1
|
Liu J, Feng G, Guo C, Li Z, Liu D, Liu G, Zou X, Sun B, Guo Y, Deng M, Li Y. Identification of functional circRNAs regulating ovarian follicle development in goats. BMC Genomics 2024; 25:893. [PMID: 39342142 PMCID: PMC11439210 DOI: 10.1186/s12864-024-10834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
BARKGROUND Circular RNAs (circRNAs) play important regulatory roles in a variety of biological processes in mammals. Multiple birth-traits in goats are affected by several factors, but the expression and function of circRNAs in follicular development of goats are not clear. In this study, we aimed to investigate the possible regulatory mechanisms of circRNA and collected five groups of large follicles (Follicle diameter > 6 mm) and small follicles (1 mm < Follicle diameter < 3 mm) from Leizhou goats in estrus for RNA sequencing. RESULTS RNA sequencing showed that 152 circRNAs were differentially expressed in small and large follicles. Among them, 101 circRNAs were up-regulated in large follicles and 51 circRNAs were up-regulated in small follicles. GO and KEGG enrichment analyses showed that parental genes of the differential circRNAs were significantly enriched in important pathways, such as ovarian steroidogenesis, GnRH signaling pathway, animal autophagy and oxytocin signalling pathway. BioSignal analysis revealed that 152 differentially expressed circRNAs could target 91 differential miRNAs including miR-101 family (chi-miR-101-3p, chi-miR-101-5p), miR-202 family (chi-miR-202-5p, chi-miR-202-3p),60 circRNAs with translation potential. Based on the predicted sequencing results, the ceRNA networks chicirc_008762/chi-miR-338-3p/ARHGAP18 and chicirc_040444/chi-miR-338-3p/STAR were constructed in this study. Importantly, the new gene circCFAP20DC was first discovered in goats. The EDU assay and flow cytometry results indicated that circCFAP20DC enhanced the proliferation of follicular granulosa cells(GCs). Real-time quantitative PCR and western blotting assays showed that circCFAP20DC activated the Retinoblastoma(RB) pathway and promoted the progression of granulosa cells from G1 to S phase. CONCLUSION Differential circRNAs in goat size follicles may have important biological functions for follicular development. The novel gene circCFAP20DC activates the RB pathway, promoting the progression of GCs from G1 to S phase. This, in turn, enhances the proliferation of follicular GCs in goats.
Collapse
Affiliation(s)
- Jie Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Guanghang Feng
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Conghui Guo
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihan Li
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Dewu Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Guangbin Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Xian Zou
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Baoli Sun
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yongqing Guo
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Deng
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yaokun Li
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Lv L, Yi L, Huang B, Zhou C, Zhang L. Hsa_circ_0071589 aggravates stemness and oxaliplatin resistance in colorectal cancer through sponging miR-133b to upregulate SOX13 expression. Mol Cell Biochem 2024; 479:2055-2068. [PMID: 37522976 DOI: 10.1007/s11010-023-04819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
Hsa_circ_0071589 can exacerbate the malignant behavior of colorectal cancer (CRC) cells. However, its function in stemness and oxaliplatin (OXP) resistance of CRC cells remains unclear. To assess the function of hsa_circ_0071589 in stemness and OXP resistance of CRC cells. Western blotting and qRT-PCR were applied to assess protein and mRNA levels. The association between hsa_circ_0071589, miR-133b and SOX13 was explored via a correlation analysis. Sphere formation was used to assess cell stemness. Meanwhile, the viability of CRC cells and OXP-resistant CRC cells was evaluated with the MTT assay. Cell stemness marker (CD133) levels and apoptosis of CRC cells and OXP-resistant CRC cells were tested using flow cytometry. The ALDH level was investigated using the related detection kit. In addition, the association between hsa_circ_0071589 and miR-133b and SOX13 was investigated using the RIP and dual luciferase assay. Finally, in vivo experiments were performed to detect the function of hsa_circ_0071589 in CRC, and the levels of SOX13, Ki67, and CD44 in mice were evaluated via immunohistochemistry staining. The expression of hsa_circ_0071589 and SOX13 was upregulated in CRC, whereas the expression of miR-133b was downregulated. Hsa_circ_0071589 knockdown significantly inhibited CRC stemness via the mediation of miR-133b. Moreover, hsa_circ_0071589 silencing significantly sensitized CRC cells to OXP by upregulating miR-133b. SOX13 was the direct target of miR-133b, and miR-133b could attenuate stemness and OXP resistance in CRC cells by targeting SOX13. Notably, hsa_circ_0071589 knockdown inhibited tumor growth and decreased OXP resistance in mice with CRC. Hsa_circ_0071589 aggravates stemness and OXP resistance by sponging miR-133b to indirectly target SOX13 in CRC. Thus, our study might present a novel treatment strategy against OXP-resistant CRC.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/metabolism
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic/drug effects
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Oxaliplatin/pharmacology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Neoplasm/biosynthesis
- Up-Regulation
Collapse
Affiliation(s)
- Lv Lv
- Department of Breast and Thyroid Surgery, Liuzhou People's Hospital, NO.8, Wenchang Road, Liuzhou, 545006, Guangxi, People's Republic of China
| | - Lu Yi
- Department of Dermatology & Venerology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Bojie Huang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Cong Zhou
- Clinical Medical College of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China
| | - Lei Zhang
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, NO.15 Lequn Road, Guilin, 541001, Guangxi, People's Republic of China.
