1
|
Zvenigorodsky V, Gruenbaum BF, Shelef I, Horev A, Azab AN, Oleshko A, Abu-Rabia M, Negev S, Zlotnik A, Melamed I, Boyko M. Evaluation of Blood-Brain Barrier Disruption Using Low- and High-Molecular-Weight Complexes in a Single Brain Sample in a Rat Traumatic Brain Injury Model: Comparison to an Established Magnetic Resonance Imaging Technique. Int J Mol Sci 2024; 25:11241. [PMID: 39457023 PMCID: PMC11508800 DOI: 10.3390/ijms252011241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Traumatic brain injury (TBI), a major cause of death and disability among young people, leads to significant public health and economic challenges. Despite its frequency, treatment options remain largely unsuitable. However, examination of the blood-brain barrier (BBB) can assist with understanding the mechanisms and dynamics of brain dysfunction, which affects TBI sufferers secondarily to the injury. Here, we present a rat model of TBI focused on two standard BBB assessment markers, high- and low-molecular-weight complexes, in order to understand BBB disruption. In addition, we tested a new technique to evaluate BBB disruption on a single brain set, comparing the new technique with neuroimaging. A total of 100 Sprague-Dawley rats were separated into the following five groups: naive rats (n = 20 rats), control rats with administration (n = 20 rats), and TBI rats (n = 60 rats). Rats were assessed at different time points after the injury to measure BBB disruption using low- and high-molecular-weight complexes. Neurological severity score was evaluated at baseline and at 24 h following TBI. During the neurological exam after TBI, the rats were scanned with magnetic resonance imaging and euthanized for assessment of the BBB permeability. We found that the two markers displayed different examples of BBB disruption in the same set of brain tissues over the period of a week. Our innovative protocol for assessing BBB permeability using high- and low-molecular-weight complexes markers in a single brain set showed appropriate results. Additionally, we determined the lower limit of sensitivity, therefore demonstrating the accuracy of this method.
Collapse
Affiliation(s)
- Vladislav Zvenigorodsky
- Department of Radiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (V.Z.); (I.S.)
| | - Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Ilan Shelef
- Department of Radiology, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (V.Z.); (I.S.)
| | - Anat Horev
- Department of Neurology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel;
| | - Abed N. Azab
- Department of Nursing, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel;
| | - Anna Oleshko
- Department of Biology and Methods of Teaching Biology, A. S. Makarenko Sumy State Pedagogical University, 40002 Sumy, Ukraine;
| | - Mammduch Abu-Rabia
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (M.A.-R.); (S.N.); (A.Z.)
| | - Shahar Negev
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (M.A.-R.); (S.N.); (A.Z.)
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (M.A.-R.); (S.N.); (A.Z.)
| | - Israel Melamed
- Department of Neurosurgery, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel;
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (M.A.-R.); (S.N.); (A.Z.)
