1
|
Zheng L, Lu J, Kong D, Zhan Y. A gene signature related to programmed cell death to predict immunotherapy response and prognosis in colon adenocarcinoma. PeerJ 2025; 13:e18895. [PMID: 39950044 PMCID: PMC11823652 DOI: 10.7717/peerj.18895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/03/2025] [Indexed: 02/16/2025] Open
Abstract
Background Tumor development involves the critical role of programmed cell death (PCD), but the correlation between colon adenocarcinoma (COAD) and PCD-related genes is not clear. Methods Subtyping analysis of COAD was performed by consensus clustering based on The Cancer Genome Atlas (TCGA), with the AC-ICAM queue from the cBioportal database as a validation set. Immune infiltration of the samples was evaluated using CIBERSORT and Microenvironment Cell Populations (MCP)-counter algorithms. Patients' immunotherapy response was predicted by the TIDE and aneuploidy scores. Pathway enrichment analysis was conducted with gene set enrichment analysis (GSEA). A RiskScore model was established with independent prognostic PCD-related genes filtered by Cox regression analysis. The mafCompare function was used to compare the differences in mutation rates of somatic genes. Wound healing, transwell assays and Flow cytometer were applied to measure the cell migration, invasion and apoptosis. Results The patients were grouped into S1 and S2 subtypes based on a total of 21 PCD genes associated with the prognostic outcomes of COAD. Specifically, patients of S1 subtype were mainly related to the pathway activation in tumor invasion and deterioration and had a worse prognosis. A RiskScore model was established based on six prognostic genes, including two protective genes (ATOH1, ZG16) and four risk genes (HSPA1A, SEMA4C, CDKN2A, ARHGAP4). Notably, silencing of CDKN2A inhibited the activity of migration and invasion and promoted apoptosis of tumor cells. Based on the RiskScore model, the patients were grouped into high- and low-risk groups. Independent prognostic factors, namely, Age, pathologic_M, pathologic_stage, and RiskScore, were integrated to develop a nomogram with strong good prediction performance. High-risk group had high-expressed immune checkpoint genes and higher TIDE scores, showing a strong immune escape ability and less active immunotherapy response. Compared to the low-risk group, TP53 exhibited a higher rate of somatic mutation in the high-risk group. Conclusion We constructed a RiskScore model with six PCD-related genes for the prognostic assessment of COAD, providing a valuable insight into the exploration of new targets for the prognostic improvement in COAD.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| | - Jia Lu
- Department of Infection Management, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| | - Dalu Kong
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| | - Yang Zhan
- Department of Colorectal Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| |
Collapse
|
2
|
Bao S, Zhang Y, Zeng J, Zhang B, Wang H, Li X, Zhang H, Cheng Y, Xia W, Xu X, Zu L, Xu S, Song Z. Innovative role of the antidepressant imipramine in esophageal squamous cell carcinoma treatment: Promoting apoptosis and protective autophagy. Int Immunopharmacol 2025; 147:113969. [PMID: 39764996 DOI: 10.1016/j.intimp.2024.113969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is among the most prevalent malignant tumors; it is associated with dismal prognosis, and effective therapeutic agents are lacking. Depression is prevalent concern among cancer patients and is linked to diminished quality of life, poor adherence to treatment, heightened risk of suicide, and poorer prognosis. Imipramine (IM) is a tricyclic antidepressant with anti-inflammatory activity. Recent reports have indicated antitumor effects of IM in various cancers, although its role in ESCC remains unclear. METHODS The depression status of patients with ESCC was graded with the Patient Health Questionnaire-9, and the effects of antidepressants (moclobemide, milnacipran, venlafaxine, escitalopram, amitriptyline, trazodone, fluvoxamine, and IM) on cell viability were evaluated through CCK-8 assays. The effects of IM on cell proliferation were evaluated through clone formation assays, whereas Transwell assays were used to assess effects on ESCC cell migration and invasion. IM-induced apoptosis was confirmed with annexin V-FITC/Caspase-3 assays, and immunofluorescence staining was used to investigate the formation of IM-induced autophagosomes. Furthermore, western blotting analysis was conducted to determine the expression levels of apoptosis- and autophagy-related proteins. RNA sequencing (RNA-seq) was used to examine signaling pathway changes. Finally, we investigated the influence of IM on tumor progression in vivo in a xenograft model. RESULTS The PHQ-9 scores of patients with ESCC were higher than those of healthy controls and positively correlated with the TNM stage of ESCC. Among the antidepressants examined in our study, IM demonstrated the most potent inhibitory effect on ESCC cell viability, and effectively suppressed the proliferation, migration, and invasion of ESCC cells. Additionally, IM treatment induced apoptosis and autophagy in ESCC cells. Furthermore, blocking autophagy with chloroquine (CQ) intensified IM-induced apoptosis, thereby suggesting a protective role of cellular autophagy against apoptosis. RNA-seq results indicated that the Hippo pathway was associated with IM treatment. Upregulation of YAP reversed the apoptosis and autophagy triggered by IM, and targeting YAP intensified this effect. Finally, in animal experiments, IM hindered the growth of ESCC cells and promoted apoptosis and autophagy in tumors while causing minimal toxicity. CONCLUSION Our findings provide the first reported evidence that IM triggers apoptosis and protective autophagy in ESCC cells via the Hippo signaling pathway, thus suggesting that IM may offer a promising therapeutic approach for patients with ESCC and depression.