| |
Collapse
|
3
|
Yue Y, Lu B, Ni G. Circ_0001495 influences the development of endometriosis through the miRNA-34c-5p/E2F3 axis. Reprod Biol 2024; 24:100876. [PMID: 38458026 DOI: 10.1016/j.repbio.2024.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 03/10/2024]
Abstract
Endometriosis is a chronic gynecological condition characterized by the presence of endometrial glands and stroma outside the uterine cavity., accounting for 7% of all female malignant tumors and 20%- 30% of malignant tumors of the female reproductive system. Multiple studies have shown that circular RNA (circRNA) has the potential to become a targeted target and marker for EM. However, the roles of circ_0001495 in EM are still unclear. Our research aims to reveal the molecular mechanism of circ_0001495 in EM. In this study, RT-PCR or western blot were conducted to determine mRNA and protein expression. cell viability, proliferation, migration, invasion, and apoptosis were assessed by CCK-8, EdU, wound healing, transwell, and flow cytometry analyses, respectively. Additionally, the targeting relationship between miR-34c-5p and circ_0001495 or E2F3 was confirmed through dual-luciferase reporter gene assay. We found significant overexpression of circ_0001495 in EM tissues and cells. Knockdown of circ_0001495 inhibited the proliferation, migration and invasion of ectopic endometrial stromal cells (EESCs) and increased cell apoptosis. Moreover, we found that circ_0001495 regulated E2F3 levels by interacting with miR-34c-5p in EESC. Furthermore, in vitro, miR-34c-5p inhibition or E2F3 overexpression could attenuate the effect of circ_0001495 silencing on EM progression. In addition, the vivo experiment demonstrated that inhibition of circ_0001495 could repress the development of endometriosis by regulating the miR-34c-5p/E2F3 axis. In conclusion, our study suggested that circ_0001495 promoted EM progression in vitro and in vivo through the miR-34c-5p/E2F3 axis, which might be a potential therapeutic target for EM.
Collapse
Affiliation(s)
- Yan Yue
- Anhui Medical University, Hefei, Anhui 230032, China; Department of Gynaecology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, China; Department of Gynaecology, The First People's Hospital of Wuhu, Wuhu, Anhui 241000, China
| | - Bin Lu
- Department of Gynaecology, The First People's Hospital of Wuhu, Wuhu, Anhui 241000, China
| | - Guantai Ni
- Anhui Medical University, Hefei, Anhui 230032, China; Department of Gynaecology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, China.
| |
Collapse
|
4
|
Ouyang K, Xie D, Liao H, He Y, Xiong H. Circ_0001786 facilitates gefitinib resistance and malignant progression in non-small cell lung cancer via miR-34b-5p/SRSF1. J Cardiothorac Surg 2024; 19:178. [PMID: 38581057 PMCID: PMC10996225 DOI: 10.1186/s13019-024-02651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a widespread cancer and gefitinib is a primary therapy for NSCLC patients. Nevertheless, the underlying mechanisms for the progression of acquired drug resistance have not been clarified. The aim of this study was to investigate the role of circular RNA (circ_0001786) in gefitinib-resistant NSCLC. METHODS Firstly, the expression of circ_0001786, miR-34b-5p and SRSF1 were assayed using qRT-PCR. Subsequently, CCK-8 test was utilized to measure the semi-inhibitory concentration (IC50) of cellular gefitinib. Apoptosis was identified by flow cytometry. At last, dual luciferase assay was applied to prove the binding association between miR-34b-5p, circ_0001786 or SRSF1. RESULTS Our research disclosed that circ_0001786 was heightened in gefitinib-resistant NSCLC cells and tissues. Knockdown of circ_0001786 restrained IC50 values of gefitinib, attenuated the clonogenic ability and facilitated apoptosis in HCC827-GR and PC9-GR. In addition, circ_0001786 was a molecular sponge for miR-34b-5p. Silencing miR-34b-5p rescued the inhibitory impact of circ_0001786 knockdown on IC50 and cell cloning ability. Moreover, miR-34b-5p directly targeted SRSF1. Importantly, circ_0001786 enhanced gefitinib tolerance and malignant development in NSCLC through miR-34b-5p/SRSF1 pathway. CONCLUSION This research revealed a novel mechanism by which circ_0001786 enhanced NSCLC resistance to gefitinib by sponging miR-34b-5p and upregulating SRSF1. circ_0001786 was a potential target for improving the treatment of gefitinib-resistant NSCLC patients.
Collapse
Affiliation(s)
- Kaobin Ouyang
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, NO.41 North Eling Road, Huizhou, 516000, Guangdong Province, China
| | - Dan Xie
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, NO.41 North Eling Road, Huizhou, 516000, Guangdong Province, China
| | - Haojie Liao
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, NO.41 North Eling Road, Huizhou, 516000, Guangdong Province, China
| | - Ying He
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, NO.41 North Eling Road, Huizhou, 516000, Guangdong Province, China
| | - Hailin Xiong
- Department of Medical Oncology, Huizhou Municipal Central Hospital of Guangdong Province, NO.41 North Eling Road, Huizhou, 516000, Guangdong Province, China.
| |
Collapse
|
5
|
Zhang R, Dang Y. The Recent Advances in the Function and Mechanism of Caveolin-1 in Retinal Neovascularization. Curr Drug Targets 2024; 25:465-472. [PMID: 38591209 DOI: 10.2174/0113894501310201240403065930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Retinal neovascularization diseases have relatively high rates of evitable blindness. Abnormal retinal neovascularization is their main hallmark, which can damage the structure and function of the eye and lead to impaired vision. Caveolin-1 is a membrane protein that is expressed in many types of retinal cells and is involved in retinal neovascularization. This review presents a comprehensive analysis of global research on specific functions of caveolin-1 in retinal neovascularization. We believe that the mechanism of action of caveolin-1 might be related to the regulation of relevant signal pathways and looked ahead the application prospects of modulating caveolin- 1 in retinal neovascularization diseases.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Ophthalmology, Sanmenxia Eye Hospital/Sanmenxia Central Hospital Affiliated to Henan University of Science and Technology, Sanmenxia, 472000, China
- Henan International Joint Laboratory of Outflow Engineering, Sanmenxia Central Hospital, School of Medicine, Henan University of Science and Technology, Sanmenxia, 47200, China
| | - Yalong Dang
- Department of Ophthalmology, Sanmenxia Eye Hospital/Sanmenxia Central Hospital Affiliated to Henan University of Science and Technology, Sanmenxia, 472000, China
- Henan International Joint Laboratory of Outflow Engineering, Sanmenxia Central Hospital, School of Medicine, Henan University of Science and Technology, Sanmenxia, 47200, China
| |
Collapse
|
6
|
Xia S, Wang C. Hsa_circ_0003489 Drives PTX Resistance of Human NSCLC Cells Through Modulating miR-98-5p/IGF2. Pharmgenomics Pers Med 2023; 16:805-815. [PMID: 37692338 PMCID: PMC10488782 DOI: 10.2147/pgpm.s416360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Background Circular RNAs (circRNAs) demonstrated critical roles within developing tumors and treatment resistance in an increasing body of research. The aim was to look into the functions and processes of hsa_circ_0003489 in the non-small cell lung cancer (NSCLC) paclitaxel (PTX) resistance. Methods NSCLC cell-based cultures including A549 and H460 were employed for such an investigation. hsa_circ_0003489, miR-98-5p, and insulin-like growth factor 2 (IGF2) expression-profiles were evaluated with a quantitative real-time polymerase chain reaction (RT-qPCR). The PTX resistance was determined using MTT assay, and the ELISA test measured IGF2 expression. Facilitating corroboration for miR-98-5p relation and hsa_circ_0003489 or IGF2, a dual-luciferase reporter method was applied. Results The hsa_circ_0003489 level was raised in cells and tissues from PTX-resistant (PR) NSCLC. In PR NSCLC cells, hsa_circ_0003489 knockdown reduced PTX resistance. For the purpose of the mechanism study, hsa_circ_0003489 knockdown substantially reduced IGF2 expression via miR-98-5p sponging, improving PTX sensitivity in PR NSCLC. Conclusion Through miR-98-5p/IGF2 axis control, hsa_circ_0003489 knockdown helped NSCLC overcome PTX resistance, suggesting a potential circRNA-targeted therapy for the disease.