| |
Collapse
|
2
|
Abakumova T, Kuzkina A, Koshkin P, Pozdeeva D, Abakumov M, Melnikov P, Ionova K, Gubskii I, Gurina O, Nukolova N, Chekhonin V. Localized Increased Permeability of Blood-Brain Barrier for Antibody Conjugates in the Cuprizone Model of Demyelination. Int J Mol Sci 2023; 24:12688. [PMID: 37628867 PMCID: PMC10454543 DOI: 10.3390/ijms241612688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The development of new neurotherapeutics depends on appropriate animal models being chosen in preclinical studies. The cuprizone model is an effective tool for studying demyelination and remyelination processes in the brain, but blood-brain barrier (BBB) integrity in the cuprizone model is still a topic for debate. Several publications claim that the BBB remains intact during cuprizone-induced demyelination; others demonstrate results that could explain the increased BBB permeability. In this study, we aim to analyze the permeability of the BBB for different macromolecules, particularly antibody conjugates, in a cuprizone-induced model of demyelination. We compared the traditional approach using Evans blue injection with subsequent dye extraction and detection of antibody conjugates using magnetic resonance imaging (MRI) and confocal microscopy to analyze BBB permeability in the cuprizone model. First, we validated our model of demyelination by performing T2-weighted MRI, diffusion tensor imaging, quantitative rt-PCR to detect changes in mRNA expression of myelin basic protein and proteolipid protein, and Luxol fast blue histological staining of myelin. Intraperitoneal injection of Evans blue did not result in any differences between the fluorescent signal in the brain of healthy and cuprizone-treated mice (IVIS analysis with subsequent dye extraction). In contrast, intravenous injection of antibody conjugates (anti-GFAP or non-specific IgG) after 4 weeks of a cuprizone diet demonstrated accumulation in the corpus callosum of cuprizone-treated mice both by contrast-enhanced MRI (for gadolinium-labeled antibodies) and by fluorescence microscopy (for Alexa488-labeled antibodies). Our results suggest that the methods with better sensitivity could detect the accumulation of macromolecules (such as fluorescent-labeled or gadolinium-labeled antibody conjugates) in the brain, suggesting a local BBB disruption in the demyelinating area. These findings support previous investigations that questioned BBB integrity in the cuprizone model and demonstrate the possibility of delivering antibody conjugates to the corpus callosum of cuprizone-treated mice.
Collapse
Affiliation(s)
- Tatiana Abakumova
- Department of Synthetic Neurotechnology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Anastasia Kuzkina
- Faculty of Medicine, Sechenov First Medical University, Moscow 119991, Russia
- Department of Immunochemistry, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Philipp Koshkin
- Department of Medicine and Biology, Chair of Medical Nanotechnology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Daria Pozdeeva
- Faculty of Medicine, Sechenov First Medical University, Moscow 119991, Russia
- Department of Immunochemistry, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Maxim Abakumov
- Department of Medicine and Biology, Chair of Medical Nanotechnology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISIS, Moscow 119049, Russia
| | - Pavel Melnikov
- Department of Immunochemistry, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Klavdia Ionova
- Department of Immunochemistry, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Ilia Gubskii
- Department of Medicine and Biology, Chair of Medical Nanotechnology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Olga Gurina
- Department of Immunochemistry, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Natalia Nukolova
- Department of Immunochemistry, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Massachusetts Institute of Technology, Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Vladimir Chekhonin
- Department of Immunochemistry, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medicine and Biology, Chair of Medical Nanotechnology, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
3
|
Bhattarai S, Subedi U, Manikandan S, Sharma S, Sharma P, Miller C, Bhuiyan MS, Kidambi S, Aidinis V, Sun H, Miriyala S, Panchatcharam M. Endothelial Specific Deletion of Autotaxin Improves Stroke Outcomes. Cells 2023; 12:511. [PMID: 36766854 PMCID: PMC9914107 DOI: 10.3390/cells12030511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Autotaxin (ATX) is an extracellular secretory enzyme (lysophospholipase D) that catalyzes the hydrolysis of lysophosphatidyl choline to lysophosphatidic acid (LPA). The ATX-LPA axis is a well-known pathological mediator of liver fibrosis, metastasis in cancer, pulmonary fibrosis, atherosclerosis, and neurodegenerative diseases. Additionally, it is believed that LPA may cause vascular permeability. In ischemic stroke, vascular permeability leading to hemorrhagic transformation is a major limitation for therapies and an obstacle to stroke management. Therefore, in this study, we generated an endothelial-specific ATX deletion in mice (ERT2 ATX-/-) to observe stroke outcomes in a mouse stroke model to analyze the role of endothelial ATX. The AR2 probe and Evans Blue staining were used to perform the ATX activity and vascular permeability assays, respectively. Laser speckle imaging was used to observe the cerebral blood flow following stroke. In this study, we observed that stroke outcomes were alleviated with the endothelial deletion of ATX. Permeability and infarct volume were reduced in ERT2 ATX-/- mice compared to ischemia-reperfusion (I/R)-only mice. In addition, the cerebral blood flow was retained in ERT2 ATX-/- compared to I/R mice. The outcomes in the stroke model are alleviated due to the limited LPA concentration, reduced ATX concentration, and ATX activity in ERT2 ATX-/- mice. This study suggests that endothelial-specific ATX leads to increased LPA in the brain vasculature following ischemic-reperfusion and ultimately disrupts vascular permeability, resulting in adverse stroke outcomes.
