1
|
Di Filippo F, Brevini TAL, Pennarossa G, Gandolfi F. Generation of bovine decellularized testicular bio-scaffolds as a 3D platform for testis bioengineering. Front Bioeng Biotechnol 2025; 12:1532107. [PMID: 39877269 PMCID: PMC11772495 DOI: 10.3389/fbioe.2024.1532107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Accelerating the genetic selection to obtain animals more resilient to climate changes, and with a lower environmental impact, would greatly benefit by a substantial shortening of the generation interval. One way to achieve this goal is to generate male gametes directly from embryos. However, spermatogenesis is a complex biological process that, at present, can be partially reproduced in vitro only in the mouse. The development of reliable 3D in vitro models able to mimic the architecture and the physiological microenvironment of the testis, represents a possible strategy to facilitate ex vivo haploid male gamete generation in domestic species. Here we describe the creation of bovine testicular bio-scaffolds and their successful repopulation in vitro with bovine testicular cells. In particular, bovine testes are subjected to three different decellularization protocols. Cellular compartment removal and extracellular matrix preservation are evaluated. The generated bio-scaffolds are then repopulated with bovine testicular fibroblasts. The results obtained demonstrate that the decellularization protocol involving the use of 0.3% sodium dodecyl sulfate (SDS) for 12 h efficiently eliminates native cells, while preserving intact ECM composition and microstructure. Its subsequent repopulation with bovine fibroblasts demonstrates successful cell homing, colonization and growth, consistent with the scaffold ability to sustain cell adherence and proliferation. Overall, the generated 3D bio-scaffolds may constitute a suitable artificial niche for ex vivo culture of testicular cells and may represent a possible strategy to reproduce spermatogenesis in vitro.
Collapse
Affiliation(s)
- Francesca Di Filippo
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, Italy
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Ha P, Liu TP, Li C, Zheng Z. Novel Strategies for Orofacial Soft Tissue Regeneration. Adv Wound Care (New Rochelle) 2023; 12:339-360. [PMID: 35651274 DOI: 10.1089/wound.2022.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Significance: Orofacial structures are indispensable for speech and eating, and impairment disrupts whole-body health through malnutrition and poor quality of life. However, due to the unique and highly specialized cell populations, tissue architecture, and healing microenvironments, regeneration in this region is challenging and inadequately addressed to date. Recent Advances: With increasing understanding of the nuanced physiology and cellular responses of orofacial soft tissue, novel scaffolds, seeded cells, and bioactive molecules were developed in the past 5 years to specifically target orofacial soft tissue regeneration, particularly for tissues primarily found within the orofacial region such as oral mucosa, taste buds, salivary glands, and masseter muscles. Critical Issues: Due to the tightly packed and complex anatomy, orofacial soft tissue injury commonly implicates multiple tissue types, and thus functional unit reconstruction in the orofacial region is more important than single tissue regeneration. Future Directions: This article reviews the up-to-date knowledge in this highly translational topic, which provides insights into novel biologically inspired and engineered strategies for regenerating orofacial component tissues and functional units.
Collapse
Affiliation(s)
- Pin Ha
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Timothy P Liu
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhong Zheng
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Socci MC, Rodríguez G, Oliva E, Fushimi S, Takabatake K, Nagatsuka H, Felice CJ, Rodríguez AP. Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioengineering (Basel) 2023; 10:bioengineering10020218. [PMID: 36829712 PMCID: PMC9952269 DOI: 10.3390/bioengineering10020218] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
Tissue Engineering (TE) is an interdisciplinary field that encompasses materials science in combination with biological and engineering sciences. In recent years, an increase in the demand for therapeutic strategies for improving quality of life has necessitated innovative approaches to designing intelligent biomaterials aimed at the regeneration of tissues and organs. Polymeric porous scaffolds play a critical role in TE strategies for providing a favorable environment for tissue restoration and establishing the interaction of the biomaterial with cells and inducing substances. This article reviewed the various polymeric scaffold materials and their production techniques, as well as the basic elements and principles of TE. Several interesting strategies in eight main TE application areas of epithelial, bone, uterine, vascular, nerve, cartilaginous, cardiac, and urinary tissue were included with the aim of learning about current approaches in TE. Different polymer-based medical devices approved for use in clinical trials and a wide variety of polymeric biomaterials are currently available as commercial products. However, there still are obstacles that limit the clinical translation of TE implants for use wide in humans, and much research work is still needed in the field of regenerative medicine.
Collapse
Affiliation(s)
- María Cecilia Socci
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
- Correspondence: (M.C.S.); (A.P.R.)
| | - Gabriela Rodríguez
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Emilia Oliva
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Shigeko Fushimi
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Department of Oral Pathology and Medicine, Okayama University Dental School, Okayama 700-8525, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Carmelo José Felice
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
| | - Andrea Paola Rodríguez
- Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, FACET-UNT, Tucumán 4000, Argentina
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Tucumán 4000, Argentina
- Correspondence: (M.C.S.); (A.P.R.)
| |
Collapse
|
4
|
Idumah CI. Phosphorene polymeric nanocomposites for biomedical applications: a review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2158333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
5
|
Kuzu TE, Öztürk K, Gürgan CA, Üşümez A, Yay A, Göktepe Ö. Effect of Photobiomodulation Therapy on Peri-Implant Bone Healing in Extra-Short Implants in a Rabbit Model: A Pilot Study. Photobiomodul Photomed Laser Surg 2022; 40:402-409. [PMID: 35749706 DOI: 10.1089/photob.2021.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: To evaluate the effects of photobiomodulation therapy (PBMT) at distinct energy levels on peri-implant bone healing in extra-short implants in a experimental rabbit model. Background: The effect of PBMT on peri-implant bone healing in short implants remains unclear. This explored the effect of PBMT on extra-short implants in terms of bone-implant contact (BIC) length and rate, and implant stability quotient (ISQ). Methods: Fifteen white New Zealand rabbits were randomly divided into five groups. In all groups, extra-short implants (3.5 × 4 mm; Nucleoss T6, İzmir/Turkey) were placed in both tibias of the rabbits. PBMT was performed in four groups (group 1, 5 J/cm2; group 2, 10 J/cm2; group 3, 20 J/cm2; and group 4, 25 J/cm2); no PBMT was performed in the control group. On the 30th day, the rabbits were sacrificed and peri-implant tissue samples were obtained to determine the BIC length and BIC rate. Implant stability levels were measured by resonance frequency analysis using the Osstell penguin device and were determined as ISQ values on the 1st and 30th days of the study. Results: PBMT significantly increased the BIC length and BIC rate in groups 3 and 4 (p < 0.001). For the ISQ values, there were significant differences between the 1st and 30th day (p < 0.001). On the 30th day, the ISQ values were significantly higher in groups 3 and 4 compared with the remaining groups (p < 0.001). Conclusions: In this study, PBMT improved peri-implant bone healing through increase in BIC length, BIC rate, and ISQ parameter values in extra-short implants.
Collapse
Affiliation(s)
- Turan Emre Kuzu
- Department of Periodontology, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Kübra Öztürk
- Department of Oral and Maxillofacial Surgery, and Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Cem A Gürgan
- Department of Periodontology, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Aslihan Üşümez
- Department of Prosthodontics, Dental Plus Dental Clinic, İstanbul, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Özge Göktepe
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| |
Collapse
|
6
|
Li J, Kim C, Pan CC, Babian A, Lui E, Young JL, Moeinzadeh S, Kim S, Yang YP. Hybprinting for musculoskeletal tissue engineering. iScience 2022; 25:104229. [PMID: 35494239 PMCID: PMC9051619 DOI: 10.1016/j.isci.2022.104229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review presents bioprinting methods, biomaterials, and printing strategies that may be used for composite tissue constructs for musculoskeletal applications. The printing methods discussed include those that are suitable for acellular and cellular components, and the biomaterials include soft and rigid components that are suitable for soft and/or hard tissues. We also present strategies that focus on the integration of cell-laden soft and acellular rigid components under a single printing platform. Given the structural and functional complexity of native musculoskeletal tissue, we envision that hybrid bioprinting, referred to as hybprinting, could provide unprecedented potential by combining different materials and bioprinting techniques to engineer and assemble modular tissues.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Carolyn Kim
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Chi-Chun Pan
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Aaron Babian
- Department of Biological Sciences, University of California, Davis CA 95616, USA
| | - Elaine Lui
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey L Young
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Seyedsina Moeinzadeh
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Sungwoo Kim
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Hendi SS, Gholami L, Saidijam M, Mahmoudi R, Arkian AA, Bakhtiyar H, Hasani NH, Afshar S. Photobiomodulation of inflamed dental pulp stem cells under different nutritional conditions. Regen Med 2021; 17:69-80. [PMID: 34931540 DOI: 10.2217/rme-2021-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The present study aimed to investigate photobiomodulation's (PBM) effect on inflamed dental pulp stem cells (IDPSCs) under different nutritional conditions. Methods: Cell proliferation and odontogenic differentiation were evaluated using the MTT assay and real-time quantitative reverse transcription PCR, respectively after laser PBM of cells in 5 or 10% fetal bovine serum (FBS) culture conditions. Results: A significant positive effect of laser irradiation on cell proliferation under both nutritional conditions after 24 and 48 h was observed. DMP-1 gene expression increased in the groups with laser irradiation and 5% FBS. Comparison of gene expression levels in the four groups revealed no statistically significant stimulatory effect. The highest gene expression was observed in the non-laser group with 5% FBS. Conclusion: Further studies are required to obtain an irradiation setup to ideally improve inflamed dental pulp stem cells' proliferation and differentiation.