Collapse
Affiliation(s)
- Shaofeng Xia
- Department of Thoracic Surgery, The First People’s Hospital of Jiujiang City, Jiujiang, Jiangxi, People’s Republic of China
| | - Chenliang Wang
- Department of Pathology, The First People’s Hospital of Jiujiang City, Jiujiang, Jiangxi, People’s Republic of China
| |
Collapse
|
7
|
Zhou Y, Li B, Wang Z, Tan W, Zou J, Zhou H, Cai Y, Liu J, He Y, Yoshida S, Li Y. m 6A modifications of circular RNAs in ischemia-induced retinal neovascularization. Int J Med Sci 2023; 20:254-261. [PMID: 36794165 PMCID: PMC9925993 DOI: 10.7150/ijms.79409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Ischemia-induced pathological neovascularization in the retina is a leading cause of blindness in various age groups. The purpose of the current study was to identify the involvement of circular RNAs (circRNAs) methylated by N6-methyladenosine (m6A), and predict their potential roles in oxygen-induced retinopathy (OIR) in mice. Methylation assessment via microarray analysis indicated that 88 circRNAs were differentially modified by m6A methylation, including 56 hyper-methylated circRNAs and 32 hypo-methylated circRNAs. Gene ontology enrichment analysis predicted that the enriched host genes of the hyper-methylated circRNAs were involved in cellular process, cellular anatomical entity, and protein binding. Host genes of the hypo-methylated circRNAs were enriched in the regulation of cellular biosynthetic process, the nucleus, and binding. According to the Kyoto Encyclopedia of Genes and Genomes analysis, those host genes were involved in the pathways of selenocompound metabolism, salivary secretion, and lysine degradation. MeRIP-qPCR verified significant alterations in m6A methylation levels of mmu_circRNA_33363, mmu_circRNA_002816, and mmu_circRNA_009692. In conclusion, the study revealed the m6A modification alterations in OIR retinas, and the findings above shed light on the potential roles of m6A methylation in circRNA regulatory functions in the pathogenesis of ischemia-induced pathological retinal neovascularization.
Collapse
Affiliation(s)
- Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jie Liu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yan He
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.,National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
8
|
Noncoding RNAs Are Promising Therapeutic Targets for Diabetic Retinopathy: An Updated Review (2017-2022). Biomolecules 2022; 12:biom12121774. [PMID: 36551201 PMCID: PMC9775338 DOI: 10.3390/biom12121774] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/10/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes. It is also the main cause of blindness caused by multicellular damage involving retinal endothelial cells, ganglial cells, and pigment epithelial cells in adults worldwide. Currently available drugs for DR do not meet the clinical needs; thus, new therapeutic targets are warranted. Noncoding RNAs (ncRNAs), a new type of biomarkers, have attracted increased attention in recent years owing to their crucial role in the occurrence and development of DR. NcRNAs mainly include microRNAs, long noncoding RNAs, and circular RNAs, all of which regulate gene and protein expression, as well as multiple biological processes in DR. NcRNAs, can regulate the damage caused by various retinal cells; abnormal changes in the aqueous humor, exosomes, blood, tears, and the formation of new blood vessels. This study reviews the different sources of the three ncRNAs-microRNAs, long noncoding RNAs, and circular RNAs-involved in the pathogenesis of DR and the related drug development progress. Overall, this review improves our understanding of the role of ncRNAs in various retinal cells and offers therapeutic directions and targets for DR treatment.