Collapse
Affiliation(s)
- Susmita Bhattarai
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences, Shreveport, LA 71103, USA
| | - Utsab Subedi
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences, Shreveport, LA 71103, USA
| | - Shrivats Manikandan
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences, Shreveport, LA 71103, USA
| | - Sudha Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences, Shreveport, LA 71103, USA
| | - Papori Sharma
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences, Shreveport, LA 71103, USA
| | - Chloe Miller
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences, Shreveport, LA 71103, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences, Shreveport, LA 71103, USA
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NB 68588, USA
| | - Vassilis Aidinis
- Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Hong Sun
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences, Shreveport, LA 71103, USA
| | - Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences, Shreveport, LA 71103, USA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences, Shreveport, LA 71103, USA
| |
Collapse
|
4
|
The ATX-LPA Axis Regulates Vascular Permeability during Cerebral Ischemic-Reperfusion. Int J Mol Sci 2022; 23:ijms23084138. [PMID: 35456953 PMCID: PMC9024554 DOI: 10.3390/ijms23084138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022] Open
Abstract
Endothelial permeability is a major complication that must be addressed during stroke treatment. Study of the mechanisms underlying blood−brain barrier (BBB) disruption and management of the hypoxic stress-induced permeability of the endothelium following reperfusion are both urgently needed for stroke management. Lysophosphatidic acid (LPA), a bioactive lipid essential for basic cellular functions, causes unfavorable outcomes during stroke progression. LPA-producing enzyme autotaxin (ATX) is regulated in ischemic stroke. We used an electrical cell-substrate impedance sensor (ECIS) to measure endothelial permeability. Mitochondrial bioenergetics were obtained using a Seahorse analyzer. AR-2 probe fluorescence assay was used to measure ATX activity. LPA increased endothelial permeability and reduced junctional protein expression in mouse brain microvascular endothelial cells (MBMEC). LPA receptor inhibitors Ki16425 and AM095 attenuated the LPA-induced changes in the endothelial permeability and junctional proteins. LPA significantly diminished mitochondrial function in MBMEC. ATX was upregulated (p < 0.05) in brain microvascular endothelial cells under hypoxic reperfusion. ATX activity and permeability were attenuated with the use of an ATX inhibitor in a mouse stroke model. The upregulation of ATX with hypoxic reperfusion leads to LPA production in brain endothelial cells favoring permeability. Inhibition of the ATX−LPA−LPAR axis could be therapeutically targeted in stroke to achieve better outcomes.
Collapse
|
5
|
Bhattarai S, Sharma S, Ara H, Subedi U, Sun G, Li C, Bhuiyan MS, Kevil C, Armstrong WP, Minvielle MT, Miriyala S, Panchatcharam M. Disrupted Blood-Brain Barrier and Mitochondrial Impairment by Autotaxin-Lysophosphatidic Acid Axis in Postischemic Stroke. J Am Heart Assoc 2021; 10:e021511. [PMID: 34514847 PMCID: PMC8649548 DOI: 10.1161/jaha.121.021511] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Background The loss of endothelial integrity increases the risk of intracerebral hemorrhage during ischemic stroke. Adjunct therapeutic targets for reperfusion in ischemic stroke are in need to prevent blood-brain barrier disruption. Recently, we have shown that endothelial permeability is mediated by lysophosphatidic acid (LPA), but the role of autotaxin, which produces LPA, remains unclear in stroke. We investigate whether autotaxin/LPA axis regulates blood-brain barrier integrity after cerebral ischemia. Methods and Results Ischemic stroke was induced in mice by middle cerebral artery occlusion for 90 minutes, followed by 24-hour reperfusion. The therapeutic efficacy of autotaxin/LPA receptor blockade was evaluated using triphenyl tetrazolium chloride staining, Evans blue permeability, infrared imaging, mass spectrometry, and XF24 analyzer to evaluate blood-brain barrier integrity, autotaxin activity, and mitochondrial bioenergetics. In our mouse model of ischemic stroke, the mRNA levels of autotaxin were elevated 1.7-fold following the cerebral ischemia and reperfusion (I/R) group compared with the sham. The enzymatic activity of autotaxin was augmented by 4-fold in the I/R group compared with the sham. Plasma and brain tissues in I/R group showed elevated LPA levels. The I/R group also demonstrated mitochondrial dysfunction, as evidenced by decreased (P<0.01) basal oxygen consumption rate, mitochondrial ATP production, and spare respiratory capacity. Treatment with autotaxin inhibitors (HA130 or PF8380) or autotaxin/LPA receptor inhibitor (BrP-LPA) rescued endothelial permeability and mitochondrial dysfunction in I/R group. Conclusions Autotaxin-LPA signaling blockade attenuates blood-brain barrier disruption and mitochondrial function following I/R, suggesting targeting this axis could be a new therapeutic approach toward treating ischemic stroke.