Collapse
Affiliation(s)
- Seyedeh Sareh Hendi
- Department of Endodontics, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Gholami
- Department of Periodontics, Dental Research Center, School of dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Science, Iran
| | - Roghayeh Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Ali Asghar Arkian
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hengameh Bakhtiyar
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nasrin Haji Hasani
- East-Azarbaijan Agricultural & Natural Resources Research & Education Center, AREEO, Tabriz, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Liao G, Liao Y, Li D, Fu Z, Wu S, Cheng D, Ouyang Q, Tang Z, Zeng G, Liang X, Xu S, Hu J, Liu M. Human Platelet Lysate Maintains Stemness of Umbilical Cord-Derived Mesenchymal Stromal Cells and Promote Lung Repair in Rat Bronchopulmonary Dysplasia. Front Cell Dev Biol 2021; 9:722953. [PMID: 34858970 PMCID: PMC8631747 DOI: 10.3389/fcell.2021.722953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) show potential for treating preclinical models of newborn bronchopulmonary dysplasia (BPD), but studies of their therapeutic effectiveness have had mixed results, in part due to the use of different media supplements for MSCs expansion in vitro. The current study sought to identify an optimal culture supplement of umbilical cord-derived MSCs (UC-MSCs) for BPD therapy. In this study, we found that UC-MSCs cultured with human platelet lysate (hPL-UCMSCs) were maintained a small size from Passage 1 (P1) to P10, while UC-MSCs cultured with fetal bovine serum (FBS-UCMSCs) became wide and flat. Furthermore, hPL was associated with lower levels of senescence in UC-MSCs during in vitro expansion compared with FBS, as indicated by the results of β-galactosidase staining and measures of senescence-related genes (CDKN2A, CDKN1A, and mTOR). In addition, hPL enhanced the proliferation and cell viability of the UC-MSCs and reduced their doubling time in vitro. Compared with FBS-UCMSCs, hPL-UCMSCs have a greater potential to differentiate into osteocytes and chondrocytes. Moreover, using hPL resulted in greater expression of Nestin and specific paracrine factors (VEGF, TGF-β1, FGF2, IL-8, and IL-6) in UC-MSCs compared to using FBS. Critically, we also found that hPL-UCMSCs are more effective than FBS-UCMSCs for the treatment of BPD in a rat model, with hPL leading to improvements in survival rate, lung architecture and fibrosis, and lung capillary density. Finally, qPCR of rat lung mRNA demonstrated that hPL-UCMSCs had lower expression levels of inflammatory factors (TNF-α and IL-1β) and a key chemokine (MCP-1) at postnatal day 10, and there was significant reduction of CD68+ macrophages in lung tissue after hPL-UCMSCs transplantation. Altogether, our findings suggest that hPL is an optimal culture supplement for UC-MSCs expansion in vitro, and that hPL-UCMSCs promote lung repair in rat BPD disease.
Collapse
Affiliation(s)
- Guilian Liao
- Obstetrics and Gynecology, Maternal and Child Health Hospital of Longgang District, Shenzhen, China
| | - Yan Liao
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Duanduan Li
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Zeqin Fu
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Shiduo Wu
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Danling Cheng
- Obstetrics and Gynecology, Maternal and Child Health Hospital of Longgang District, Shenzhen, China
| | - Qiuxing Ouyang
- Neurological Rehabilitation for Children, Maternal and Child Health Hospital of Luohu District, Shenzhen, China
| | - Zan Tang
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Guifang Zeng
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Xiao Liang
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Shaokun Xu
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Junyuan Hu
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Muyun Liu
- National-Local Associated Engineering Laboratory for Personalized Cell Therapy, Shenzhen, China
| |
Collapse
|
9
|
Spatial-Temporal Patterns and Inflammatory Factors of Bone Matrix Remodeling. Stem Cells Int 2021; 2021:4307961. [PMID: 34777503 PMCID: PMC8580647 DOI: 10.1155/2021/4307961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
The bone extracellular matrix (ECM) contains organic and mineral constituents. The establishment and degradation processes of ECM connect with spatial and temporal patterns, especially circadian rhythms in ECM. These patterns are responsible for the physical and biological characteristics of bone. The disturbances of the patterns disrupt bone matrix remodeling and cause diverse bone diseases, such as osteogenesis imperfecta (OI) and bone fracture. In addition, the main regulatory factors and inflammatory factors also follow circadian rhythms. Studies show that the circadian oscillations of these factors in bone ECM potentially influence the interactions between immune responses and bone formation. More importantly, mesenchymal stem cells (MSCs) within the specific microenvironments provide the regenerative potential for tissue remodeling. In this review, we summarize the advanced ECM spatial characteristics and the periodic patterns of bone ECM. Importantly, we focus on the intrinsic connections between the immunoinflammatory system and bone formation according to circadian rhythms of regulatory factors in bone ECM. And our research group emphasizes the multipotency of MSCs with their microenvironments. The advanced understandings of bone ECM formation patterns and MSCs contribute to providing optimal prevention and treatment strategies.
Collapse
|
10
|
Secreted Frizzled-Related Protein 1 Promotes Odontoblastic Differentiation and Reparative Dentin Formation in Dental Pulp Cells. Cells 2021; 10:cells10092491. [PMID: 34572140 PMCID: PMC8468928 DOI: 10.3390/cells10092491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023] Open
Abstract
Direct pulp capping is an effective treatment for preserving dental pulp against carious or traumatic pulp exposure via the formation of protective reparative dentin by odontoblast-like cells. Reparative dentin formation can be stimulated by several signaling molecules; therefore, we investigated the effects of secreted frizzled-related protein (SFRP) 1 that was reported to be strongly expressed in odontoblasts of newborn molar tooth germs on odontoblastic differentiation and reparative dentin formation. In developing rat incisors, cells in the dental pulp, cervical loop, and inner enamel epithelium, as well as ameloblasts and preodontoblasts, weakly expressed Sfrp1; however, Sfrp1 was strongly expressed in mature odontoblasts. Human dental pulp cells (hDPCs) showed stronger expression of SFRP1 compared with periodontal ligament cells and gingival cells. SFRP1 knockdown in hDPCs abolished calcium chloride-induced mineralized nodule formation and odontoblast-related gene expression and decreased BMP-2 gene expression. Conversely, SFRP1 stimulation enhanced nodule formation and expression of BMP-2. Direct pulp capping treatment with SFRP1 induced the formation of a considerable amount of reparative dentin that has a structure similar to primary dentin. Our results indicate that SFRP1 is crucial for dentinogenesis and is important in promoting reparative dentin formation in response to injury.
Collapse
|
11
|
Alfotawi R, Ahmed R, Atteya M, Mahmood A, Siyal A, AlHindi M, El-Ghannam A. Assessment of novel surgical procedures using decellularised muscle and bioactive ceramic: a histological analysis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:113. [PMID: 34453610 PMCID: PMC8403111 DOI: 10.1007/s10856-021-06585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Tissue regeneration and neovascularisation in cases of major bone loss is a challenge in maxillofacial surgery. The hypothesis of the present study is that the addition of resorbable bioactive ceramic Silica Calcium Phosphate Cement (SCPC) to Declluraized Muscle Scaffold (DSM) can expedite bone formation and maturation. Two surgical defect models were created in 18 nude transgenic mice. Group 1(n = 6), with a 2-mm decortication calvarial defect, was treated with a DSM/SCPC sheet over the corticated bone as an onlay then seeded with human Mesenchymal Stromal Cells hMSC in situ. In Group 2 (n = 6), a critical size (4 mm) calvarial defect was made and grafted with DSM/SCPC/in situ human bone marrow stromal cells (hMSCs). The control groups included Group 3 (n = 3) animals, with a 2-mm decortication defect treated with an onlay DSM sheet, and Group 4 (n = 3) animals, treated with critical size defect grafted with plain DSM. After 8 weeks, bone regeneration in various groups was evaluated using histology, immunohistochemistry and histomorphometry. New bone formation and maturation was superior in groups treated with DSM/SCPC/hMSC. The DMS/SCPC scaffold has the ability to augment and induce bone regeneration and neovascularisation in cases of major bone resorption and critical size defects.
Collapse
Affiliation(s)
- Randa Alfotawi
- Oral & Maxillofacial dept, Dental Collage, King Saud University, Riyadh, Saudi Arabia.
| | - Raeesa Ahmed
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Atteya
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Amer Mahmood
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Marium AlHindi
- Oral & Maxillofacial dept, Dental Collage, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad El-Ghannam
- Department of Mechanical Engineering and Engineering Science, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Ovarian Decellularized Bioscaffolds Provide an Optimal Microenvironment for Cell Growth and Differentiation In Vitro. Cells 2021; 10:cells10082126. [PMID: 34440895 PMCID: PMC8393799 DOI: 10.3390/cells10082126] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian failure is the most common cause of infertility. Although numerous strategies have been proposed, a definitive solution for recovering ovarian functions and restoring fertility is currently unavailable. One innovative alternative may be represented by the development of an “artificial ovary” that could be transplanted in patients for re-establishing reproductive activities. Here, we describe a novel approach for successful repopulation of decellularized ovarian bioscaffolds in vitro. Porcine whole ovaries were subjected to a decellularization protocol that removed the cell compartment, while maintaining the macrostructure and microstructure of the original tissue. The obtained bioscaffolds were then repopulated with porcine ovarian cells or with epigenetically erased porcine and human dermal fibroblasts. The results obtained demonstrated that the decellularized extracellular matrix (ECM)-based scaffold may constitute a suitable niche for ex vivo culture of ovarian cells. Furthermore, it was able to properly drive epigenetically erased cell differentiation, fate, and viability. Overall, the method described represents a powerful tool for the in vitro creation of a bioengineered ovary that may constitute a promising solution for hormone and fertility restoration. In addition, it allows for the creation of a suitable 3D platform with useful applications both in toxicological and transplantation studies.