Collapse
Affiliation(s)
- Shihao Bao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yifan Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingtong Zeng
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, China
| | - Bo Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hanqing Wang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianjie Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Cheng
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Xia
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Xu
- Colleges of Nursing, Tianjin Medical University, Tianjin, China
| | - Lingling Zu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Song Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
3
|
Iorkula TH, Jude-Kelly Osayawe O, Odogwu DA, Ganiyu LO, Faderin E, Awoyemi RF, Akodu BO, Ifijen IH, Aworinde OR, Agyemang P, Onyinyechi OL. Advances in pyrazolo[1,5- a]pyrimidines: synthesis and their role as protein kinase inhibitors in cancer treatment. RSC Adv 2025; 15:3756-3828. [PMID: 39911541 PMCID: PMC11795850 DOI: 10.1039/d4ra07556k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Pyrazolo[1,5-a]pyrimidines are a notable class of heterocyclic compounds with potent protein kinase inhibitor (PKI) activity, playing a critical role in targeted cancer therapy. Protein kinases, key regulators in cellular signalling, are frequently disrupted in cancers, making them important targets for small-molecule inhibitors. This review explores recent advances in pyrazolo[1,5-a]pyrimidine synthesis and their application as PKIs, with emphasis on inhibiting kinases such as CK2, EGFR, B-Raf, MEK, PDE4, BCL6, DRAK1, CDK1 and CDK2, Pim-1, among others. Several synthetic strategies have been developed for the efficient synthesis of pyrazolo[1,5-a]pyrimidines, including cyclization, condensation, three-component reactions, microwave-assisted methods, and green chemistry approaches. Palladium-catalyzed cross-coupling and click chemistry have enabled the introduction of diverse functional groups, enhancing the biological activity and structural diversity of these compounds. Structure-activity relationship (SAR) studies highlight the influence of substituent patterns on their pharmacological properties. Pyrazolo[1,5-a]pyrimidines act as ATP-competitive and allosteric inhibitors of protein kinases, with EGFR-targeting derivatives showing promise in non-small cell lung cancer (NSCLC) treatment. Their inhibitory effects on B-Raf and MEK kinases are particularly relevant in melanoma. Biological evaluations, including in vitro and in vivo studies, have demonstrated their cytotoxicity, kinase selectivity, and antiproliferative effects. Despite these advances, challenges such as drug resistance, off-target effects, and toxicity persist. Future research will focus on optimizing synthetic approaches, improving drug selectivity, and enhancing bioavailability to increase clinical efficacy.
Collapse
Affiliation(s)
- Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | | - Daniel A Odogwu
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University 1Harirpin Dr Edwardsville IL 62026 USA
| | | | - Busayo Odunayo Akodu
- Department of Pharmaceutical Sciences, Southern Illinois University 1Harirpin Dr Edwardsville IL 62026 USA
| | | | | | - Peter Agyemang
- Department of Chemistry, Michigan Technological University 1400 Townsend Dr Houghton MI 49931 USA
| | | |
Collapse
|
4
|
Lee H, Cho SW, Cha HS, Tae K, Choi CY. Transient activation of YAP/TAZ confers resistance to morusin-induced apoptosis. BMC Mol Cell Biol 2025; 26:4. [PMID: 39833669 PMCID: PMC11744988 DOI: 10.1186/s12860-025-00531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The Hippo signaling pathway involves a kinase cascade that controls phosphorylation of the effector proteins YAP and TAZ, leading to regulation of cell growth, tissue homeostasis, and apoptosis. Morusin, a compound extracted from Morus alba, has shown potential in cancer therapy by targeting multiple signaling pathways, including the PI3K/Akt/mTOR, JAK/STAT, MAPK/ERK, and apoptosis pathways. This study explores the effects of morusin on YAP activation and its implications for apoptosis resistance. RESULTS Our investigation revealed that morusin induces transient YAP activation, characterized by the dephosphorylation of YAP at S127 and nuclear localization, followed by gradual rephosphorylation in multiple cancer cells. Notably, this activation occurs independently of the canonical Hippo pathway and involves the LATS1/2, MINK1, and MAPK pathways during the YAP inactivation stage. Furthermore, morusin-induced stress granule formation was significantly impaired in YAP/TAZ-depleted cells, suggesting a role in apoptosis resistance. Additionally, the expression of constitutively active MINK1 maintained YAP activation and reduced apoptosis, indicating that prolonged YAP activation can enhance resistance to cell death. CONCLUSIONS These findings suggest that YAP/TAZ are crucial in resistance to morusin-induced apoptosis, and targeting YAP/TAZ could enhance the anti-cancer efficacy of morusin. Our study provides new insights into the molecular mechanisms of morusin, highlighting potential therapeutic strategies against cancer by disrupting apoptosis resistance.
