1
|
Lee DH, Song J. Impaired olfactory system in metabolic imbalance-related neuropathology. Life Sci 2024; 355:122967. [PMID: 39142504 DOI: 10.1016/j.lfs.2024.122967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Olfactory dysfunction, influenced by factors such as aging and environmental stress, is linked to various neurological disorders. The olfactory bulb's connections to brain areas like the hypothalamus, piriform cortex, entorhinal cortex, and limbic system make olfactory dysfunction a contributor to a range of neuropathological conditions. Recent research has underscored that olfactory deficits are prevalent in individuals with both metabolic syndrome and dementia. These systemic metabolic alterations correlate with olfactory impairments, potentially affecting brain regions associated with the olfactory bulb. In cases of metabolic syndrome, phenomena such as insulin resistance and disrupted glucose metabolism may result in compromised olfactory function, leading to multiple neurological issues. This review synthesizes key findings on the interplay between metabolic-induced olfactory dysfunction and neuropathology. It emphasizes the critical role of olfactory assessment in diagnosing and managing neurological diseases related to metabolic syndrome.
Collapse
Affiliation(s)
- Dong Hoon Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School & Hwasun Hospital, Hwasun 58128, Republic of Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
| |
Collapse
|
2
|
Silva L, Mendes T, Ramos L, Zhang G, Antunes A. Parallel evolution of fish bi-modal breathing and expansion of olfactory receptor (OR) genes: toward a universal ORs nomenclature. J Genet Genomics 2023; 50:600-610. [PMID: 36935037 DOI: 10.1016/j.jgg.2023.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/19/2023]
Abstract
Olfactory receptors (ORs) play a key role in the prime sensorial perception, being highly relevant for intra/interspecific interactions. ORs are a subgroup of G-protein coupled receptors that exhibit highly complex subgenomes in vertebrates. However, OR repertoires remain poorly studied in fish lineages, precluding finely retracing their origin, evolution, and diversification, especially in the most basal groups. Here, we conduct an exhaustive gene screening upon 43 high-quality fish genomes exhibiting varied gene repertoires (2-583 genes). While the early vertebrates performed gas exchange through gills, we hypothesize that the emergence of new breathing structures (swim bladder and paired lungs) in early osteichthyans may be associated with expansions in the ORs gene families sensitive to airborne molecules. Additionally, we verify that the OR repertoire of moderns actinopterygians has not increased as expected following a whole genome duplication, likely due to regulatory mechanisms compensating the gene load excess. Finally, we identify 25 distinct OR families, allowing us to propose an updated universal nomenclature for the fish ORs.
Collapse
Affiliation(s)
- Liliana Silva
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Tito Mendes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
| | - Luana Ramos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Guojie Zhang
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark; BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong 518083, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
3
|
Hong SJ, Yoon S, Jo SM, Jeong H, Youn MY, Kim YJ, Kim JK, Shin EC. Olfactory Stimulation by Fennel (Foeniculum vulgare Mill.) Essential Oil Improves Lipid Metabolism and Metabolic Disorders in High Fat-Induced Obese Rats. Nutrients 2022; 14:nu14040741. [PMID: 35215391 PMCID: PMC8877786 DOI: 10.3390/nu14040741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, odor components were analyzed using gas chromatography/mass spectrometry (GC/MS) and solid-phase microextraction (SPME), and odor-active compounds (OACs) were identified using GC-olfactometry (GC-O). Among the volatile compounds identified through GC-O, p-anisaldehyde, limonene, estragole, anethole, and trans-anethole elicit the fennel odor. In particular, trans-anethole showed the highest odor intensity and content. Changes in body weight during the experimental period showed decreasing values of fennel essential oil (FEO)-inhaled groups, with both body fat and visceral fat showing decreased levels. An improvement in the body’s lipid metabolism was observed, as indicated by the increased levels of cholesterol and triglycerides and decreased levels of insulin in the FEO-inhaled groups compared to group H. Furthermore, the reduction in systolic blood pressure and pulse through the inhalation of FEO was confirmed. Our results indicated that FEO inhalation affected certain lipid metabolisms and cardiovascular health, which are obesity-related dysfunction indicators. Accordingly, this study can provide basic research data for further research as to protective applications of FEO, as well as their volatile profiles.
Collapse
Affiliation(s)
- Seong Jun Hong
- Department of Food Science, Gyeongsang National University, Jinju 52725, Korea; (S.J.H.); (S.Y.); (S.M.J.); (H.J.); (M.Y.Y.)
| | - Sojeong Yoon
- Department of Food Science, Gyeongsang National University, Jinju 52725, Korea; (S.J.H.); (S.Y.); (S.M.J.); (H.J.); (M.Y.Y.)
| | - Seong Min Jo
- Department of Food Science, Gyeongsang National University, Jinju 52725, Korea; (S.J.H.); (S.Y.); (S.M.J.); (H.J.); (M.Y.Y.)
| | - Hyangyeon Jeong
- Department of Food Science, Gyeongsang National University, Jinju 52725, Korea; (S.J.H.); (S.Y.); (S.M.J.); (H.J.); (M.Y.Y.)
| | - Moon Yeon Youn
- Department of Food Science, Gyeongsang National University, Jinju 52725, Korea; (S.J.H.); (S.Y.); (S.M.J.); (H.J.); (M.Y.Y.)