Collapse
|
13
|
Creation of a Bioengineered Ovary: Isolation of Female Germline Stem Cells for the Repopulation of a Decellularized Ovarian Bioscaffold. Methods Mol Biol 2021; 2273:139-149. [PMID: 33604850 DOI: 10.1007/978-1-0716-1246-0_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ovarian failure is the most common cause of infertility and affects about 1% of young women. One innovative strategy to restore ovarian function may be represented by the development of a bioprosthetic ovary, obtained through the combination of tissue engineering and regenerative medicine.We here describe the two main steps required for bioengineering the ovary and for its ex vivo functional reassembling. The first step aims at producing a 3D bioscaffold, which mimics the natural ovarian milieu in vitro. This is obtained with a whole organ decellularization technique that allows the maintenance of microarchitecture and biological signals of the original tissue. The second step involves the use of magnetic activated cell sorting (MACS) to isolate purified female germline stem cells (FGSCs). These cells are able to differentiate in ovarian adult mature cells, when subjected to specific stimuli, and can be used them to repopulate ovarian decellularized bioscaffolds. The combination of the two techniques represents a powerful tool for in vitro recreation of a bioengineered ovary that may constitute a promising solution for hormone and fertility function restoring. In addition, the procedures here described allow for the creation of a suitable 3D platform with useful applications both in toxicological and transplantation studies.
Collapse
|
14
|
Evaluation of the regenerative potential of decellularized skeletal muscle seeded with mesenchymal stromal cells in critical-sized bone defect of rat models. Saudi Dent J 2021; 33:248-255. [PMID: 34194187 PMCID: PMC8236553 DOI: 10.1016/j.sdentj.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
Background The morbidities and complications reported in the reconstruction of large bony defects have inspired progression in the field of bioengineering, with a recent breakthrough for the use of decellularized skeletal muscle grafts (DSMG). Aim To assess the osteogenic potentials of seeded DSMG in vitro and to investigate bone regeneration in critical size defect in vivo. Materials and Methods Assessment of cell viability and characterization was carried out on seeded DSMG for different intervals in vitro. For in vivo experiments, histological analysis was performed for rat cranial defects for the following groups: (A) non-treated DSMG and (B) seeded DSMG after a period of 8 weeks. Results The in vitro experiment demonstrated the lack of cytotoxicity and inert properties of seeded DSMG; these facilitated the osteogenic differentiation and significant gene expressions, particularly of COL1A1, RUNX2, and OPN (1.9174 ± 0.11673, 1.1806 ± 0.02383, and 1.1802 ± 0.00775, respectively). In the in vivo experiment, superior results were detected in the seeded DSMG group which showed highly vascularized and cellular dense connective tissue with deposited bone matrix and multiple scattered islets of newly formed bone. Conclusion Our results demonstrated the promising aspects of DSMG; however, there is a lack of studies to support further implications.
Collapse
|
15
|
3D Printing Decellularized Extracellular Matrix to Design Biomimetic Scaffolds for Skeletal Muscle Tissue Engineering. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2689701. [PMID: 33282941 PMCID: PMC7685790 DOI: 10.1155/2020/2689701] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/08/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Functional engineered muscles are still a critical clinical issue to be addressed, although different strategies have been considered so far for the treatment of severe muscular injuries. Indeed, the regenerative capacity of skeletal muscle (SM) results inadequate for large-scale defects, and currently, SM reconstruction remains a complex and unsolved task. For this aim, tissue engineered muscles should provide a proper biomimetic extracellular matrix (ECM) alternative, characterized by an aligned/microtopographical structure and a myogenic microenvironment, in order to promote muscle regeneration. As a consequence, both materials and fabrication techniques play a key role to plan an effective therapeutic approach. Tissue-specific decellularized ECM (dECM) seems to be one of the most promising material to support muscle regeneration and repair. 3D printing technologies, on the other side, enable the fabrication of scaffolds with a fine and detailed microarchitecture and patient-specific implants with high structural complexity. To identify innovative biomimetic solutions to develop engineered muscular constructs for the treatment of SM loss, the more recent (last 5 years) reports focused on SM dECM-based scaffolds and 3D printing technologies for SM regeneration are herein reviewed. Possible design inputs for 3D printed SM dECM-based scaffolds for muscular regeneration are also suggested.
Collapse
|
16
|
Jasmine S, Thangavelu A, Krishnamoorthy R, Alshatwi AA. Platelet Concentrates as Biomaterials in Tissue Engineering: a Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00165-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Pennarossa G, Ghiringhelli M, Gandolfi F, Brevini TAL. Whole-ovary decellularization generates an effective 3D bioscaffold for ovarian bioengineering. J Assist Reprod Genet 2020; 37:1329-1339. [PMID: 32361917 PMCID: PMC7311562 DOI: 10.1007/s10815-020-01784-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To develop a new protocol for whole-ovary decellularization for the production of a 3D bioscaffold suitable for in vitro/ex vivo studies and for the reconstruction of a bioengineered ovary. METHODS Porcine ovaries were subjected to the decellularization process (DECELL; n = 20) that involved a freeze-thaw cycle, followed by sequential incubations in 0.5% SDS for 3 h, 1% Triton X-100 for 9 h, and 2% deoxycholate for 12 h. Untreated ovaries were used as a control (CTR; n = 6). Both groups were analyzed to evaluate cell and DNA removal as well as ECM preservation. DECELL bioscaffolds were assessed for cytotoxicity and cell homing ability. RESULTS DECELL ovaries maintained shape and homogeneity without any deformation, while their color turned from red to white. Histological staining and DNA quantification confirmed a decrease of 98.11% in DNA content, compared with the native tissue (CTR). Histochemical assessments demonstrated the preservation of intact ECM microarchitecture after the decellularization process. This was also confirmed by quantitative analysis of collagen, elastin, and GAG contents. DECELL bioscaffold showed no cytotoxic effects in co-culture and, when re-seeded with homologous fibroblasts, encouraged a rapid cell adhesion and migration, with repopulating cells increasing in number and aggregating in cluster-like structures, consistent with its ability to sustain cell adherence, proliferation, and differentiation. CONCLUSION The protocol described allows for the generation of a 3D bioscaffold that may constitute a suitable model for ex vivo culture of ovarian cells and follicles, as well as a promising tool for the reconstruction of a bioengineered ovary.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy
| | - Matteo Ghiringhelli
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy and Center for Stem Cell Research, Università degli Studi di Milano, via Celoria 2, 20133, Milan, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, via Celoria 10, 20133, Milan, Italy.
| |
Collapse
|
18
|
Al-Fotawi R, Muthurangan M, Siyal A, Premnath S, Al-Fayez M, Ahmad El-Ghannam, Mahmood A. The use of muscle extracellular matrix (MEM) and SCPC bioceramic for bone augmentation. ACTA ACUST UNITED AC 2020; 15:025005. [PMID: 31846944 DOI: 10.1088/1748-605x/ab6300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Bone augmentation is a challenging problem in the field of maxillofacial surgery. OBJECTIVE In this study, we prepared and evaluated muscle extracellular matrix (MEM) after adding silica calcium phosphate composite (SCPC) seeded with human bone marrow mesenchymal cells (hBMSCs). We then investigated bone augmentation in vivo using the prepared MEM-SCPC. MATERIALS AND METHODS hBMSCs were seeded on MEM-SCPC, and MEM was characterized. Calvarial bone grafts were prepared using nude mice (n = 12) and grafted separately in two experimental groups: grafts with MEM (control, n = 4) and grafts with MEM-SCPC-hBMSCs (experimental group, n = 8) for 8 weeks. Micro-computed tomography (micro-CT) and histological analysis were then performed. RESULTS Micro-CT analysis demonstrated a thinner trabeculae in grafted defects than normal native bone, with a high degree of anisotropy. Quantitative histomorphometric assessment showed a higher median bone percentage surface area of 80.2% ± 6.0% in the experimental group. CONCLUSION The enhanced bone formation and maturation of bone grafted with MEM-SCPC-hBMSCs suggested the potential use of this material for bone augmentation.