Collapse
|
9
|
Zhu B, Gao J, Zhang Y, Liao B, Zhu S, Li C, Liao J, Liu J, Jiang C, Zeng J. CircRNA/miRNA/mRNA axis participates in the progression of partial bladder outlet obstruction. BMC Urol 2022; 22:191. [PMID: 36434693 PMCID: PMC9700926 DOI: 10.1186/s12894-022-01132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/25/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND More and more evidence showed that circRNA/miRNA/mRNA axis played a vital role in the pathogenesis of some diseases. However, the role of circRNA/miRNA/mRNA axis in partial bladder outlet obstruction (pBOO) remains unknown. Our study aimed to explore the complex regulatory mechanism of circRNA/miRNA/mRNA axis in pBOO. METHODS The pBOO rat model was established, and the bladder tissues were collected for mRNA sequencing. The differentially expressed mRNAs were analyzed by high-throughput sequencing, and the GO and KEGG analysis of the differentially expressed mRNAs were performed. Competing endogenous RNAs (ceRNAs) analysis identified the potential regulation function of circRNA/miRNA/mRNA axis in pBOO. qRT-PCR detected the expression of circRNA/miRNA/mRNA. miRanda software was performed to predict the relationship between circRNA and miRNA, miRNA and mRNA. RESULTS Compared with the sham group, a total of 571 mRNAs were differentially expressed in the pBOO group, of which 286 were up-regulated and 285 were down-regulated. GO analysis showed that the mRNAs were mainly involved in cellular process, single-organism process, and cell, etc. KEGG analysis showed that the enriched signaling pathways were metabolic pathways, cell adhesion molecules (CAMs), and HTLV-I infection, etc. Based on the previous transcriptome data and differentially expressed circRNAs, we drew the ceRNA network regulation diagram. qRT-PCR results confirmed that chr3:113195876|113197193/rno-miR-30c-1-3p/Gata4, chr1:126188351|126195625/rno-miR-153-5p/Diaph3, and chr9:81258380|81275269/rno-miR-135b-5p/Pigr axis may have ceRNA function. miRanda confirmed there have the binding sites of circRNA/miRNA/mRNA axis. CONCLUSIONS CircRNA/miRNA/mRNA axis was involved in the progression of pBOO. Our research on the circRNA/miRNA/mRNA axis revealed new pathogenesis and treatment strategies for pBOO.
Collapse
Affiliation(s)
- Baoyi Zhu
- grid.410737.60000 0000 8653 1072Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), B24 Yinquan Road, Qingcheng, Qingyuan, 511500 Guangdong People’s Republic of China
| | - Jun Gao
- grid.410737.60000 0000 8653 1072Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518 Guangdong People’s Republic of China
| | - Yuying Zhang
- Department of Child Health Care, Shenzhen Longhua Maternity and Child Health Care Hospital, Shenzhen, 518000 Guangdong People’s Republic of China
| | - Baojian Liao
- grid.410737.60000 0000 8653 1072Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), B24 Yinquan Road, Qingcheng, Qingyuan, 511500 Guangdong People’s Republic of China ,grid.9227.e0000000119573309Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510700 Guangdong People’s Republic of China
| | - Sihua Zhu
- grid.410737.60000 0000 8653 1072Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), B24 Yinquan Road, Qingcheng, Qingyuan, 511500 Guangdong People’s Republic of China
| | - Chunling Li
- grid.410737.60000 0000 8653 1072Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), B24 Yinquan Road, Qingcheng, Qingyuan, 511500 Guangdong People’s Republic of China
| | - Junhao Liao
- grid.410737.60000 0000 8653 1072Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), B24 Yinquan Road, Qingcheng, Qingyuan, 511500 Guangdong People’s Republic of China
| | - Jianjia Liu
- grid.410737.60000 0000 8653 1072Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), B24 Yinquan Road, Qingcheng, Qingyuan, 511500 Guangdong People’s Republic of China
| | - Chonghe Jiang
- grid.410737.60000 0000 8653 1072Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), B24 Yinquan Road, Qingcheng, Qingyuan, 511500 Guangdong People’s Republic of China
| | - Jianwen Zeng
- grid.410737.60000 0000 8653 1072Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University (Qingyuan People’s Hospital), B24 Yinquan Road, Qingcheng, Qingyuan, 511500 Guangdong People’s Republic of China
| |
Collapse
|
10
|
Hu Q, Zhang X, Sun M, jiang B, Zhang Z, Sun D. Potential epigenetic molecular regulatory networks in ocular neovascularization. Front Genet 2022; 13:970224. [PMID: 36118885 PMCID: PMC9478661 DOI: 10.3389/fgene.2022.970224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Neovascularization is one of the many manifestations of ocular diseases, including corneal injury and vascular diseases of the retina and choroid. Although anti-VEGF drugs have been used to effectively treat neovascularization, long-term use of anti-angiogenic factors can cause a variety of neurological and developmental side effects. As a result, better drugs to treat ocular neovascularization are urgently required. There is mounting evidence that epigenetic regulation is important in ocular neovascularization. DNA methylation and histone modification, non-coding RNA, and mRNA modification are all examples of epigenetic mechanisms. In order to shed new light on epigenetic therapeutics in ocular neovascularization, this review focuses on recent advances in the epigenetic control of ocular neovascularization as well as discusses these new mechanisms.
Collapse
|
11
|
Hanineva A, Park KS, Wang JJ, DeAngelis MM, Farkas MH, Zhang SX. Emerging roles of circular RNAs in retinal diseases. Neural Regen Res 2022; 17:1875-1880. [PMID: 35142661 PMCID: PMC8848606 DOI: 10.4103/1673-5374.335691] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Retinal disorders are a group of ocular diseases whose onset is associated with a number of aberrant molecular and cellular processes or physical damages that affect retinal structure and function resulting in neural and vascular degeneration in the retina. Current research has primarily focused on delaying retinal disease with minimal success in preventing or reversing neuronal degeneration. In this review, we explore a relatively new field of research involving circular RNAs, whose potential roles as biomarkers and mediators of retinal disease pathogenesis have only just emerged. While knowledge of circular RNAs function is limited given its novelty, current evidence has highlighted their roles as modulators of microRNAs, regulators of gene transcription, and biomarkers of disease development and progression. Here, we summarize how circular RNAs may be implicated in the pathogenesis of common retinal diseases including diabetic retinopathy, glaucoma, proliferative vitreoretinopathy, and age-related macular degeneration. Further, we explore the potential of circular RNAs as novel biomarkers and therapeutic targets for the diagnosis and treatment of retinal diseases.