Collapse
Affiliation(s)
- Susmita Bhattarai
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Sudha Sharma
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Hosne Ara
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Utsab Subedi
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Grace Sun
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Chun Li
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
| | - Md. Shenuarin Bhuiyan
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | - Christopher Kevil
- Department of Pathology and Translational PathobiologyLouisiana State University Health Sciences CenterShreveportLA
| | | | - Miles T. Minvielle
- School of MedicineLouisiana State University Health Sciences CenterShreveportLA
| | - Sumitra Miriyala
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
- Division of CardiologyDepartment of Internal MedicineLouisiana State University Health Sciences CenterShreveportLA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and AnatomyLouisiana State University Health Sciences CenterShreveportLA
- Division of CardiologyDepartment of Internal MedicineLouisiana State University Health Sciences CenterShreveportLA
| |
Collapse
|
6
|
Andersson EA, Mallard C, Ek CJ. Circulating tight-junction proteins are potential biomarkers for blood-brain barrier function in a model of neonatal hypoxic/ischemic brain injury. Fluids Barriers CNS 2021; 18:7. [PMID: 33568200 PMCID: PMC7877092 DOI: 10.1186/s12987-021-00240-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background Neonatal encephalopathy often leads to lifelong disabilities with limited treatments currently available. The brain vasculature is an important factor in many neonatal neurological disorders but there is a lack of diagnostic tools to evaluate the brain vascular dysfunction of neonates in the clinical setting. Measurement of blood–brain barrier tight-junction (TJ) proteins have shown promise as biomarkers for brain injury in the adult. Here we tested the biomarker potential of tight-junctions in the context of neonatal brain injury. Methods The levels of TJ-proteins (occluding, claudin-5, and zonula occludens protein 1) in both blood plasma and cerebrospinal fluid (CSF) as well as blood–brain barrier function via 14C-sucrose (342 Da) and Evans blue extravasation were measured in a hypoxia/ischemia brain-injury model in neonatal rats. Results Time-dependent changes of occludin and claudin-5 levels could be measured in blood and CSF after hypoxia/ischemia with males generally having higher levels than females. The levels of claudin-5 in CSF correlated with the severity of the brain injury at 24 h post- hypoxia/ischemia. Simultaneously, we detected early increase in blood–brain barrier-permeability at 6 and 24 h after hypoxia/ischemia. Conclusions Levels of circulating claudin-5 and occludin are increased after hypoxic/ischemic brain injuries and blood–brain barrier-impairment and have promise as early biomarkers for cerebral vascular dysfunction and as a tool for risk assessment of neonatal brain injuries.