Collapse
Affiliation(s)
- Randa Al-Fotawi
- Department of Oral and Maxillofacial Surgery, Dental Faculty, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
19
|
Gallo L, Madaghiele M, Salvatore L, Barca A, Scialla S, Bettini S, Valli L, Verri T, Bucalá V, Sannino A. Integration of PLGA Microparticles in Collagen-Based Matrices: Tunable Scaffold Properties and Interaction Between Microparticles and Human Epithelial-Like Cells. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2018.1552857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- L.C. Gallo
- Department of Biology, Biochemistry and Pharmacy, Universidad Nacional del Sur, Bahía Blanca, Argentina
- Pilot Plant of Chemical Engineering, PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina
| | - M. Madaghiele
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - L. Salvatore
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - A. Barca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - S. Scialla
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - S. Bettini
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - L. Valli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - T. Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - V. Bucalá
- Pilot Plant of Chemical Engineering, PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina
- Department of Chemical Engineering, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - A. Sannino
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| |
Collapse
|
20
|
Mirzaei A, Saburi E, Enderami SE, Barati Bagherabad M, Enderami SE, Chokami M, Shapouri Moghadam A, Salarinia R, Ardeshirylajimi A, Mansouri V, Soleimanifar F. Synergistic effects of polyaniline and pulsed electromagnetic field to stem cells osteogenic differentiation on polyvinylidene fluoride scaffold. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3058-3066. [PMID: 31339375 DOI: 10.1080/21691401.2019.1645154] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Repairing the lost or damaged mandible is very difficult and time-consuming, so there is a great hope for tissue engineering to accelerate it. At the present study, electrospinning was applied to fabricate polyvinylidene fluoride (PVDF) and PVDF-polyaniline (PANI) composite scaffolds. In addition, extremely low frequency pulsed electromagnetic field (PEMF) was applied for treating the stem cells derived from dental pulp (DPSCs) when cultured on the nanofibrous scaffolds. Osteoinductive property of the fabricated PVDF, PVDF-PANI scaffold at the presence and absence of the PEMF was investigated by evaluating the common osteogenic differentiation markers in seeded-DPSCs on the scaffold. Results demonstrated that cell attachment, protein adsorption and cells viability were increased when PEMF was applied. In addition, ALP activity, calcium content, osteogenic genes and protein evaluations confirmed that PEMF could significantly increase osteoinductivity of the PVDF while composite with PANI. According to the results, the use of polymers with piezoelectricity and conductivity features plus PEMF exposure has a promising potential to improve the current treatment methods in bone and mandibular defects.
Collapse
Affiliation(s)
- Ali Mirzaei
- a Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj , Iran.,b Medicinal Plants Research Center, Yasuj University of Medical Sciences , Yasuj , Iran
| | - Ehsan Saburi
- c Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Seyed Ehsan Enderami
- d Immunogenetics Research Center, Department of Medical Biotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,e Molecular and Cell Biology Research Center, Department of Medical Biotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,f Diabetes Research Center, Mazandaran University of Medical Sciences , Sari , Iran
| | - Matineh Barati Bagherabad
- g Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Science , Mashhad , Iran
| | - Seyedeh Elnaz Enderami
- h Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB) , Tehran , Iran
| | - Mahmood Chokami
- i Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences , Karaj , Iran
| | - Abbas Shapouri Moghadam
- j Department of Immunogenetics, Bu-Ali Research Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Reza Salarinia
- k Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences , Bojnurd , Iran
| | - Abdolreza Ardeshirylajimi
- l Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Vahid Mansouri
- m Faculty of Paramedical Sciences, Proteomics Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Fatemeh Soleimanifar
- i Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences , Karaj , Iran.,n Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences , Karaj , Iran
| |
Collapse
|
21
|
Stuepp RT, Barros Delben P, Modolo F, Trentin AG, Garcez RC, Biz MT. Human Dental Pulp Stem Cells in Rat Mandibular Bone Defects. Cells Tissues Organs 2019; 207:138-148. [PMID: 31734662 DOI: 10.1159/000502513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/06/2019] [Indexed: 11/19/2022] Open
Abstract
This study aimed to evaluate the use of human dental pulp stem cells (hDPSCs) in non-critical-sized mandibular bone defects in rats. hDPSCs from permanent teeth were isolated and engrafted in mandibular bone defects in rats for 7, 14, and 28 days; bone defects without cells formed the control group. Samples were evaluated by scanning electron microscopy (SEM), light microscopy (hematoxylin and eosin staining), and the regeneration area was measured by the Image J program. Before surgery procedures, the human dental pulp cells were characterized as dental pulp stem cells: fusiform morphology, plastic-adherent; expression of CD105, CD73, and CD90; lack of expression of CD45 and CD34, and differentiated into osteoblasts, adipocytes, and chondroblasts. The results indicated that within 7 days the control group presented a pronounced bone formation when compared with the treated group (p < 0.05). After 14 days, the treated group showed an increase in bone formation, but with no statistical difference among the groups (p > 0.05). In the final evaluated period there was no difference between the control group and the treated group (p > 0.05). There was a significant difference between 7 and 14 days (p < 0.05) and between 7 and 28 days (p < 0.05) in the treated group. In conclusion, there is no evidence that the use of hDPSCs in the conditions of this study could improve bone formation in non-critical-sized mandibular bone defects.
Collapse
Affiliation(s)
- Rubia Teodoro Stuepp
- Programa de Graduação em Odontologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Priscilla Barros Delben
- Programa de Pós-Graduação em Biologia Celular e do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Filipe Modolo
- Departamento de Patologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Andrea Gonçalves Trentin
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ricardo Castilho Garcez
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Michelle Tillmann Biz
- Departamento de Ciências Morfológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil,
| |
Collapse
|
22
|
Borophene Is a Promising 2D Allotropic Material for Biomedical Devices. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9173446] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Allotropic 2D materials are the new frontier of materials science, due to their unique strategic properties and application within several sciences. Allotropic 2D materials have shown tunable physical, chemical, biochemical, and optical characteristics, and among the allotropic materials, graphene has been widely investigated for its interesting properties, which are highly required in biomedical applications. Recently, the synthesis of thin 2D boron sheets, developed on Ag(111) substrates, was able to create a 2D triangular structure called borophene (BO). Borophene has consistently shown anisotropic behavior similar to graphene. In this topical review, we will describe the main properties and latest applications of borophene. This review will critically describe the most interesting uses of borophene as part of electronic and optical circuits. Moreover, we will report how borophene can be an innovative component of sensors within biomedical devices, and we will discuss its use in nanotechnologies and theranostic applications. The conclusions will provide insight into the latest frontiers of translational medicine involving this novel and strategic 2D allotropic material.
Collapse
|
23
|
Ferroni L, Gardin C, Bellin G, Vindigni V, Mortellaro C, Zavan B. Bovine pericardium membrane as new tool for mesenchymal stem cells commitment. J Tissue Eng Regen Med 2019; 13:1805-1814. [DOI: 10.1002/term.2931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Letizia Ferroni
- GVM Care & ResearchMaria Cecilia Hospital Cotignola Italy
- Department of Medical SciencesUniversity of Ferrara Ferrara Italy
| | - Chiara Gardin
- GVM Care & ResearchMaria Cecilia Hospital Cotignola Italy
- Department of Medical SciencesUniversity of Ferrara Ferrara Italy
| | - Gloria Bellin
- GVM Care & ResearchMaria Cecilia Hospital Cotignola Italy
- Department of Medical SciencesUniversity of Ferrara Ferrara Italy
| | | | - Carmen Mortellaro
- Department of Health Sciences“A. Avogadro” University of Eastern Piedmont Novara Italy
| | - Barbara Zavan
- GVM Care & ResearchMaria Cecilia Hospital Cotignola Italy
- Department of Medical SciencesUniversity of Ferrara Ferrara Italy
| |
Collapse
|
24
|
Mallis P, Gontika I, Dimou Z, Panagouli E, Zoidakis J, Makridakis M, Vlahou A, Georgiou E, Gkioka V, Stavropoulos-Giokas C, Michalopoulos E. Short Term Results of Fibrin Gel Obtained from Cord Blood Units: A Preliminary in Vitro Study. Bioengineering (Basel) 2019; 6:E66. [PMID: 31382445 PMCID: PMC6783834 DOI: 10.3390/bioengineering6030066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent findings have shown that the fibrin gel derived from cord blood units (CBUs) play a significant role in wound healing and tissue regeneration. The aim of this study was to standardize the fibrin gel production process in order to allow for its regular use. METHODS CBUs (n = 200) were assigned to 4 groups according to their initial volume. Then, a two-stage centrifugation protocol was applied in order to obtain platelet rich plasma (PRP). The concentration of platelets (PLTs), white blood cells (WBCs) and red blood cells (RBCs) were determined prior to and after the production process. In addition, targeted proteomic analysis using multiple reaction monitoring was performed. Finally, an appropriate volume of calcium gluconate was used in PRP for the production of fibrin gel. RESULTS The results of this study showed that high volume CBUs were characterized by greater recovery rates, concentration and number of PLTs compared to the low volume CBUs. Proteomic analysis revealed the presence of key proteins for regenerative medicine. Fibrin gel was successfully produced from CBUs of all groups. CONCLUSION In this study, low volume CBUs could be an alternative source for the production of fibrin gel, which can be used in multiple regenerative medicine approaches.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece
| | - Ioanna Gontika
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece
| | - Zetta Dimou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece
| | - Effrosyni Panagouli
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece
| | - Jerome Zoidakis
- Biotechnology division, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece
| | - Manousos Makridakis
- Biotechnology division, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece
| | - Antonia Vlahou
- Biotechnology division, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece
| | - Eleni Georgiou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece
| | - Vasiliki Gkioka
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece.
| |
Collapse
|
25
|
Codispoti B, Makeeva I, Sied J, Benincasa C, Scacco S, Tatullo M. Should we reconsider the apoptosis as a strategic player in tissue regeneration? Int J Biol Sci 2019; 15:2029-2036. [PMID: 31592227 PMCID: PMC6775292 DOI: 10.7150/ijbs.36362] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Apoptosis plays a central role in organs development and homeostasis. Impaired regulation of this process is often associated with the onset of several human diseases, such as developmental disorders and cancer. The last scientific investigations have discovered interesting connections between apoptosis, stem cells, tissue regeneration and cancer. The role of "programmed cell death" in stem cells and tissue engineering is extremely promising; in fact, it holds great potential for regenerative purposes. However, several questions still remain unsolved: do we really know all the main molecular actors able to switch ON/OFF the apoptosis? Is it possible to modulate these players, to obtain a predictable regeneration of tissues and organs? But primarily: should we reconsider the apoptosis as a strategic player in tissue regeneration? In this topical review, we have carefully examined the most recent discoveries about the role of apoptosis in stem cells and, specifically, in mesenchymal stem cells. The pivotal molecules involved in the activation and inhibition of the apoptotic pathways will be carefully described, with the aim to shed an overall light on the complex scenario of stem cell life and death, and on a novel strategy for tissue regeneration.