Collapse
Affiliation(s)
- Aneliya Hanineva
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Karen Sophia Park
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Joshua J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Margaret M DeAngelis
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Research Service, Veterans Administration Western New York Healthcare System, Buffalo, NY, USA
| | - Michael H Farkas
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York; Research Service, Veterans Administration Western New York Healthcare System; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
12
|
Li Y, Zhou H, Huang Q, Tan W, Cai Y, Wang Z, Zou J, Li B, Yoshida S, Zhou Y. Potential biomarkers for retinopathy of prematurity identified by circular RNA profiling in peripheral blood mononuclear cells. Front Immunol 2022; 13:953812. [PMID: 36081509 PMCID: PMC9447331 DOI: 10.3389/fimmu.2022.953812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose This study aims to reveal the altered expression profiles of circular RNAs (circRNAs) in the peripheral blood mononuclear cells (PBMCs) of patients with retinopathy of prematurity (ROP), and to identify potential biomarkers for ROP diagnosis. Methods Differentially expressed circRNAs in PBMCs of five infants with ROP and five controls were identified using microarray analysis. Twelve altered circRNAs were validated using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). Bioinformatic analyses were conducted to predict the circRNA/miRNA interactions, competing endogenous RNA (ceRNA) network, related biological functions, and signaling pathways. Four selected circRNAs in PBMCs were verified using RT-qPCR in another cohort, including 24 infants with ROP and 23 premature controls, and receiver operating characteristic (ROC) curves were used to estimate their potential as diagnostic biomarkers of ROP. Results A total of 54 and 143 circRNAs were significantly up- and down-regulated, respectively, in the PBMCs of patients with ROP compared with controls. Twelve of the significantly altered circRNAs were preliminarily validated by RT-qPCR, which confirmed the reliability of the microarray analysis. The circRNA/miRNA interactions and ceRNA network were displayed according to the altered circRNAs. Three circRNAs (hsa_circRNA_061346, hsa_circRNA_092369, and hsa_circRNA_103554) were identified as potential diagnostic biomarkers for ROP with certain clinical values. Conclusions CircRNAs were significantly altered in PBMCs of treatment-requiring ROP patients. CircRNAs may be used as potential biomarkers and possible therapeutic targets for ROP.
Collapse
Affiliation(s)
- Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Qian Huang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
- *Correspondence: Yedi Zhou,
| |
Collapse
|
13
|
Yang J, Liu Z. Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Front Endocrinol (Lausanne) 2022; 13:816400. [PMID: 35692405 PMCID: PMC9174994 DOI: 10.3389/fendo.2022.816400] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR) are microvascular complications of diabetes. Microvascular endothelial cells are thought to be the major targets of hyperglycemic injury. In diabetic microvasculature, the intracellular hyperglycemia causes damages to the vascular endothelium, via multiple pathophysiological process consist of inflammation, endothelial cell crosstalk with podocytes/pericytes and exosomes. In addition, DN and DR diseases development are involved in several critical regulators including the cell adhesion molecules (CAMs), the vascular endothelial growth factor (VEGF) family and the Notch signal. The present review attempts to gain a deeper understanding of the pathogenesis complexities underlying the endothelial dysfunction in diabetes diabetic and retinopathy, contributing to the development of new mechanistic therapeutic strategies against diabetes-induced microvascular endothelial dysfunction.
Collapse
Affiliation(s)
- Jing Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center For Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Liu B, Guo K. CircRbms1 knockdown alleviates hypoxia-induced cardiomyocyte injury via regulating the miR-742-3p/FOXO1 axis. Cell Mol Biol Lett 2022; 27:31. [PMID: 35346026 PMCID: PMC8962532 DOI: 10.1186/s11658-022-00330-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 12/23/2022] Open
Abstract
Background Circular RNA (circRNA) has been shown to play an important role in a variety of cardiovascular diseases, including myocardial infarction (MI). However, the role of circRbms1 in MI progression remains unclear. Methods An MI mouse model was constructed in vivo, and cardiomyocytes were cultured under hypoxia condition to induce a cardiomyocyte injury model in vitro. The expression levels of circRbms1, microRNA (miR)-742-3p, and forkhead box O1 (FOXO1) were determined by quantitative real-time PCR. Cell viability, migration, invasion, and apoptosis were measured using Cell Counting Kit-8 assay, transwell assay, and flow cytometry. Meanwhile, western blot analysis was used to examine the protein levels of apoptosis markers and FOXO1. Additionally, dual-luciferase reporter assay, RNA pull-down assay, and RIP assay were employed to verify the interactions between miR-742-3p and circRbms1 or FOXO1. Results CircRbms1 was upregulated in the heart tissues of MI mice and hypoxia-induced cardiomyocytes. Hypoxia induced cardiomyocyte injury by suppressing cell viability, migration, and invasion, and promoting apoptosis. Function experiments showed that circRbms1 overexpression aggravated hypoxia-induced cardiomyocyte injury, while its silencing relieved cardiomyocyte injury induced by hypoxia. Furthermore, circRbms1 sponged miR-742-3p. MiR-742-3p overexpression alleviated hypoxia-induced cardiomyocyte injury, and its inhibitor reversed the suppressive effect of circRbms1 silencing on hypoxia-induced cardiomyocyte injury. Further experiments showed that FOXO1 was a target of miR-742-3p, and its expression was positively regulated by circRbms1. The inhibitory effect of miR-742-3p on hypoxia-induced cardiomyocyte injury was reversed by FOXO1 overexpression. Conclusion CircRbms1 regulated the miR-742-3p/FOXO1 axis to mediate hypoxia-induced cardiomyocyte injury, suggesting that circRbms1 might be an effective target for MI treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00330-y.
Collapse
Affiliation(s)
- Bo Liu
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, 20092, Shanghai, China
| | - Kai Guo
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, 20092, Shanghai, China.
| |
Collapse
|
15
|
Tan W, Li B, Wang Z, Zou J, Jia Y, Yoshida S, Zhou Y. Novel Potential Biomarkers for Retinopathy of Prematurity. Front Med (Lausanne) 2022; 9:840030. [PMID: 35187013 PMCID: PMC8848752 DOI: 10.3389/fmed.2022.840030] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Retinopathy of prematurity (ROP) is the main risk factor for vision-threatening disease in premature infants with low birth weight. An accumulating number of independent studies have focused on ROP pathogenesis and have demonstrated that laser photocoagulation therapy and/or anti-VEGF treatment are effective. However, early diagnosis of ROP is still critical. At present, the main method of ROP screening is based on binocular indirect ophthalmoscopy. However, the judgment of whether ROP occurs and whether treatment is necessary depends largely on ophthalmologists with a great deal of experience. Therefore, it is essential to develop a simple, accurate and effective diagnostic method. This review describes recent findings on novel biomarkers for the prediction, diagnosis and prognosis of ROP patients. The novel biomarkers were separated into the following categories: metabolites, cytokines and growth factors, non-coding RNAs, iconography, gut microbiota, oxidative stress biomarkers, and others. Biomarkers with high sensitivity and specificity are urgently needed for the clinical applications of ROP. In addition, using non-invasive or minimally invasive methods to obtain samples is also important. Our review provides an overview of potential biomarkers of ROP.