Collapse
Affiliation(s)
- Hoyeon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang Woo Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyo Sun Cha
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kun Tae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Zhu B, Li F, Yu J, Liang Z, Ke X, Wang Y, Song Z, Li Z, Li G, Guo Y. PIEZO1 mediates matrix stiffness-induced tumor progression in kidney renal clear cell carcinoma by activating the Ca 2+/Calpain/YAP pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119871. [PMID: 39490703 DOI: 10.1016/j.bbamcr.2024.119871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE The significance of physical factors in the onset and progression of tumors has been increasingly substantiated by a multitude of studies. The extracellular matrix, a pivotal component of the tumor microenvironment, has been the subject of extensive investigation in connection with the advancement of KIRC (Kidney Renal Clear Cell Carcinoma) in recent years. PIEZO1, a mechanosensitive ion channel, has been recognized as a modulator of diverse physiological processes. Nonetheless, the precise function of PIEZO1 as a transducer of mechanical stimuli in KIRC remains poorly elucidated. METHODS A bioinformatics analysis was conducted using data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) to explore the correlation between matrix stiffness indicators, such as COL1A1 and LOX mRNA levels, and KIRC prognosis. Expression patterns of mechanosensitive ion channels, particularly PIEZO1, were examined. Collagen-coated polyacrylamide hydrogel models were utilized to simulate varying stiffness environments and study their effects on KIRC cell behavior in vitro. Functional experiments, including PIEZO1 knockdown and overexpression, were performed to investigate the molecular mechanisms underlying matrix stiffness-induced cellular changes. Interventions in the Ca2+/Calpain/YAP Pathway were conducted to evaluate their effects on cell growth, EMT, and stemness characteristics. RESULTS Our findings indicate a significant correlation between matrix stiffness and the prognosis of KIRC patients. It is observed that higher mechanical stiffness can facilitate the growth and metastasis of KIRC cells. Notably, we have also observed that the deficiency of PIEZO1 hinders the proliferation, EMT, and stemness characteristics of KIRC cells induced by a stiff matrix. Our study suggests that PIEZO1 plays a crucial role in mediating KIRC growth and metastasis through the activation of the Ca2+/Calpain/YAP Pathway. CONCLUSION This study elucidates a novel mechanism through which the activation of PIEZO1 leads to calcium influx, subsequent calpain activation, and YAP nuclear translocation, thereby contributing to the progression of KIRC driven by matrix stiffness.
Collapse
Affiliation(s)
- Biqiang Zhu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China.
| | - Fan Li
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China.
| | - Jiajun Yu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Zhulin Liang
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Xinwen Ke
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Yong Wang
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Zhengshuai Song
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Zhongyuan Li
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Guohao Li
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Yonglian Guo
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China.
| |
Collapse
|
6
|
Weng C, Jin R, Jin X, Yang Z, He C, Zhang Q, Xu J, Lv B. Exploring the Mechanisms, Biomarkers, and Therapeutic Targets of TRIM Family in Gastrointestinal Cancer. Drug Des Devel Ther 2024; 18:5615-5639. [PMID: 39654601 PMCID: PMC11626976 DOI: 10.2147/dddt.s482340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
Gastrointestinal region (GI) cancers are closely linked to the ubiquitination system, with the E3 ubiquitin ligase playing a crucial role by targeting various substrates. As E3 ubiquitin ligases, proteins of tripartite motif (TRIM) family play a role in cancer signaling, development, apoptosis, and formation. These proteins regulate diverse biological activities and signaling pathways. This study comprehensively outlines the functions of TRIM proteins in gastrointestinal physiology, contributing to our knowledge of the molecular pathways involved in gastrointestinal tumors. Gastrointestinal region (GI) cancers are closely linked to the ubiquitination system, with the E3 ubiquitin ligase playing a crucial role by targeting various substrates.