Collapse
Affiliation(s)
- Bruna Codispoti
- Marrelli Health, Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
| | - Irina Makeeva
- Department of Therapeutic Dentistry, IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jamal Sied
- Advanced Technology Dental Research Laboratory, Faculty of Dentistry, King Abdul Aziz University, KSA and Director of CODE-M, Center of Dental Education and Medicine, Pakistan
| | - Caterina Benincasa
- Marrelli Health, Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
| | - Salvatore Scacco
- Dept. of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Italy
| | - Marco Tatullo
- Marrelli Health, Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy.,Department of Therapeutic Dentistry, IM Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
26
|
Tatullo M, Genovese F, Aiello E, Amantea M, Makeeva I, Zavan B, Rengo S, Fortunato L. Phosphorene Is the New Graphene in Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2301. [PMID: 31323844 PMCID: PMC6678593 DOI: 10.3390/ma12142301] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 01/21/2023]
Abstract
Nowadays, the research of smart materials is focusing on the allotropics, which have specific characteristics that are useful in several areas, including biomedical applications. In recent years, graphene has revealed interesting antibacterial and physical peculiarities, but it has also shown limitations. Black phosphorus has structural and biochemical properties that make it ideal for biomedical applications: 2D sheets of black phosphorus are called Black Phosphorene (BP), and it could replace graphene in the coming years. BP, similar to other 2D materials, can be used for colorimetric and fluorescent detectors, as well as for biosensing devices. BP also shows high in vivo biodegradability, producing non-toxic agents in the body. This characteristic is promising for pharmacological applications, as well as for scaffold and prosthetic coatings. BP shows low cytotoxicity, thus avoiding the induction of local inflammation or toxicity. As such, BP is a good candidate for different applications in the biomedical sector. Properties such as biocompatibility, biodegradability, and biosafety are essential for use in medicine. In this review, we have exploited all such aspects, also comparing BP with other similar materials, such as the well-known graphene.
Collapse
Affiliation(s)
- Marco Tatullo
- Marrelli Health-Tecnologica Research Institute, Biomedical Section, Street E. Fermi, 88900 Crotone, Italy.
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia.
| | - Fabio Genovese
- Marrelli Health-Tecnologica Research Institute, Biomedical Section, Street E. Fermi, 88900 Crotone, Italy
| | - Elisabetta Aiello
- Marrelli Health-Tecnologica Research Institute, Biomedical Section, Street E. Fermi, 88900 Crotone, Italy
| | - Massimiliano Amantea
- Marrelli Health-Tecnologica Research Institute, Biomedical Section, Street E. Fermi, 88900 Crotone, Italy
| | - Irina Makeeva
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Barbara Zavan
- Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola (RA), Italy
- Department of Biomedical Sciences, University of Padova, 35100 Padova, Italy
| | - Sandro Rengo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Napoli Federico II, 80131 Naples, Italy
| | - Leonzio Fortunato
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
27
|
Grabowska I, Zimowska M, Maciejewska K, Jablonska Z, Bazga A, Ozieblo M, Streminska W, Bem J, Brzoska E, Ciemerych MA. Adipose Tissue-Derived Stromal Cells in Matrigel Impacts the Regeneration of Severely Damaged Skeletal Muscles. Int J Mol Sci 2019; 20:E3313. [PMID: 31284492 PMCID: PMC6651806 DOI: 10.3390/ijms20133313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
In case of large injuries of skeletal muscles the pool of endogenous stem cells, i.e., satellite cells, might be not sufficient to secure proper regeneration. Such failure in reconstruction is often associated with loss of muscle mass and excessive formation of connective tissue. Therapies aiming to improve skeletal muscle regeneration and prevent fibrosis may rely on the transplantation of different types of stem cell. Among such cells are adipose tissue-derived stromal cells (ADSCs) which are relatively easy to isolate, culture, and manipulate. Our study aimed to verify applicability of ADSCs in the therapies of severely injured skeletal muscles. We tested whether 3D structures obtained from Matrigel populated with ADSCs and transplanted to regenerating mouse gastrocnemius muscles could improve the regeneration. In addition, ADSCs used in this study were pretreated with myoblasts-conditioned medium or anti-TGFβ antibody, i.e., the factors modifying their ability to proliferate, migrate, or differentiate. Analyses performed one week after injury allowed us to show the impact of 3D cultured control and pretreated ADSCs at muscle mass and structure, as well as fibrosis development immune response of the injured muscle.
Collapse
Affiliation(s)
- Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Malgorzata Zimowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Karolina Maciejewska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Zuzanna Jablonska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Bazga
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Michal Ozieblo
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Bem
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
28
|
Jafar H, Abuarqoub D, Ababneh N, Hasan M, Al-Sotari S, Aslam N, Kailani M, Ammoush M, Shraideh Z, Awidi A. hPL promotes osteogenic differentiation of stem cells in 3D scaffolds. PLoS One 2019; 14:e0215667. [PMID: 31063489 PMCID: PMC6504042 DOI: 10.1371/journal.pone.0215667] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/05/2019] [Indexed: 01/09/2023] Open
Abstract
Human platelet lysate (hPL) has been considered as the preferred supplement for the xeno-free stem cell culture for many years. However, the biological effect of hPL on the proliferation and differentiation of dental stem cells combined with the use of medical grade synthetic biomaterial is still under investigation. Thus, the optimal scaffold composition, cell type and specific growth conditions, yet need to be formulated. In this study, we aimed to investigate the regenerative potential of dental stem cells seeded on synthetic scaffolds and maintained in osteogenic media supplemented with either hPL or xeno-derived fetal bovine serum (FBS). Two types of dental stem cells were isolated from human impacted third molars and intact teeth; stem cells of apical papilla (SCAP) and periodontal ligament stem cells (PDLSCs). Cells were expanded in cell culture media supplemented with either hPL or FBS. Consequently, proliferative capacity, immunophenotypic characteristics and multilineage differentiation potential of the derived cells were evaluated on monolayer culture (2D) and on synthetic scaffolds fabricated from poly ’lactic-co-glycolic’ acid (PLGA) (3D). The functionality of the induced cells was examined by measuring the concentration of osteogenic markers ALP, OCN and OPN at different time points. Our results indicate that the isolated dental stem cells showed similar mesenchymal characteristics when cultured on hPL or FBS-containing culture media. Scanning electron microscopy (SEM) and H&E staining revealed the proper adherence of the derived cells on the 3D scaffold cultures. Moreover, the increase in the concentration of osteogenic markers proved that hPL was able to produce functional osteoblasts in both culture conditions (2D and 3D), in a way similar to FBS culture. These results reveal that hPL provides a suitable substitute to the animal-derived serum, for the growth and functionality of both SCAP and PDLSCs. Thus the use of hPL, in combination with PLGA scaffolds, can be useful in future clinical trials for dental regeneration.
Collapse
Affiliation(s)
- Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Duaa Abuarqoub
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Nidaa Ababneh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Maram Hasan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | | | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Mohammed Kailani
- Department of Chemistry, School of Sciences, The University of Jordan, Amman, Jordan
| | - Mohammed Ammoush
- Dental Department, King Hussein Medical Center (KHMC), Royal Medical Service, Amman, Jordan
| | - Ziad Shraideh
- Department of Biological Sciences, School of Sciences, The University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
- School of Medicine, The University of Jordan, Amman, Jordan
- * E-mail:
| |
Collapse
|
29
|
Eivazkhani F, Abtahi NS, Tavana S, Mirzaeian L, Abedi F, Ebrahimi B, Montazeri L, Valojerdi MR, Fathi R. Evaluating two ovarian decellularization methods in three species. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:670-682. [PMID: 31147040 DOI: 10.1016/j.msec.2019.04.092] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/28/2019] [Accepted: 04/29/2019] [Indexed: 11/26/2022]
Abstract
Since there is dearth of practical ways to obtain mature follicles from cryopreserved or native ovarian tissues, especially in patients suffering from ovarian dysfunction, tissue engineering may help in restoring ovarian function and/or fertility. In the present study, the effects of sodium dodecyl sulfate (SDS) and sodium hydroxide (NaOH) on the decellularization of ovarian tissues were studied in order to ascertain their suitability in creating suitable bioscaffolds. Cells were removed from the ovarian tissues of mouse, sheep and human. The samples were distributed among three groups, viz., control (not treated), SDS and NaOH treated. Qualitative histological evaluations, quantitative assessments (nuclear contents, collagen and glycosaminoglycan), immunohistochemistry staining (for laminin, fibronectin and Collagen I), cell viability and scanning electron microscopic (SEM) assays were performed for all experimental groups. Finally, suspensions of mouse ovarian cells were injected into human NaOH treated scaffolds and subsequently auto-transplanted to ovariectomized mice. H&E and IHC staining (GDF-9) were performed on human recellularized NaOH treated scaffolds 1 month after auto-transplantation. Although histological studies and quantitative evaluations confirmed the successful decellularization and presence of key factors in ovarian scaffolds under both treatment methods, NaOH showed more interesting outcomes. Cell metabolic activity in sheep and human ovaries treated with NaOH was statistically (p < 0.05) higher than for SDS treated samples after 72 h. Moreover, spherical associations with cuboidal cells in human NaOH treated scaffolds were observed and this follicular reconstruction was also confirmed by GDF-9. NaOH was found to be more suitable than SDS for the decellularization of ovarian tissues and it supports follicular reconstruction better than SDS. This is a valuable finding in tissue engineering research and can help in the creation of appropriate ovarian bioscaffolds.