Collapse
Affiliation(s)
- E Axel Andersson
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, 413 90, Gothenburg, Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, 413 90, Gothenburg, Sweden
| | - C Joakim Ek
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, 413 90, Gothenburg, Sweden.
| |
Collapse
|
7
|
Enhanced spinal neuronal responses as a mechanism for increased number and size of active acupoints in visceral hyperalgesia. Sci Rep 2020; 10:10312. [PMID: 32587303 PMCID: PMC7316812 DOI: 10.1038/s41598-020-67242-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/04/2020] [Indexed: 11/27/2022] Open
Abstract
Acupuncture has been used to treat a variety of illness and involves the insertion and manipulation of needles into specific points on the body (termed “acupoints”). It has been suggested that acupoints are not merely discrete, static points, but can be dynamically changed according to the pathological state of internal organs. We investigated in a rat model of mustard oil (MO)-induced visceral hyperalgesia whether the number and size of acupoints were modified according to the severity of the colonic pain, and whether the changes were associated with enhanced activity of the spinal dorsal horn. In MO-treated rats, acupoints showing neurogenic inflammation (termed “neurogenic spots” or Neuro-Sps) were found both bilaterally and unilaterally on the leg. The number and size of these acupoints increased along with increasing doses of MO. Electroacupuncture of the acupoints generated analgesic effects on MO-induced visceral hypersensitivity. The MO-treated rats showed an increase in c-Fos expression in spinal dorsal horn neurons and displayed increased evoked activity and a prolonged after-discharge in spinal wide dynamic response (WDR) neurons in response to colorectal distension. Increased number and size of neurogenic inflammatory acupoints following MO treatment were reduced by inhibiting AMPA and NMDA receptors in the spinal cord. Our findings suggest that acupoints demonstrate increased number and size along with severity of visceral pain, which may be associated with enhanced neuronal responses in spinal dorsal horn neurons.
Collapse
|
8
|
Zhao J, Ye Z, Yang J, Zhang Q, Shan W, Wang X, Wang Z, Ye S, Zhou X, Shao Z, Ren L. Nanocage encapsulation improves antiepileptic efficiency of phenytoin. Biomaterials 2020; 240:119849. [PMID: 32087458 DOI: 10.1016/j.biomaterials.2020.119849] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022]
Abstract
More than 30% of patients with epilepsy progress to drug-resistant epilepsy, leading to a significant increase in morbidity and mortality of epilepsy. The limitation of epileptic drug to reach the epileptogenic focus is the critical reason, and the blood-brain barrier (BBB) plays a crucial role. Here, we successfully constructed a hepatitis B core (HBc) protein nanocage (NC) with the insertion of brain target TGN peptide for facilitating epileptic drug phenytoin delivery to the brain. Our results demonstrated that this nanocage can specifically and efficiently target the brain tissue by 2.4 fold and increase the antiepileptic efficiency of phenytoin about 100 fold in pilocarpine induced models of epilepsy. Both in vivo mice and in vitro human neural three-dimensional cortical organoids demonstrated high penetration ability. These functions are achieved through the facilitation of brain target peptide TGN rather than disruption of brain blood barrier. In summary, we presented an efficient antiepileptic drug delivery nanocage for the treatment of refractory epilepsy. Moreover, this therapeutic modulation also provides promising strategy for other intractable neurological disease.
Collapse
Affiliation(s)
- Jie Zhao
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Zesen Ye
- Fujian Provincial Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, PR China; Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, Xiamen, 361005, PR China
| | - Jun Yang
- Department of Neurosurgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, PR China
| | - Qiang Zhang
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Wenjun Shan
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Xiumin Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, PR China
| | - Zhanxiang Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, Xiamen, 361005, PR China
| | - Shefang Ye
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Xi Zhou
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China
| | - Zhicheng Shao
- Fujian Provincial Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, PR China.
| | - Lei Ren
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, PR China; State Key Lab of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, PR China.
| |
Collapse
|
9
|
Lim W, Kim B, Jo G, Yang DH, Park MH, Hyun H. Bioluminescence and near-infrared fluorescence imaging for detection of metastatic bone tumors. Lasers Med Sci 2019; 35:115-120. [DOI: 10.1007/s10103-019-02801-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/02/2019] [Indexed: 01/06/2023]
|