Collapse
Affiliation(s)
- Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yang Jia
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| |
Collapse
|
16
|
He H, Zhang J, Gong W, Liu M, Liu H, Li X, Wu Y, Lu Q. Involvement of CircRNA Expression Profile in Diabetic Retinopathy and Its Potential Diagnostic Value. Front Genet 2022; 13:833573. [PMID: 35251136 PMCID: PMC8891611 DOI: 10.3389/fgene.2022.833573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Circular RNAs (circRNAs), a class of non-coding and undegradable RNAs, play many pathological functions by acting as miRNA sponges, interacting with RNA-binding proteins, and others. The recent literature indicates that circRNAs possess the advanced superiority for the early screening of diabetic retinopathy (DR). Methods: CircRNA sources of peripheral blood mononuclear cells (PBMCs) from healthy controls (n = 4), diabetes mellitus patients (DM) (n = 4), and DR patients (n = 4) were extracted for circular RNA microarray analysis. Enriched biological modules and signaling pathways were analyzed by Gene Ontology Enrichment and Kyoto Encyclopedia of Genes and Genomes analysis, respectively. Real-time quantitative reverse transcription PCR (RT-qPCR) was performed to validate differentiated levels of several circRNAs (fold change ≥2, p < .05) in different groups of healthy control subjects (n = 20), DM patients (n = 60), and DR patients (n = 42). Based on our clinical data from DR, the diagnostic performance of candidate circRNAs was measured by operating characteristic curves (ROCs). Subsequently, their circRNA–miRNA networks were constructed by bioinformatics analysis. Results: Circular RNA microarray analysis was performed, and 2,452 and 289 circRNAs were screened with differential expression in DR patients compared to healthy controls and DM patients, respectively. Enrichment analyses showed that circRNAs in DR patients were enriched in extracellular matrix (ECM)–receptor interaction and focal adhesion pathways. The top 5 differential circRNAs in circRNA microarray analysis were subsequently quantified and verified by RT-qPCR. Consistently, a significant 2.2-fold reduction of hsa_circ_0095008 and 1.7-fold increase in hsa_circ_0001883 were identified in DR patients compared to DM patients. Meanwhile, the area under curves of hsa_circ_0095008 and hsa_circ_0001883 were 0.6710 (95% CI, 0.5646–0.7775) (p = 0.003399) and 0.6071 (95% CI, 0.4953–0.7189) (p = 0.06644), respectively, indicating a good diagnostic value. Conclusion: Our study provided a new sight for the pathological mechanism of DR and revealed the potential value of hsa_circ_0095008 and hsa_circ_0001883 as diagnostic biomarkers for the early diagnosis of DR patients.
Collapse
Affiliation(s)
- Hengqian He
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Juntao Zhang
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Weikun Gong
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Mengyun Liu
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Hao Liu
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Xiaoyong Li
- Center for Disease Control and Prevention of Yinzhou District, Ningbo, China
| | - Yufei Wu
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | - Qinkang Lu
- Department of Ophthalmology, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
- *Correspondence: Qinkang Lu,
| |
Collapse
|
17
|
Kong H, Sun ML, Zhang XA, Wang XQ. Crosstalk Among circRNA/lncRNA, miRNA, and mRNA in Osteoarthritis. Front Cell Dev Biol 2022; 9:774370. [PMID: 34977024 PMCID: PMC8714905 DOI: 10.3389/fcell.2021.774370] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a joint disease that is pervasive in life, and the incidence and mortality of OA are increasing, causing many adverse effects on people's life. Therefore, it is very vital to identify new biomarkers and therapeutic targets in the clinical diagnosis and treatment of OA. ncRNA is a nonprotein-coding RNA that does not translate into proteins but participates in protein translation. At the RNA level, it can perform biological functions. Many studies have found that miRNA, lncRNA, and circRNA are closely related to the course of OA and play important regulatory roles in transcription, post-transcription, and post-translation, which can be used as biological targets for the prevention, diagnosis, and treatment of OA. In this review, we summarized and described the various roles of different types of miRNA, lncRNA, and circRNA in OA, the roles of different lncRNA/circRNA-miRNA-mRNA axis in OA, and the possible prospects of these ncRNAs in clinical application.
Collapse
Affiliation(s)
- Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Ming-Li Sun
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
18
|
Whole transcriptome sequencing identifies key circRNAs, lncRNAs, and miRNAs regulating neurogenesis in developing mouse retina. BMC Genomics 2021; 22:779. [PMID: 34717547 PMCID: PMC8557489 DOI: 10.1186/s12864-021-08078-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background The molecular complexity of neural retina development remains poorly studied. Knowledge of retinal neurogenesis regulation sheds light on retinal degeneration therapy exploration. Therefore, we integrated the time-series circRNA, lncRNA, miRNA, and mRNA expression profiles of the developing retina through whole-transcriptome sequencing. The key functional ncRNAs and the ceRNA network regulating retinal neurogenesis were identified. Results Transcriptomic analysis identified circRNA as the most variable ncRNA subtype. We screened a series of neurogenesis-related circRNAs, lncRNAs, and miRNAs using different strategies based on their diversified molecular functions. The expression of circCDYL, circATXN1, circDYM, circPRGRIP, lncRNA Meg3, and lncRNA Vax2os was validated by quantitative real-time PCR. These circRNAs and lncRNAs participate in neurotransmitter transport and multicellular organism growth through the intricate circRNA/lncRNA-miRNA-mRNA network. Conclusion Whole-transcriptome sequencing and bioinformatics analysis systematically screened key ncRNAs in retinal neurogenesis. The validated ncRNAs and their circRNA/lncRNA-miRNA-mRNA network involve neurotransmitter transport and multicellular organism growth during retinal development. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08078-z.