Collapse
Affiliation(s)
- Farideh Eivazkhani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Naeimeh Sadat Abtahi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Mirzaeian
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Fatemeh Abedi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Bita Ebrahimi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Anatomy, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
30
|
Baccam A, Benoni-Sviercovich A, Rocchi M, Moresi V, Seelaender M, Li Z, Adamo S, Xue Z, Coletti D. The Mechanical Stimulation of Myotubes Counteracts the Effects of Tumor-Derived Factors Through the Modulation of the Activin/Follistatin Ratio. Front Physiol 2019; 10:401. [PMID: 31068826 PMCID: PMC6491697 DOI: 10.3389/fphys.2019.00401] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/22/2019] [Indexed: 11/28/2022] Open
Abstract
Activin negatively affects muscle fibers and progenitor cells in aging (sarcopenia) and in chronic diseases characterized by severe muscle wasting (cachexia). High circulating activin levels predict poor survival in cancer patients. However, the relative impact of activin in mediating muscle atrophy and hampered homeostasis is still unknown. To directly assess the involvement of activin, and its physiological inhibitor follistatin, in cancer-induced muscle atrophy, we cultured C2C12 myotubes in the absence or in the presence of a mechanical stretching stimulus and in the absence or presence of C26 tumor-derived factors (CM), so as to mimic the mechanical stimulation of exercise and cancer cachexia, respectively. We found that CM induces activin release by myotubes, further exacerbating the negative effects of tumor-derived factors. In addition, mechanical stimulation is sufficient to counteract the adverse tumor-induced effects on muscle cells, in association with an increased follistatin/activin ratio in the cell culture medium, indicating that myotubes actively release follistatin upon stretching. Recombinant follistatin counteracts tumor effects on myotubes exclusively by rescuing fusion index, suggesting that it is only partially responsible for the stretch-mediated rescue. Therefore, besides activin, other tumor-derived factors may play a significant role in mediating muscle atrophy. In addition to increasing follistatin secretion mechanical stimulation induces additional beneficial responses in myotubes. We propose that in animal models of cancer cachexia and in cancer patients purely mechanical stimuli play an important role in mediating the rescue of the muscle homeostasis reported upon exercise.
Collapse
Affiliation(s)
- Alexandra Baccam
- Biology of Adaptation and Aging (B2A), Sorbonne Université, UMR8256 - INSERM ERL U1164, Paris, France.,Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Alexandra Benoni-Sviercovich
- Biology of Adaptation and Aging (B2A), Sorbonne Université, UMR8256 - INSERM ERL U1164, Paris, France.,Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Marco Rocchi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Viviana Moresi
- Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Marilia Seelaender
- Institute of Biomedical Sciences, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Zhenlin Li
- Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Sergio Adamo
- Biology of Adaptation and Aging (B2A), Sorbonne Université, UMR8256 - INSERM ERL U1164, Paris, France.,Interuniversity Institute of Myology, Rome, Italy
| | - Zhigang Xue
- Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Dario Coletti
- Biology of Adaptation and Aging (B2A), Sorbonne Université, UMR8256 - INSERM ERL U1164, Paris, France.,Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| |
Collapse
|
31
|
Zhang X, Ning T, Wang H, Xu S, Yu H, Luo X, Hao C, Wu B, Ma D. Stathmin regulates the proliferation and odontoblastic/osteogenic differentiation of human dental pulp stem cells through Wnt/β-catenin signaling pathway. J Proteomics 2019; 202:103364. [PMID: 31009804 DOI: 10.1016/j.jprot.2019.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 12/30/2022]
Abstract
Odontoblastic/osteogenic differentiation of human dental pulp stem cells (hDPSCs) is a key factor in tooth and pulp regeneration, but its mechanism still remains unknown. The purpose of this research is to look into the mechanism by which Stathmin affects the proliferation and odontoblastic/osteogenic differentiation of hDPSCs, and whether the Wnt/β- catenin is related to this regulation. First, the Stathmin expression was inhibited by lentiviral vector, after that the transcriptome sequencing technology was used to screen the differentially expressed genes, then we found Wnt5a which related to the regulation of Wnt/β-catenin was regulated. Comparing with hDPSC in the control group, the shRNA-Stathmin group inhibited proliferation and odontoblastic/osteogenic differentiation. The result of molecular analysis indicated that the Wnt/β-catenin was inhibited when Stathmin was silenced. After that, the shRNA-Stathmin group were added with LiCl (activator of Wnt/β-catenin), and the Wnt/β-catenin was significantly activated in β-catenin. After activation of the Wnt/β-catenin, the proliferation of hDPSCs was significantly increased and the expression of genes related to odontoblastic/osteogenic differentiation was also significantly increased. Taken together, these findings reveal for the first time that the Stathmin-Wnt/β-catenin plays a positive regulatory role in hDPSC proliferation and odontoblastic/osteogenic differentiation. SIGNIFICANCE: Transcriptome sequencing revealed that Stathmin interacts with Wnt/β-catenin signaling pathway-related proteins such as Wnt5a. At the same time, experiments have confirmed that Stathmin protein can affect the proliferation and odontogenetic differentiation of hDPSCs.The innovation of this paper is to link the Stathmin and Wnt/β-catenin signaling pathways for the first time, to explore the interaction of Stathmin and Wnt/β-catenin signaling pathways and the mechanism of this regulation on human dental pulp stem cells (hDPSCs) of odontoblastic/osteogenic differentiation and proliferation function. Especially for the regulation of odontoblastic/osteogenic differentiation, we have verified this mechanism at the molecular level and characterization leveland this regulation also provides new ideas for dental pulp tissue engineering. At the same time, more than 3000 proteins related to the change of Stathmin level were screened by transcriptome sequencing technology, which provided a possibility to further exploration of the regulation mechanism of Stathmin on various aspects of cell biological characteristics.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; College of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Tingting Ning
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; College of Stomatology, Southern Medical University, Guangzhou, PR China
| | - He Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; College of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Shuaimei Xu
- College of Stomatology, Southern Medical University, Guangzhou, PR China; Department of Operative and Endodontic Dentistry, Stomatological Hospital, Southern Medical University, Guangzhou, PR China
| | - Haiyue Yu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; College of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Xinghong Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; College of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Chunbo Hao
- Department of Stomatology, Hainan Province People's Hospital, Haikou, PR China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; College of Stomatology, Southern Medical University, Guangzhou, PR China.
| | - Dandan Ma
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; College of Stomatology, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
32
|
Tatullo M, Codispoti B, Paduano F, Nuzzolese M, Makeeva I. Strategic Tools in Regenerative and Translational Dentistry. Int J Mol Sci 2019; 20:ijms20081879. [PMID: 30995738 PMCID: PMC6514784 DOI: 10.3390/ijms20081879] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/10/2019] [Accepted: 04/14/2019] [Indexed: 02/06/2023] Open
Abstract
Human oral-derived stem cells can be easily obtained from several oral tissues, such as dental pulp, periodontal ligament, from gingiva, or periapical cysts. Due to their differentiation potential, oral-derived mesenchymal stem cells are promising for tissue engineering and regenerative medicine. The regenerative ability showed by some oral tissues strongly depends on their sleeping adult stem cell populations that are able to repair small defects and to manage local inflammation. To date, researchers are working on effective and efficient methods to ensure safe and predictable protocols to translate stem cell research into human models. In the last decades, the challenge has been to finally use oral-derived stem cells together with biomaterials or scaffold-free techniques, to obtain strategic tools for regenerative and translational dentistry. This paper aims to give a clear point of view on state of the art developments, with some exciting insights into future strategies.
Collapse
Affiliation(s)
- Marco Tatullo
- Department of Regenerative Medicine, Tecnologica Research Institute, 88900 Crotone, Italy.
- Department of Experimental Medicine, Marrelli Hospital, 88900 Crotone, Italy.
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia.
| | - Bruna Codispoti
- Department of Regenerative Medicine, Tecnologica Research Institute, 88900 Crotone, Italy.
- Department of Experimental Medicine, Marrelli Hospital, 88900 Crotone, Italy.
| | - Francesco Paduano
- Department of Regenerative Medicine, Tecnologica Research Institute, 88900 Crotone, Italy.
- Department of Experimental Medicine, Marrelli Hospital, 88900 Crotone, Italy.
| | - Manuel Nuzzolese
- Department of NHS Foundation Trust, University Hospitals Birmingham ⁻ NHS Foundation Trust, Birmingham B152GW, UK.
| | - Irina Makeeva
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia.
| |
Collapse
|
33
|
Aielli F, Ponzetti M, Rucci N. Bone Metastasis Pain, from the Bench to the Bedside. Int J Mol Sci 2019; 20:E280. [PMID: 30641973 PMCID: PMC6359191 DOI: 10.3390/ijms20020280] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
Bone is the most frequent site of metastasis of the most common cancers in men and women. Bone metastasis incidence has been steadily increasing over the years, mainly because of higher life expectancy in oncologic patients. Although bone metastases are sometimes asymptomatic, their consequences are most often devastating, impairing both life quality and expectancy, due to the occurrence of the skeletal-related events, including bone fractures, hypercalcemia and spinal cord compression. Up to 75% of patients endure crippling cancer-induced bone pain (CIBP), against which we have very few weapons. This review's purpose is to discuss the molecular and cellular mechanisms that lead to CIBP, including how cancer cells convert the bone "virtuous cycle" into a cancer-fuelling "vicious cycle", and how this leads to the release of molecular mediators of pain, including protons, neurotrophins, interleukins, chemokines and ATP. Preclinical tests and assays to evaluate CIBP, including the incapacitance tester (in vivo), and neuron/glial activation in the dorsal root ganglia/spinal cord (ex vivo) will also be presented. Furthermore, current therapeutic options for CIBP are quite limited and nonspecific and they will also be discussed, along with up-and-coming options that may render CIBP easier to treat and let patients forget they are patients.