Collapse
Affiliation(s)
- Chunyan Weng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Rijuan Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiaoliang Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zimei Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Chenghai He
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Qiuhua Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jingli Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
7
|
Hou M, Li X, Chen F, Tan Z, Han X, Liu J, Zhou J, Shi Y, Zhang J, Lv J, Leng Y. Naringenin alleviates intestinal ischemia/reperfusion injury by inhibiting ferroptosis via targeting YAP/STAT3 signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156095. [PMID: 39383632 DOI: 10.1016/j.phymed.2024.156095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Intestinal ischemia/reperfusion injury (IRI) is a significant clinical emergency, and investigating novel therapeutic approaches and understanding their underlying mechanisms is essential for improving patient outcomes. Naringenin (Nar), a flavanone present in tomatoes and citrus fruits, is frequently consumed in the human diet and recognized for having immunomodulatory, anti-inflammatory, and antioxidant properties. Despite Nar being able to alleviate intestinal IRI, the exact molecular mechanisms remain elusive. PURPOSE To investigate Nar's protective properties on intestinal IRI and elucidate the mechanisms, a comprehensive approach that combines network pharmacology analysis with experimental verification in vitro and in vivo was adopted. METHODS The oxygen-glucose deprivation/reoxygenation (OGD/R) model in IEC-6 cells and a murine model of intestinal IRI were used. Nar's effects on intestinal IRI were assessed through histological analysis using H&E staining and tight junction (TJ) protein expression. Ferroptosis-related parameters, including iron levels, superoxide dismutase (SOD), glutathione (GSH), reactive oxygen species (ROS), malondialdehyde (MDA), and mitochondrial morphology, were analyzed. Network pharmacology was utilized to predict the pathways through which Nar exerts its anti-ferroptosis effects. Further mechanistic insights were obtained through si-RNA transfection, YAP inhibitor (verteporfin, VP) treatment, ferroptosis inhibitor (Ferrostatin-1) and ferroptosis inducer (Erastin) application, co-immunoprecipitation (Co-IP) and Western blotting. RESULTS Our results revealed that pretreatment with Nar significantly mitigated intestinal tissue damage and improved gut barrier function, as evidenced by increased TJ proteins (ZO-1 and Occludin). Nar reduced iron, MDA, and ROS, while it increased GSH and SOD levels. Additionally, Nar alleviated mitochondrial damage in mice. Nar treatment increased GPX4 and SLC7A11, while decreasing ACSL4 levels both in vivo and in vitro. Network pharmacology analysis suggested that Nar may target the Hippo signaling pathway. Notably, YAP, a key transcriptional co-activator within the Hippo pathway, was downregulated in intestinal IRI mice and OGD/R-induced IEC-6 cells. Nar pretreatment activated YAP, thereby augmenting anti-ferroptosis effects. The inhibition of YAP activation by VP or YAP knockdown increased p-STAT3 expression, thereby diminishing Nar's efficacy. Co-IP and immunofluorescence studies confirmed the interaction between YAP and STAT3. CONCLUSION This study shows that Nar can inhibit ferroptosis in intestinal IRI via activating YAP, which in turn suppresses STAT3 phosphorylation, thereby unveiling a novel mechanism and supporting Nar's potential to be a promising therapeutic agent for intestinal IRI.