Collapse
|
19
|
Zhou Y, Tan W, Zou J, Cao J, Huang Q, Jiang B, Yoshida S, Li Y. Metabolomics Analyses of Mouse Retinas in Oxygen-Induced Retinopathy. Invest Ophthalmol Vis Sci 2021; 62:9. [PMID: 34374743 PMCID: PMC8363770 DOI: 10.1167/iovs.62.10.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Retinal neovascularization is a severe pathological process leading to irreversible blindness. This study aims to identify the altered metabolites and their related pathways that are involved in retinal neovascularization. Methods To reveal the global metabolomic profile change in the retinal neovascularization process, an untargeted metabolomics analysis of oxygen-induced retinopathy (OIR) mice retinas was carried out first, followed by the validation of amino acids and their derivatives through a targeted metabolomics analysis. The involved pathways were predicted by bioinformatic analysis. Results By untargeted metabolomics, a total of 58 and 49 metabolites altered significantly in OIR retinas under cationic and anionic modes, respectively. By bioinformatics analysis, “ABC transporters,” “central carbon metabolism in cancer.” and “alanine, aspartate, and glutamate metabolism” were the most enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with the changed metabolites. By targeted metabolomics, no significant change was found in the assessed amino acids and their derivatives at postnatal day (P) 12, whereas significantly altered amino acids and their derivatives were recognized at P13, P17, and P42 in OIR retinas. Conclusions The metabolomic profile was significantly altered in the neovascularized retinas. In particular, numerous amino acids and their derivatives were significantly changed in OIR retinas. These altered metabolites, together with their associated pathways, might be involved in the pathogenesis of retinal neovascular diseases.
Collapse
Affiliation(s)
- Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jian Cao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Qian Huang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
20
|
Wang Q, Lin Y, Zhong W, Jiang Y, Lin Y. Regulatory Non-coding RNAs for Death Associated Protein Kinase Family. Front Mol Biosci 2021; 8:649100. [PMID: 34422899 PMCID: PMC8377501 DOI: 10.3389/fmolb.2021.649100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 07/26/2021] [Indexed: 01/24/2023] Open
Abstract
The death associated protein kinases (DAPKs) are a family of calcium dependent serine/threonine kinases initially identified in the regulation of apoptosis. Previous studies showed that DAPK family members, including DAPK1, DAPK2 and DAPK3 play a crucial regulatory role in malignant tumor development, in terms of cell apoptosis, proliferation, invasion and metastasis. Accumulating evidence has demonstrated that non-coding RNAs, including microRNA (miRNA), long non-coding RNA (lncRNA) and circRNA, are involved in the regulation of gene expression and tumorigenesis. Recent studies indicated that non-coding RNAs participate in the regulation of DAPKs. In this review, we summarized the current knowledge of non-coding RNAs, as well as the potential miRNAs, lncRNAs and circRNAs, that are involved in the regulation of DAPKs.
Collapse
Affiliation(s)
- Qingshui Wang
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Youyu Lin
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Wenting Zhong
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yu Jiang
- Prenatal Diagnosis Centre, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Collaborative Innovation Center for Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
21
|
Su N, Liu L, He S, Zeng L. Circ_0001666 affects miR-620/WNK2 axis to inhibit breast cancer progression. Genes Genomics 2021; 43:947-959. [PMID: 34061329 DOI: 10.1007/s13258-021-01114-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) play important roles in the progression of various cancers, including breast cancer (BC). However, the role of circ_0001666 in BC remains unclear. OBJECTIVE To explore the role of circ_0001666 in the progression of BC and reveal its potential molecular mechanism. METHODS Real-time polymerase chain reaction was conducted to determine the expression of circ_0001666, miR-620 and with-no-lysine kinase 2 (WNK2). Cell counting kit 8 assay, flow cytometry and transwell assay were used to measure cell proliferation, apoptosis, migration and invasion. Western blot was utilized to examine the level of protein. Dual-luciferase reporter assay and RNA immunoprecipitation assay were used to verify the interaction between miR-620 and circ_0001666 or WNK2. Mice xenotransplantation models were built to explore the effect of circ_0001666 on BC tumor growth in vivo. RESULTS Circ_0001666 was downregulated in BC tumor tissues and cells. Overexpressed circ_0001666 inhibited the proliferation, migration, invasion, while promoted apoptosis and tumor growth of BC in vitro or in vivo. Furthermore, circ_0001666 could serve as a sponge of miR-620. MiR-620 inhibitor hindered BC cell progression, which was similar to the effect of circ_0001666 overexpression. WNK2 was a target of miR-620, and circ_0001666 could sponge miR-620 to positive regulate WNK2. The knockdown of WNK2 reversed the effect of circ_0001666 overexpression on BC progression. CONCLUSION Circ_0001666 hindered the progression of BC via miR-620/WNK2 axis.
Collapse
Affiliation(s)
- Na Su
- Department of Clinical Laboratory, The First People's Hospital of Jingmen, No. 67 Xiangshan Avenue, Jingmen, 448000, Hubei, China
| | - Li Liu
- Department of Nephropathy, Jingmen No. 2 People's Hospital, Jingmen, Hubei, China
| | - Shan He
- Department of Clinical Laboratory, The First People's Hospital of Jingmen, No. 67 Xiangshan Avenue, Jingmen, 448000, Hubei, China
| | - Linghai Zeng
- Department of Clinical Laboratory, The First People's Hospital of Jingmen, No. 67 Xiangshan Avenue, Jingmen, 448000, Hubei, China.