Collapse
Affiliation(s)
- Federica Aielli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
34
|
Jeyaraj P. Management of Central Giant Cell Granulomas of the Jaws: An Unusual Case Report with Critical Appraisal of Existing Literature. Ann Maxillofac Surg 2019; 9:37-47. [PMID: 31293928 PMCID: PMC6585231 DOI: 10.4103/ams.ams_232_18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Central giant cell granuloma (CGCG) is an uncommon, benign but aggressive osteolytic neoplasm of the craniomaxillofacial region, histologically characterized by an abundance of evenly distributed multinucleated giant cells within a sea of spindle-shaped mesenchymal stromal cells, scattered throughout the fibrovascular connective tissue stroma containing areas of hemorrhage. A rapid diagnostic assessment, together with an adequate histopathologic verification, is essential to improve the management and the prognosis of this locally destructive lesion. A rare case of a large destructive CGCG involving the entire right angle of mandible, causing extensive bony resorption, and buccal, medial as well as inferior border cortical expansion with multiple perforations, in a young child is presented. It was treated successfully by enucleation and aggressive curettage followed by peripheral ostectomy preserving the continuity of the mandible. Two adjunctive measures were employed; first, chemical cauterization of the residual bony walls to prevent possible recurrence, for which this tumor is notorious, and second, placement of fresh autologous platelet-rich fibrin within the bony defect to hasten bone fill and reossification, thus obviating the need for a bone graft.
Collapse
Affiliation(s)
- Priya Jeyaraj
- Military Dental Centre (Gough Lines), Secunderabad, Telangana, India
| |
Collapse
|
35
|
Liu W, Chen B, Zheng Y, Shi Y, Shi Z. Effect of Platelet-rich Plasma on Implant Bone Defects in Rabbits Through the FAK/PI3K/AKT Signaling Pathway. Open Life Sci 2019; 14:311-317. [PMID: 33817164 PMCID: PMC7874784 DOI: 10.1515/biol-2019-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/14/2019] [Indexed: 01/08/2023] Open
Abstract
Platelet-rich plasma (PRP) has been shown to be a beneficial growth factor for bone tissue healing and is used in implantology. The aim of this study was to investigate the effects of PRP on bone defects in rabbits. Twenty rabbits were used to establish the implant bone defect model in this study. An intrabony defect (5mm × 5mm × 3mm) was created in alveolar bone in the lower jar of each rabbit. The wound was treated with PRP. The expression of platelet-derived growth factor BB (PDGFBB) was assessed by enzyme-linked immunosorbent assay (ELISA). Focal adhesion kinase (FAK) and related phosphatidylinositol 3-kinase (PI3K)/AKT (protein kinase B) levels were measured by Western blot. The results show that PRP could significantly improve the bone healing process when compared with control, and 10% PRP could markedly increase fibroblast proliferation 48-h post treatment. PDGFBB was higher in the PRP group than that in the control group. PRP treatment also could elevate the phosphorylation of FAK and PI3K/AKT, although the inhibitor of PDGFR could reverse this trend. These results suggest that PRP treatment improves the bone healing process through the FAK/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Wei Liu
- Department of Stomatology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Ben Chen
- Department of Stomatology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Youyang Zheng
- Department of Stomatology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yuehua Shi
- School of Stomatology, Zhejiang Chinese Medical University, Binwen Road, Hangzhou, 310053, China
| | - Zhuojin Shi
- School of Stomatology, Zhejiang Chinese Medical University, Binwen Road, Hangzhou, 310053, China
| |
Collapse
|
36
|
Biological and Mechanical Properties of Platelet-Rich Fibrin Membranes after Thermal Manipulation and Preparation in a Single-Syringe Closed System. Int J Mol Sci 2018; 19:ijms19113433. [PMID: 30388866 PMCID: PMC6274993 DOI: 10.3390/ijms19113433] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
Platelet-rich fibrin (PRF) membrane is a three-dimensional biodegradable biopolymer, which consists of platelet derived growth factors enhancing cell adhesion and proliferation. It is widely used in soft and hard tissue regeneration, however, there are unresolved problems with its clinical application. Its preparation needs open handling of the membranes, it degrades easily, and it has a low tensile strength which does not hold a suture blocking wider clinical applications of PRF. Our aim was to produce a sterile, suturable, reproducible PRF membrane suitable for surgical intervention. We compared the biological and mechanical properties of PRF membranes created by the classical glass-tube and those that were created in a single-syringe closed system (hypACT Inject), which allowed aseptic preparation. HypACT Inject device produces a PRF membrane with better handling characteristics without compromising biological properties. Freeze-thawing resulted in significantly higher tensile strength and higher cell adhesion at a lower degradation rate of the membranes. Mesenchymal stem cells seeded onto PRF membranes readily proliferated on the surface of fresh, but even better on freeze/thawed or freeze-dried membranes. These data show that PRF membranes can be made sterile, more uniform and significantly stronger which makes it possible to use them as suturable surgical membranes.
Collapse
|
37
|
Human Periapical Cysts-Mesenchymal Stem Cells Cultured with Allogenic Human Serum are a “clinical-grade” construct alternative to bovine fetal serum and indicated in the regeneration of endo-periodontal tissues. GIORNALE ITALIANO DI ENDODONZIA 2018. [DOI: 10.1016/j.gien.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Nahás-Scocate ACR, de Moraes GFA, Nader HB, Vicente CM, Toma L. Analysis of proteoglycan expression in human dental pulp. Arch Oral Biol 2018; 90:67-73. [DOI: 10.1016/j.archoralbio.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/27/2018] [Accepted: 03/04/2018] [Indexed: 10/17/2022]
|
39
|
Renzini A, Benedetti A, Bouchè M, Silvestroni L, Adamo S, Moresi V. Culture conditions influence satellite cell activation and survival of single myofibers. Eur J Transl Myol 2018; 28:7567. [PMID: 29991990 PMCID: PMC6036316 DOI: 10.4081/ejtm.2018.7567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 02/08/2023] Open
Abstract
Single myofiber isolation protocols allow to obtain an in vitro system in which the physical association between the myofiber and its stem cells, the satellite cells, is adequately preserved. This technique is an indispensable tool by which the muscle regeneration process can be recapitulated and studied in each specific phase, from satellite cell activation to proliferation, from differentiation to fusion. This study aims to clarify the effect of different culture conditions on single myofibers, their associated satellite cells, and the physiological behavior of the satellite cells upon long term culture. By direct observations of the cultures, we compared different experimental conditions and their effect on both satellite cell behavior and myofiber viability.
Collapse
Affiliation(s)
- Alessandra Renzini
- DAHFMO Unit of Histology and Medical Embryology, InterUniversity Institute of Myology, Sapienza University of Rome, Italy
| | - Anna Benedetti
- DAHFMO Unit of Histology and Medical Embryology, InterUniversity Institute of Myology, Sapienza University of Rome, Italy
| | - Marina Bouchè
- DAHFMO Unit of Histology and Medical Embryology, InterUniversity Institute of Myology, Sapienza University of Rome, Italy
| | - Leopoldo Silvestroni
- Department of Fundamental and Basic Sciences for Engineering, Sapienza University of Rome, Italy
| | - Sergio Adamo
- DAHFMO Unit of Histology and Medical Embryology, InterUniversity Institute of Myology, Sapienza University of Rome, Italy
| | - Viviana Moresi
- DAHFMO Unit of Histology and Medical Embryology, InterUniversity Institute of Myology, Sapienza University of Rome, Italy
| |
Collapse
|
40
|
Supplementation with IL-6 and Muscle Cell Culture Conditioned Media Enhances Myogenic Differentiation of Adipose Tissue-Derived Stem Cells through STAT3 Activation. Int J Mol Sci 2018; 19:ijms19061557. [PMID: 29882916 PMCID: PMC6032255 DOI: 10.3390/ijms19061557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 12/25/2022] Open
Abstract
Mature skeletal muscle cells cannot be expanded in culture systems. Therefore, it is difficult to construct an in vitro model for muscle diseases. To establish an efficient protocol for myogenic differentiation of human adipose tissue-derived stem cells (hADSCs), we investigated whether addition of IL-6 and/or myocyte-conditioned media (CM) to conventional differentiation media can shorten the differentiation period. hADSCs were differentiated to myocytes using the conventional protocol or modified with the addition of 25 pg/mL IL-6 and/or C2C12 CM (25% v/v). The expression of MyoD and myogenine mRNA was significantly higher at 5⁻6 days after differentiation using the modified protocol than with the conventional protocol. mRNA and protein expression of myosin heavy chain, a marker of myotubes, was significantly upregulated at 28 and 42 days of differentiation using the modified protocol, and the level achieved after a 4-week differentiation period was similar to that achieved at 6 weeks using the conventional protocol. The expression of p-STAT3 was significantly increased when the modified protocol was used. Similarly, addition of colivelin, a STAT3 activator, instead of IL-6 and C2C12 CM, promoted the myogenic differentiation of ADSCs. The modified protocol improved differentiation efficiency and reduced the time required for differentiation of myocytes. It might be helpful to save cost and time when preparing myocytes for cell therapies and drug discovery.