Collapse
Affiliation(s)
- Min Hou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Xiaoxi Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Feng Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Zhiguo Tan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Xiaoxia Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jie Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jia Zhou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Yajing Shi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jianmin Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jipeng Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
| | - Yufang Leng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China; Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
8
|
Ge A, Xiang W, Li Y, Zhao D, Chen J, Daga P, Dai CC, Yang K, Yan Y, Hao M, Zhang B, Xiao W. Broadening horizons: the multifaceted role of ferroptosis in breast cancer. Front Immunol 2024; 15:1455741. [PMID: 39664391 PMCID: PMC11631881 DOI: 10.3389/fimmu.2024.1455741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/21/2024] [Indexed: 12/13/2024] Open
Abstract
Breast cancer poses a serious threat to women's health globally. Current radiotherapy and chemotherapy regimens can induce drug-resistance effects in cancer tissues, such as anti-apoptosis, anti-pyroptosis, and anti-necroptosis, leading to poor clinical outcomes in the treatment of breast cancer. Ferroptosis is a novel programmed cell death modality characterized by iron overload, excessive generation of reactive oxygen species, and membrane lipid peroxidation. The occurrence of ferroptosis results from the imbalance between intracellular peroxidation mechanisms (executive system) and antioxidant mechanisms (defensive system), specifically involving iron metabolism pathways, amino acid metabolism pathways, and lipid metabolism pathways. In recent years, it has been found that ferroptosis is associated with the progression of various diseases, including tumors, hypertension, diabetes, and Alzheimer's disease. Studies have confirmed that triggering ferroptosis in breast cancer cells can significantly inhibit cancer cell proliferation and invasion, and improve cancer cell sensitivity to radiotherapy and chemotherapy, making induction of ferroptosis a potential strategy for the treatment of breast cancer. This paper reviews the development of the concept of ferroptosis, the mechanisms of ferroptosis (including signaling pathways such as GSH-GPX4, FSP1-CoQ1, DHODH-CoQ10, and GCH1-BH4) in breast cancer disease, the latest research progress, and summarizes the research on ferroptosis in breast cancer disease within the framework of metabolism, reactive oxygen biology, and iron biology. The key regulatory factors and mechanisms of ferroptosis in breast cancer disease, as well as important concepts and significant open questions in the field of ferroptosis and related natural compounds, are introduced. It is hoped that future research will make further breakthroughs in the regulatory mechanisms of ferroptosis and the use of ferroptosis in treating breast cancer cells. Meanwhile, natural compounds may also become a new direction for potential drug development targeting ferroptosis in breast cancer treatment. This provides a theoretical basis and opens up a new pathway for research and the development of drugs for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang Xiang
- Department of Rheumatology, The First People’s Hospital Changde City, Changde, Hunan, China
| | - Yan Li
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Da Zhao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junpeng Chen
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
- Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China
| | - Pawan Daga
- Department of Internal Medicine, University of Louisville, Louisville, KY, United States
| | - Charles C. Dai
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States
| | - Kailin Yang
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yexing Yan
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | | | - Wei Xiao
- Department of Rheumatology, The First People’s Hospital Changde City, Changde, Hunan, China
| |
Collapse
|
9
|
Liu Y, Chen L, Wang J, Bao X, Huang J, Qiu Y, Wang T, Yu H. Repurposing cyclovirobuxine D as a novel inhibitor of colorectal cancer progression via modulating the CCT3/YAP axis. Br J Pharmacol 2024; 181:4348-4368. [PMID: 38992898 DOI: 10.1111/bph.16494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND AND PURPOSE Colorectal cancer (CRC) ranks second in mortality worldwide and requires effective and affordable remedies. Cyclovirobuxine D (CVB-D) is the main effective component of Huangyangning tablet, an approved traditional patent medicine, which is mainly used for cardiovascular treatment. As a multibioactive natural compound, CVB-D possesses underlying anticancer activities. EXPERIMENTAL APPROACH Cell viability and clone-forming ability were determined in human CRC lines. Western blot, immunofluorescence assay, transmission electron microscopy and senescence-associated β-galactosidase (SA-β-Gal) staining were utilized to investigate cell autophagy and senescence. The molecular mechanisms were explored by virtual prediction and experimental validation. Patient-derived xenograft (PDX), dextran sulfate sodium salt (DSS), and azomethane (AOM)/DSS mouse models were employed for in vivo studies. KEY RESULTS CVB-D inhibited the growth and development of advanced CRC cells / mice by inducing autophagic and senescent activities through the chaperonin containing TCP1 subunit 3 (CCT3)/yes-associated protein (YAP) axis. CVB-D acted as a promising inhibitor of CCT3 by interacting with its ATP site. In PDX tumours, CVB-D showed potential therapeutic effects by targeting CCT3. Treatment with CVB-D alleviated the mouse model of colitis induced by DSS and attenuated AOM/DSS-induced formation of adenomatous polyps by its action on CCT3. CONCLUSIONS AND IMPLICATIONS Our study has provided a scientific basis for the suggestion that CVB-D may be recognized as a prospective drug candidate for the therapy of CRC in patients.
