells and influencing the tumor microenvironment to enhance the immune response. In summary, this review summarizes metabolic reprogramming in cancer and its potential as a target for innovative therapeutic strategies, offering fresh perspectives on cancer treatment.
Collapse
Affiliation(s)
- Yuqiang Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yu Zhao
- Department of Thoracic Surgery, Sheng Jing Hospital, China Medical University, Shenyang, Liaoning, 110000, China
| | - Huisheng Song
- Affiliated Qingyuan Hospital, Guangzhou Medica University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511500, China
| | - Yunting Li
- Department of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zihao Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zhiming Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jianzhu Zhao
- Department of oncology, Sheng Jing Hospital, China Medical University, Shenyang, Liaoning, 110000, China
| | - Yuzheng Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jun Tang
- Department of Thoracic Surgery, Sheng Jing Hospital, China Medical University, Shenyang, Liaoning, 110000, China.
| | - Maojin Yao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Thoracic Surgery and Oncology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|
16
|
Hu Y, Zhou L, Wang Z, Ye Z, Liu H, Lu Y, Qi Z, Yang K, Zeng J, Li H, Tang R, Ren J, Guo R, Yao M. Assembled Embedded 3D Hydrogel System for Asynchronous Drug Delivery to Inhibit Postoperative Recurrence of Malignant Glioma and Promote Neurological Recovery. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202401383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 01/21/2025]
Abstract
AbstractSurgical resection of glioblastoma multiforme (GBM) often results in tumor recurrence and mild neurologic deficits. Here, a 3D asynchronous drug delivery system is innovatively developed to address the dual challenges of GBM recurrence and postoperative neurological deficit. Based on transcriptome analysis of tumor cells and tumor microenvironment (TME) cells between primary and recurrent mouse GBM tissues, a novel dual‐targeting approach is developed to combine mTOR pathway inhibition with microglia/macrophage repolarization. Then, in situ injectable methacrylated gelatin (GelMA) is constructed to perfectly fit into the tumor resection cavity and achieve direct delivery of dual‐targeted drugs, exhibiting outstanding postoperative GBM inhibitory effects in vivo. At the same time, neurotrophic factor‐saturated 3D‐printed GelMA patches are used to construct a 3D asynchronous drug delivery system, allowing gradual penetration of the neurotrophic factors into the underlying hydrogel to promote axonal sprouting after GBM suppression. Notably, this 3D asynchronous drug delivery system promotes neurological recovery without weakening the efficacy of inhibiting tumor recurrence. Therefore, this study not only proposes a new dual‐targeted GBM treatment strategy but also pioneers the construction of a 3D asynchronous drug delivery system for the comprehensive treatment of GBM. This study is expected to improve the poor prognosis of patients with GBM.
Collapse
Affiliation(s)
- Yang Hu
- State Key Laboratory of Respiratory Disease National Clinical Research Center for Respiratory Disease National Center for Respiratory Medicine Department of Thoracic Surgery and Oncology Guangzhou Institute of Respiratory Health The First Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong 510182 P. R. China
| | - Liming Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Key Laboratory of Regenerative Medicine of Ministry of Education Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development Department of Biomedical Engineering Jinan University Guangzhou 510632 P. R. China
| | - Zhenning Wang
- Department of Neurosurgery The Tenth Affiliated Hospital Southern Medical University (Dongguan People's Hospital) Dongguan 523018 P. R. China
| | - Zhiming Ye
- State Key Laboratory of Respiratory Disease National Clinical Research Center for Respiratory Disease National Center for Respiratory Medicine Department of Thoracic Surgery and Oncology Guangzhou Institute of Respiratory Health The First Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong 510182 P. R. China
| | - Huiling Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Key Laboratory of Regenerative Medicine of Ministry of Education Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development Department of Biomedical Engineering Jinan University Guangzhou 510632 P. R. China
| | - Yi Lu
- State Key Laboratory of Respiratory Disease National Clinical Research Center for Respiratory Disease National Center for Respiratory Medicine Department of Thoracic Surgery and Oncology Guangzhou Institute of Respiratory Health The First Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong 510182 P. R. China
| | - Zhihui Qi
- Department of Anesthesia The First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong 510080 P. R. China
| | - Kunhua Yang
- Department of Anesthesia The First Affiliated Hospital of Sun Yat‐sen University Guangzhou Guangdong 510080 P. R. China
| | - Jianhao Zeng
- Department of Microbiology Immunology, and Cancer Biology University of Virginia Health System Charlottesville VA 22908 USA
| | - Huimin Li
- State Key Laboratory of Respiratory Disease National Clinical Research Center for Respiratory Disease National Center for Respiratory Medicine Department of Thoracic Surgery and Oncology Guangzhou Institute of Respiratory Health The First Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong 510182 P. R. China
| | - Ruizhe Tang
- State Key Laboratory of Respiratory Disease National Clinical Research Center for Respiratory Disease National Center for Respiratory Medicine Department of Thoracic Surgery and Oncology Guangzhou Institute of Respiratory Health The First Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong 510182 P. R. China
| | - Jiaoyan Ren
- School of Food Sciences and Engineering South China University of Technology Guangzhou 510641 P. R. China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Key Laboratory of Regenerative Medicine of Ministry of Education Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development Department of Biomedical Engineering Jinan University Guangzhou 510632 P. R. China
| | - Maojin Yao
- State Key Laboratory of Respiratory Disease National Clinical Research Center for Respiratory Disease National Center for Respiratory Medicine Department of Thoracic Surgery and Oncology Guangzhou Institute of Respiratory Health The First Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong 510182 P. R. China
| |
Collapse
|
17
|
Qiu Y, Lu G, Li N, Hu Y, Tan H, Jiang C. Exosome-mediated communication between gastric cancer cells and macrophages: implications for tumor microenvironment. Front Immunol 2024; 15:1327281. [PMID: 38455041 PMCID: PMC10917936 DOI: 10.3389/fimmu.2024.1327281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
Gastric cancer (GC) is a malignant neoplasm originating from the epithelial cells of the gastric mucosa. The pathogenesis of GC is intricately linked to the tumor microenvironment within which the cancer cells reside. Tumor-associated macrophages (TAMs) primarily differentiate from peripheral blood monocytes and can be broadly categorized into M1 and M2 subtypes. M2-type TAMs have been shown to promote tumor growth, tissue remodeling, and angiogenesis. Furthermore, they can actively suppress acquired immunity, leading to a poorer prognosis and reduced tolerance to chemotherapy. Exosomes, which contain a myriad of biologically active molecules including lipids, proteins, mRNA, and noncoding RNAs, have emerged as key mediators of communication between tumor cells and TAMs. The exchange of these molecules via exosomes can markedly influence the tumor microenvironment and consequently impact tumor progression. Recent studies have elucidated a correlation between TAMs and various clinicopathological parameters of GC, such as tumor size, differentiation, infiltration depth, lymph node metastasis, and TNM staging, highlighting the pivotal role of TAMs in GC development and metastasis. In this review, we aim to comprehensively examine the bidirectional communication between GC cells and TAMs, the implications of alterations in the tumor microenvironment on immune escape, invasion, and metastasis in GC, targeted therapeutic approaches for GC, and the efficacy of potential GC drug resistance strategies.
Collapse
Affiliation(s)
- Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Guimei Lu
- Department of Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Na Li
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Yanyan Hu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Hao Tan
- Thoracic Esophageal Radiotherapy Department, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Chengyao Jiang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|