Collapse
|
41
|
Coskun ME, Coskun KA, Tutar Y. Determination of Optimum Operation Parameters for Low-Intensity Pulsed Ultrasound and Low-Level Laser Based Treatment to Induce Proliferation of Osteoblast and Fibroblast Cells. Photomed Laser Surg 2018; 36:246-252. [PMID: 29466082 DOI: 10.1089/pho.2017.4354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mehmet Emre Coskun
- Department of Prosthodontics, Faculty of Dentistry, Cumhuriyet University, Sivas, Turkey
| | - Kubra Acikalin Coskun
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Yusuf Tutar
- Department of Nutrition and Dietetics, Health Sciences Faculty, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
42
|
Tatullo M. About stem cell research in dentistry: many doubts and too many pitfalls still affect the regenerative dentistry. Int J Med Sci 2018; 15:1616-1618. [PMID: 30588184 PMCID: PMC6299415 DOI: 10.7150/ijms.27908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022] Open
Abstract
Stem cells (SCs) research is one of the most promising approaches to regenerative medicine. Our understanding of SCs biology and their potential role in tissue repairing has notably increased during the last few years. Mesenchymal stem cells (MSCs) are present in almost all human tissues, including oral and dental tissues (dental-derived stem cells or DDSCs). Despite many doubts and too many pitfalls still affect regenerative dentistry; however, it represents an exciting challenge for the next generations of young dentists. Educating and training in regenerative medicine the new generation of researchers is of utmost importance, albeit often underestimated: regenerative dentistry represents a big opportunity for the next generations of researchers and clinicians, and this review report underlines that dental schools should pay more attention to teachings of strategic subjects, such as cell biology, molecular biology and tissue engineering.
Collapse
Affiliation(s)
- Marco Tatullo
- Scientific Director, Tecnologica Research Institute, 88900 Crotone, Italy.,IM Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
43
|
Paduano F, Marrelli M, Amantea M, Rengo C, Rengo S, Goldberg M, Spagnuolo G, Tatullo M. Adipose Tissue as a Strategic Source of Mesenchymal Stem Cells in Bone Regeneration: A Topical Review on the Most Promising Craniomaxillofacial Applications. Int J Mol Sci 2017; 18:ijms18102140. [PMID: 29027958 PMCID: PMC5666822 DOI: 10.3390/ijms18102140] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023] Open
Abstract
Bone regeneration in craniomaxillofacial surgery represents an issue that involves both surgical and aesthetic aspects. The most recent studies on bone tissue engineering involving adipose-derived stromal/stem cells (ASCs) have clearly demonstrated that such cells can play a crucial role in the treatment of craniomaxillofacial defects, given their strong commitment towards the osteogenic phenotype. A deeper knowledge of the molecular mechanisms underlying ASCs is crucial for a correct understanding of the potentialities of ASCs-based therapies in the most complex maxillofacial applications. In this topical review, we analyzed the molecular mechanisms of ASCs related to their support toward angiogenesis and osteogenesis, during bone regeneration. Moreover, we analyzed both case reports and clinical trials reporting the most promising clinical applications of ASCs in the treatment of craniomaxillofacial defects. Our study aimed to report the main molecular and clinical features shown by ASCs, used as a therapeutic support in bone engineering, as compared to the use of conventional autologous and allogeneic bone grafts.
Collapse
Affiliation(s)
- Francesco Paduano
- Biomedical Section, Stem Cells Unit, Tecnologica Research Institute, 88900 Crotone, Italy;
| | - Massimo Marrelli
- Unit of Craniomaxillofacial Surgery, Calabrodental, 88900 Crotone, Italy;
| | | | - Carlo Rengo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Naples, Italy; (C.R.); (S.R.); (G.S.)
| | - Sandro Rengo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Naples, Italy; (C.R.); (S.R.); (G.S.)
| | - Michel Goldberg
- Professeur Emerite, Biomédicale des Saints Pères, Université Paris Descartes, Institut National de la Santé et de la Recherche Médicale UMR-S 1124, 75654 Paris, France;
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80138 Naples, Italy; (C.R.); (S.R.); (G.S.)
| | - Marco Tatullo
- Biomedical Section, Stem Cells Unit, Tecnologica Research Institute, 88900 Crotone, Italy;
- Correspondence: ; Tel.: +39-34-9874-2445
| |
Collapse
|
44
|
Marrelli M, Pujia A, Palmieri F, Gatto R, Falisi G, Gargari M, Caruso S, Apicella D, Rastelli C, Nardi GM, Paduano F, Tatullo M. Innovative approach for the in vitro research on biomedical scaffolds designed and customized with CAD-CAM technology. Int J Immunopathol Pharmacol 2016; 29:778-783. [PMID: 27106276 DOI: 10.1177/0394632016646121] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 03/31/2016] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Studies on biomaterials involve assays aimed to assess the interactions between the biomaterial and the cells seeded on its surface. However, the morphology of biomaterials is heterogeneous and it could be tricky to standardize the results among different biomaterials and the classic plastic plates. In this light, we decided to create, by means of computer-aided design (CAD) technology, a standardized sample model, with equal shape and sizes, able to fit into a classic shape of a 96-wells tissue culture plate (TCP). METHODS The design of this sample consists of a hole in the top in order to allow the injected cells to settle without them being able to slip from the sides of the sample to the bottom of the TCP wells. This CAD project is made using the software Pro-Engineer. The sample will totally fill the wells of the 96-well TCP. Dental pulp stem cells have been used to assess the ability of the different sample to support and promote the cell proliferation. RESULTS Twelve titanium, 12 gold-palladium, and 12 zirconium oxide customized samples were designed by means of the software cam powermill, by importing the .stl file created in Pro-Engineer software. The proliferation rate of the tested scaffolds showed to be similar to the control in the group with the customized shape. CONCLUSION We think that our method can be useful to test different types of scaffolds when a greater accuracy of the measurements is desirable in order to verify the cell behavior of these scaffolds. Our innovative method can improve the standardization process in the evaluation of cell behavior on different biomaterials to open the way to more reliable tests on biomatrices functionalized with drugs or growth factors applied to the future regenerative medicine.
Collapse
Affiliation(s)
- Massimo Marrelli
- Tecnologica Research Institute, Biomedical Section, Crotone, Italy.,Calabrodental clinic, Biomaterials unit, Crotone, Italy
| | - Antonella Pujia
- Tecnologica Research Institute, Biomedical Section, Crotone, Italy
| | | | - Roberto Gatto
- Department of Life, Health and Environmental Sciences, School of Dentistry, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Falisi
- Department of Life, Health and Environmental Sciences, School of Dentistry, University of L'Aquila, L'Aquila, Italy
| | - Marco Gargari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Silvia Caruso
- Department of Life, Health and Environmental Sciences, School of Dentistry, University of L'Aquila, L'Aquila, Italy
| | | | - Claudio Rastelli
- Department of Life, Health and Environmental Sciences, School of Dentistry, University of L'Aquila, L'Aquila, Italy
| | - Gianna Maria Nardi
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Marco Tatullo
- Tecnologica Research Institute, Biomedical Section, Crotone, Italy .,Calabrodental clinic, Biomaterials unit, Crotone, Italy
| |
Collapse
|
45
|
Tatullo M, Marrelli M, Falisi G, Rastelli C, Palmieri F, Gargari M, Zavan B, Paduano F, Benagiano V. Mechanical influence of tissue culture plates and extracellular matrix on mesenchymal stem cell behavior: A topical review. Int J Immunopathol Pharmacol 2015; 29:3-8. [PMID: 26612837 DOI: 10.1177/0394632015617951] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022] Open
Abstract
Tissue engineering applications need a continuous development of new biomaterials able to generate an ideal cell-extracellular matrix interaction. The stem cell fate is regulated by several factors, such as growth factors or transcription factors. The most recent literature has reported several publications able to demonstrate that environmental factors also contribute to the regulation of stem cell behavior, leading to the opinion that the environment plays the major role in the cell differentiation.The interaction between mesenchymal stem cells (MSCs) and extracellular environment has been widely described, and it has a crucial role in regulating the cell phenotype. In our laboratory (Tecnologica Research Institute, Crotone, Italy), we have recently studied how several physical factors influence the distribution and the morphology of MSCs isolated from dental pulp, and how they are able to regulate stem cell differentiation. Mechanical and geometrical factors are only a small part of the environmental factors able to influence stem cell behavior, however, this influence should be properly known: in fact, this assumption must be clearly considered during those studies involving MSCs; furthermore, these interactions should be considered as an important bias that involves an high number of studies on the MSCs, since in worldwide laboratories the scientists mostly use tissue culture plates for their experiments.
Collapse
Affiliation(s)
- Marco Tatullo
- Unit of Maxillofacial Surgery, Calabrodental, Crotone, Italy Tecnologica Research Institute, Biomedical Section, Crotone, Italy
| | - Massimo Marrelli
- Unit of Maxillofacial Surgery, Calabrodental, Crotone, Italy Tecnologica Research Institute, Biomedical Section, Crotone, Italy
| | - Giovanni Falisi
- Department of Life, Health and Environmental Sciences, School of Dentistry, University of L'Aquila, L'Aquila, Italy
| | - Claudio Rastelli
- Department of Life, Health and Environmental Sciences, School of Dentistry, University of L'Aquila, L'Aquila, Italy
| | | | - Marco Gargari
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Barbara Zavan
- Biomedical Department, University of Padova, Padova, Italy
| | | | - Vincenzo Benagiano
- Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| |
Collapse
|