Collapse
Affiliation(s)
- Yiman Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xiaomei Bao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiayan Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
10
|
Gu Y, Xu T, Fang Y, Shao J, Hu T, Wu X, Shen H, Xu Y, Zhang J, Song Y, Xia Y, Shu Y, Ma P. CBX4 counteracts cellular senescence to desensitize gastric cancer cells to chemotherapy by inducing YAP1 SUMOylation. Drug Resist Updat 2024; 77:101136. [PMID: 39154499 DOI: 10.1016/j.drup.2024.101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/10/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
AIMS As our comprehension of the intricate relationship between cellular senescence and tumor biology continues to evolve, the therapeutic potential of cellular senescence is gaining increasing recognition. Here, we identify chromobox 4 (CBX4), a Small Ubiquitin-related Modifier (SUMO) E3 ligase, as an antagonist of cellular senescence and elucidate a novel mechanism by which CBX4 promotes drug resistance and malignant progression of gastric cancer (GC). METHODS In vitro and in vivo models were conducted to investigate the manifestation and impact of CBX4 on cellular senescence and chemoresistance. High-throughput sequencing, chromatin immunoprecipitation, and co-immunoprecipitation techniques were utilized to identify the upstream regulators and downstream effectors associated with CBX4, revealing its intricate regulatory network. RESULTS CBX4 diminishes the sensitivity of GC cells to cellular senescence, facilitating chemoresistance and GC development by deactivating the senescence-related Hippo pathway. Mechanistically, low-dose cisplatin transcriptionally downregulates CBX4 through CEBPB. In addition, CBX4 preserves the stability and cytoplasm-nuclear transport of YAP1, the key player of Hippo pathway, by inducing SUMO1 modification at K97 and K280, which competitively inhibits YAP1-S127 phosphorylation. CONCLUSIONS Our study highlights the anti-senescence role of CBX4 and suggests that CBX4 inhibition in combination with low-dose cisplatin has the potential to overcome chemoresistance and effectively restrict GC progression.
Collapse
Affiliation(s)
- Yunru Gu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tingting Xu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuan Fang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Shao
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tong Hu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xi Wu
- Department of Oncology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Haoyang Shen
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yangyue Xu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jingxin Zhang
- Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang Clinic School of Nanjing Medical University, Zhenjiang 212002, China
| | - Yu Song
- Zhangjiagang Hospital affiliated to Soochow University, China.
| | - Yang Xia
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Yongqian Shu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, China.
| | - Pei Ma
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
11
|
Yi Y, Yan Y, Zhan G, Deng W, Wei Y, Zhang Y, Gao J, Gong Q. Trilobatin, a Novel Naturally Occurring Food Additive, Ameliorates Alcoholic Liver Disease in Mice: Involvement of Microbiota-Gut-Liver Axis and Yap/Nrf2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23819-23831. [PMID: 39169659 DOI: 10.1021/acs.jafc.4c04131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Trilobatin, a novel natural food additive, exerts a protective effect on acute liver injury. However, whether Trilobatin can protect against alcoholic liver disease (ALD) has not been elucidated. This research is intended to ascertain the impact of Trilobatin on ALD in mice and decipher the potential underlying mechanisms. Lieber-DeCarli liquid alcohol diet was used to induce ALD in mice, followed by administration of Trilobatin (10, 20, 40 mg·kg-1·d-1) for 15 days. The results suggested that Trilobatin significantly alleviated ethanol-induced hepatic injury in mice. Furthermore, RNA-Seq analysis revealed that yes-associated protein (YAP) downregulation occurred in the liver after Trilobatin treatment. Mechanistically, Trilobatin directly bound to YAP and hindered its nuclear translocation, which activated the Nrf2 pathway to reduce pro-inflammatory cytokines and oxidative stress. Intriguingly, 16S rDNA analysis results revealed that Trilobatin reshaped the gut microbiota, reducing harmful bacteria and increasing beneficial bacteria. It also enhanced tight junction proteins, defending against damage to the intestinal barrier. These findings not only highlight the microbiota-gut-liver axis and YAP/Nrf2 pathway as crucial potential targets to treat ALD but also reveal that Trilobatin effectively protects against ALD, at least partly, through modulating the microbiota-gut-liver axis and YAP/Nrf2 pathway.