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Korea;
| | - Jae Kyeom Kim
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA;
| | - Eui-Cheol Shin
- Department of Food Science, Gyeongsang National University, Jinju 52725, Korea; (S.J.H.); (S.Y.); (S.M.J.); (H.J.); (M.Y.Y.)
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Korea
- Correspondence: ; Tel.: +82-55-772-3271; Fax: +82-55-772-3279
| |
Collapse
|
4
|
Gouveri E, Papanas N. Olfactory Dysfunction: A Complication of Diabetes or a Factor That Complicates Glucose Metabolism? A Narrative Review. J Clin Med 2021; 10:jcm10235637. [PMID: 34884338 PMCID: PMC8658580 DOI: 10.3390/jcm10235637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
The present narrative review presents emerging data regarding the association between diabetes mellitus and olfactory dysfunction and discusses the role of olfactory dysfunction in glucose metabolism. We searched relevant published articles in PubMed and Google Scholar until October 2021. Main key words included “olfactory dysfunction”, “diabetes mellitus”, and “glucose metabolism”. Olfactory dysfunction has been associated with diabetes mellitus. Furthermore, it has been proposed to be a diabetic complication, given that it has been linked with microvascular complications, such as diabetic peripheral neuropathy. Interestingly, it has been suggested that olfactory dysfunction is a manifestation of central neuropathy in diabetes, a hypothesis based on the observation that diabetes, olfactory dysfunction, and cognitive decline often coexist. However, evidence is limited and inconsistent. More importantly, olfactory and endocrine systems are closely linked, and olfactory dysfunction plays a significant role in glucose metabolism and obesity. Indeed, food behaviour and energy balance are influenced by olfaction status.
Collapse
Affiliation(s)
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, 68132 Alexandroupolis, Greece
- Correspondence: ; Fax: +30-25-5135-1723
| |
Collapse
|
5
|
Hong SJ, Cho J, Boo CG, Youn MY, Pan JH, Kim JK, Shin EC. Inhalation of Patchouli ( Pogostemon Cablin Benth.) Essential Oil Improved Metabolic Parameters in Obesity-Induced Sprague Dawley Rats. Nutrients 2020; 12:E2077. [PMID: 32668680 PMCID: PMC7400805 DOI: 10.3390/nu12072077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
This study investigated effects of patchouli essential oil (PEO) inhalation on metabolic parameters. First, to characterize aromatic compounds in PEO, solid-phase microextraction-gas chromatography/mass spectrometric detection was employed in which 19 aromatic compounds were identified. In GC-olfactometry analysis, linalool, α-patchoulene, and β-patchoulene were found to be the constituents exhibiting the highest similarity to the aromatic compounds in patchouli. In an animal experiment using Sprague Darley rats, groups with PEO inhalation had a reduced food intake compared to the control group. Additionally, body weight was lower in the obesity-induced animal model exposed to PEO inhalation than the group without PEO. However, we found no significant difference in organ weights between groups. In our serum analysis, high-density lipoprotein cholesterol was significantly higher in the PEO inhalation groups, while low-density lipoprotein cholesterol content was highest in the positive control group, suggesting that inhalation of the aromatic compounds present in patchouli may improve cholesterol profile. In addition, leptin levels were reduced in the groups treated with PEO inhalation, which explains the differences in food intake and body weight gains. Last, animal groups exposed to PEO inhalation showed a relatively lower systolic blood pressure which suggests that inhalation of PEO (or aromatic compounds therein) may assist in regulating blood pressure. Collectively, our data demonstrate that the inhalation of PEO influenced certain markers related to metabolic diseases, hence provide basic data for future research as to preventive/therapeutic applications of PEO as well as their aromatic constituents.
Collapse
Affiliation(s)
- Seong Jun Hong
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea; (S.J.H.); (J.C.); (C.G.B.); (M.Y.Y.)
| | - Jinju Cho
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea; (S.J.H.); (J.C.); (C.G.B.); (M.Y.Y.)
| | - Chang Guk Boo
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea; (S.J.H.); (J.C.); (C.G.B.); (M.Y.Y.)
| | - Moon Yeon Youn
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea; (S.J.H.); (J.C.); (C.G.B.); (M.Y.Y.)
| | - Jeong Hoon Pan
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA; (J.H.P.); (J.K.K.)
| | - Jae Kyeom Kim
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716, USA; (J.H.P.); (J.K.K.)
| | - Eui-Cheol Shin
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea; (S.J.H.); (J.C.); (C.G.B.); (M.Y.Y.)
| |
Collapse
|
6
|
Barrera-Sandoval AM, Osorio E, Cardona-Gómez GP. Microglial-targeting induced by intranasal linalool during neurological protection postischemia. Eur J Pharmacol 2019; 857:172420. [DOI: 10.1016/j.ejphar.2019.172420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
|