Collapse
Affiliation(s)
- Yang Yi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - You Yan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Guiyu Zhan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Weikun Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Yu Wei
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Yuandong Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Jianmei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Chinese Pharmacological Society-Guizhou Province Joint Laboratory for Pharmacology, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
12
|
Gao F, Huang Y, Yang M, He L, Yu Q, Cai Y, Shen J, Lu B. Machine learning-based cell death marker for predicting prognosis and identifying tumor immune microenvironment in prostate cancer. Heliyon 2024; 10:e37554. [PMID: 39309810 PMCID: PMC11414577 DOI: 10.1016/j.heliyon.2024.e37554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Background Prostate cancer (PCa) incidence and mortality rates are rising, necessitating precise prognostic tools to guide personalized treatment. Dysregulation of programmed cell death pathways in tumor suppression and cancer development has garnered increasing attention, providing a new research direction for identifying biomarkers and potential therapeutic targets. Methods Integrating multiple database resources, we constructed and optimized a prognostic signature based on the expression of programmed cell death-related genes (PCDRG) using ten machine learning algorithms. Model performance and prognostic effects were further evaluated. We analyzed the relationships between signature and clinicopathological features, somatic mutations, drug sensitivity, and the tumor immune microenvironment, and constructed a nomogram. The expression level of PCDRGs were evaluated and compared. Results Of 1560 PCDRGs, 149 were differentially expressed in PCa, with 34 associated with biochemical recurrence. The PCDRG-derived index (PCDI), constructed using the random forest algorithm, exhibited optimal prognostic performance, successfully stratifying PCa patients into two groups with significant prognostic differences. Patients with high PCDI scores exhibited poorer survival and lower immunotherapy benefit. PCDI was closely associated with the infiltration of specific immune cells, particularly positive correlations with macrophages and T helper cells, and negative correlations with neutrophils, suggesting that PCDI may influence the tumor immune microenvironment, thereby affecting patient prognosis and treatment response. PCDI was associated with age, pathological stage, somatic mutations, and drug sensitivity. The PCDI-based nomogram demonstrated excellent performance in predicting biochemical recurrence in PCa patients. Finally, the differential expression of these PCDRGs was verified based on cell lines and PCa patient expression profile data. Conclusion This study developed an effective prognostic indicator for prostate cancer, PCDI, using machine learning approaches. PCDI reflects the link between aberrant programmed cell death pathways and disease progression and treatment response.
Collapse
Affiliation(s)
- Feng Gao
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China
| | - Yasheng Huang
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China
| | - Mei Yang
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China
| | - Liping He
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China
| | - Qiqi Yu
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China
| | - Yueshu Cai
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China
| | - Jie Shen
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China
| | - Bingjun Lu
- Department of Urology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, 310007, China
| |
Collapse
|
13
|
Choi SH, Kim DY. Regulation of Tumor Microenvironment through YAP/TAZ under Tumor Hypoxia. Cancers (Basel) 2024; 16:3030. [PMID: 39272887 PMCID: PMC11394240 DOI: 10.3390/cancers16173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
In solid tumors such as hepatocellular carcinoma (HCC), hypoxia is one of the important mechanisms of cancer development that closely influences cancer development, survival, and metastasis. The development of treatments for cancer was temporarily revolutionized by immunotherapy but continues to be constrained by limited response rates and the resistance and high costs required for the development of new and innovative strategies. In particular, solid tumors, including HCC, a multi-vascular tumor type, are sensitive to hypoxia and generate many blood vessels for metastasis and development, making it difficult to treat HCC, not only with immunotherapy but also with drugs targeting blood vessels. Therefore, in order to develop a treatment strategy for hypoxic tumors, various mechanisms must be explored and analyzed to treat these impregnable solid tumors. To date, tumor growth mechanisms linked to hypoxia are known to be complex and coexist with various signal pathways, but recently, mechanisms related to the Hippo signal pathway are emerging. Interestingly, Hippo YAP/TAZ, which appear during early tumor and normal tumor growth, and YAP/TAZ, which appear during hypoxia, help tumor growth and proliferation in different directions. Peculiarly, YAP/TAZ, which have different phosphorylation directions in the hypoxic environment of tumors, are involved in cancer proliferation and metastasis in various carcinomas, including HCC. Analyzing the mechanisms that regulate the function and expression of YAP in addition to HIF in the complex hypoxic environment of tumors may lead to a variety of anti-cancer strategies and combining HIF and YAP/TAZ may develop the potential to change the landscape of cancer treatment.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Institute of Health & Environment, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs Inc., Seoul 08826, Republic of Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Yonsei Liver Cancer Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea
| |
Collapse
|
14
|
何 华, 刘 璐, 刘 颖, 陈 纳, 孙 素. [Sodium butyrate and sorafenib synergistically inhibit hepatocellular carcinoma cells possibly by inducing ferroptosis through inhibiting YAP]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1425-1430. [PMID: 39051089 PMCID: PMC11270652 DOI: 10.12122/j.issn.1673-4254.2024.07.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To investigate whether sodium butyrate (NaB) and sorafenib synergistically induces ferroptosis to suppress proliferation of hepatocellular carcinoma cells and the possible underlying mechanisms. METHODS CCK8 assay and colony formation assay were used to assess the effects of NaB and sorafenib, alone or in combination, on proliferation of HepG2 cells, and ferroptosis of the treated cells was detected with GSH assay and C11-BODIPY 581/591 fluorescent probe. TCGA database was used to analyze differential YAP gene expression between liver cancer and normal tissues. The effects of NaB and sorafenib on YAP and p-YAP expressions in HepG2 cells were invesitigated using Western blotting. RESULTS NaB (2 mmol/L) significantly reduced the IC50 of sorafenib in HepG2 cells, and combination index analysis confirmed the synergy between sorafenib and NaB. The ferroptosis inhibitor Fer-1 and the YAP activator (XMU) obviously reversed the growthinhibitory effects of the combined treatment with NaB and sorafenib in HepG2 cells. The combined treatment with NaB and sorafenib, as compared with the two agents used alone, significantly inhibited colony formation of HepG2 cells, further enhanced cellular shrinkage and dispersion, and decreased intracellular GSH and lipid ROS levels, and these effects were reversed by Fer-1 and XMU. TCGA analysis revealed a higher YAP mRNA expression in liver cancer tissues than in normal liver tissues. NaB combined with sorafenib produced significantly stronger effects than the individual agents for downregulating YAP protein expression and upregulating YAP phosphorylation level in HepG2 cells. CONCLUSION NaB combined with sorafenib synergistically inhibit hepatocellular carcinoma cell proliferation possibly by inducing ferroptosis via inhibiting YAP expression.
Collapse
|
15
|
Pieniążek B, Cencelewicz K, Bździuch P, Młynarczyk Ł, Lejman M, Zawitkowska J, Derwich K. Neuroblastoma-A Review of Combination Immunotherapy. Int J Mol Sci 2024; 25:7730. [PMID: 39062971 PMCID: PMC11276848 DOI: 10.3390/ijms25147730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor found in childhood and is responsible for 15% of deaths among children with cancer. Although multimodal therapies focused on surgery, chemotherapy, radiotherapy, and stem cell transplants have favorable results in many cases, the use of conventional therapies has probably reached the limit their possibility. Almost half of the patients with neuroblastoma belong to the high-risk group. Patients in this group require a combination of several therapeutic approaches. It has been shown that various immunotherapies combined with conventional methods can work synergistically. Due to the development of such therapeutic methods, we present combinations and forms of combining immunotherapy, focusing on their mechanisms and benefits but also their limitations and potential side effects.
Collapse
Affiliation(s)
- Barbara Pieniążek
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (B.P.); (K.C.); (P.B.)
| | - Katarzyna Cencelewicz
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (B.P.); (K.C.); (P.B.)
| | - Patrycja Bździuch
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (B.P.); (K.C.); (P.B.)
| | - Łukasz Młynarczyk
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (Ł.M.); (K.D.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantation, Medical University of Lublin, 20-093 Lublin, Poland
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, 60-572 Poznań, Poland; (Ł.M.); (K.D.)
| |
Collapse
|
16
|
Sergeeva KV, Tyganov SA, Zaripova KA, Bokov RO, Nikitina LV, Konstantinova TS, Kalamkarov GR, Shenkman BS. Mechanical and signaling responses of unloaded rat soleus muscle to chronically elevated β-myosin activity. Arch Biochem Biophys 2024; 754:109961. [PMID: 38492659 DOI: 10.1016/j.abb.2024.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
It has been reported that muscle functional unloading is accompanied by an increase in motoneuronal excitability despite the elimination of afferent input. Thus, we hypothesized that pharmacological potentiation of spontaneous contractile soleus muscle activity during hindlimb unloading could activate anabolic signaling pathways and prevent the loss of muscle mass and strength. To investigate these aspects and underlying molecular mechanisms, we used β-myosin allosteric effector Omecamtiv Mekarbil (OM). We found that OM partially prevented the loss of isometric strength and intrinsic stiffness of the soleus muscle after two weeks of disuse. Notably, OM was able to attenuate the unloading-induced decrease in the rate of muscle protein synthesis (MPS). At the same time, the use of drug neither prevented the reduction in the markers of translational capacity (18S and 28S rRNA) nor activation of the ubiquitin-proteosomal system, which is evidenced by a decrease in the cross-sectional area of fast and slow muscle fibers. These results suggest that chemically-induced increase in low-intensity spontaneous contractions of the soleus muscle during functional unloading creates prerequisites for protein synthesis. At the same time, it should be assumed that the use of OM is advisable with pharmacological drugs that inhibit the expression of ubiquitin ligases.
Collapse
Affiliation(s)
- K V Sergeeva
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia.
| | - S A Tyganov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - K A Zaripova
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - R O Bokov
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - L V Nikitina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - T S Konstantinova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - G R Kalamkarov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - B S Shenkman
- Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|