| |
Collapse
|
22
|
Yin YL, Liu TL, Yao Q, Wang YX, Wu XM, Wang XT, Yang X, Song JK, Zhao GH. Circular RNA ciRS-7 affects the propagation of Cryptosporidium parvum in HCT-8 cells by sponging miR-1270 to activate the NF-κB signaling pathway. Parasit Vectors 2021; 14:238. [PMID: 33957927 PMCID: PMC8101149 DOI: 10.1186/s13071-021-04739-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cryptosporidium is an important zoonotic pathogen responsible for severe enteric diseases in humans and animals. However, the molecular mechanisms underlying host and Cryptosporidium interactions are still not clear. METHODS To study the roles of circRNAs in host cells during Cryptosporidium infection, the expression profiles of circRNAs in HCT-8 cells infected with C. parvum were investigated using a microarray assay, and the regulatory role of a significantly upregulated circRNA, ciRS-7, was investigated during C. parvum infection. RESULTS C. parvum infection caused notable alterations in the expression profiles of circRNAs in HCT-8 cells, and a total of 178 (including 128 up- and 50 downregulated) circRNAs were significantly differentially expressed following C. parvum infection. Among them, ciRS-7 was significantly upregulated and regulated the NF-κB signaling pathway by sponging miR-1270 during C. parvum infection. Furthermore, the ciRS-7/miR-1270/relA axis markedly affected the propagation of C. parvum in HCT-8 cells. CONCLUSIONS Our results revealed that ciRS-7 would promote C. parvum propagation by regulating the miR-1270/relA axis and affecting the NF-κB pathway. To the best of our knowledge, this is the first study to investigate the role of circRNA during Cryptosporidium infection, and the findings provide a novel view for implementing control strategies against Cryptosporidium infection.
Collapse
Affiliation(s)
- Yan-Ling Yin
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ting-Li Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qian Yao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yu-Xin Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xue-Mei Wu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xue-Ting Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xin Yang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jun-Ke Song
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Guang-Hui Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| |
Collapse
|
23
|
Cao H, Chen J, Lai X, Liu T, Qiu P, Que S, Huang Y. Circular RNA expression profile in human primary multiple intracranial aneurysm. Exp Ther Med 2021; 21:239. [PMID: 33603847 PMCID: PMC7851595 DOI: 10.3892/etm.2021.9670] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
Primary multiple intracranial aneurysm (MIA) is a vascular disease that frequently leads to fatal vascular rupture and subarachnoid hemorrhage. However, the epigenetic regulation associated with MIA has remained largely elusive. Circular RNAs (circRNAs) serve important roles in cardiovascular diseases; however, their association with MIA has remained to be investigated. The present study initially aimed to explore novel mechanisms of MIA through examining circRNA expression profiles. Comprehensive circRNA expression profiles were detected by RNA sequencing (RNA-Seq) in human peripheral blood mononuclear cells. The RNA-Seq results were validated by reverse transcription-quantitative PCR. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested the functions of these circRNAs. A competing endogenous RNA network was constructed to reveal the circRNA-microRNA-mRNA relationship. Among the 3,328 differentially expressed circRNAs between the MIA and matched control groups, 60 exhibited significant expression changes (|log2 fold change|≥2; P<0.05). Among these 60 circRNAs, 20 were upregulated, while the other 40 were downregulated. A number of downregulated circRNAs were involved in inflammation. The most significant KEGG pathway was ‘leukocyte transendothelial migration’. The circRNAs Homo sapiens (hsa)_circ_0135895, hsa_circ_0000682 and hsa_circ_0000690, which were also associated with the above-mentioned pathway, were indicated to be able to regulate protein tyrosine kinase 2, protein kinase Cβ and integrin subunit αL, respectively. To the best of our knowledge, the present study was the first to perform a circRNA sequencing analysis of MIA. The results specifically predicted the regulatory role of circRNAs in the pathogenesis of MIA. ‘Leukocyte transendothelial migration’ may be critical for the pathogenesis of MIA.
Collapse
Affiliation(s)
- Huimin Cao
- Central Laboratory, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Jia Chen
- Central Laboratory, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Xiaoyan Lai
- Department of Neurosurgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Tianqin Liu
- Department of Neurosurgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Ping Qiu
- Department of Neurosurgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Shuanglin Que
- Department of Neurosurgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| | - Yanming Huang
- Department of Neurosurgery, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian 364000, P.R. China
| |
Collapse
|
24
|
Ni S, Jiang T, Hao S, Luo P, Wang P, Almatari Y, Wang Y, Zhang Z, Guo L. circRNA expression pattern and ceRNA network in the pathogenesis of aseptic loosening after total hip arthroplasty. Int J Med Sci 2021; 18:768-777. [PMID: 33437212 PMCID: PMC7797529 DOI: 10.7150/ijms.48014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence has demonstrated that circular RNA (circRNA) exerts important function in the pathogenesis of some diseases. While, the contributions of circRNAs to aseptic loosening after total hip arthroplasty (THA) remain largely unknown. Our research is to explore the differentially expressed circRNAs (DEcircRNAs) and elucidate complex regulated mechanism of circRNAs in aseptic loosening. The DEcircRNAs were identified by RNA sequencing (RNA-seq) analysis. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was adopted to corroborate these DEcircRNAs. The potential function of circRNAs in aseptic loosening tissue was identified by competing endogenous RNA (ceRNA) analysis. Enrichment analysis was performed for target mRNAs and host genes of the DEcircRNAs by Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). 257 DEcircRNAs were obtained from RNA-seq results. Following the RT-qPCR corroboration, 6 circRNAs (hsa_circ_0007482, hsa_circ_0005232, hsa_circ_0000994, hsa_circ_0000690, hsa_circ_0058092 and hsa_circ_0004496) were selected for further analysis. By circRNA-miRNA and miRNA-mRNA prediction, 6 circRNAs, 138 miRNAs and 1667 mRNAs were identified. Then, circRNA-miRNA-mRNA network was established. The result of GO and KEGG enrichment analysis suggested that the circRNAs were related with some biological functions and pathways of aseptic loosening. A novel pathogenesis and treatment strategy about aseptic loosening after THA was revealed from our study of circRNA-miRNA-mRNA network.
Collapse
Affiliation(s)
- Shenghui Ni
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, P.R. China.,Department of Orthopedic Surgery, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Tianlong Jiang
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Shimin Hao
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Peng Luo
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Penghao Wang
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Yaser Almatari
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Yu Wang
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Zhiyu Zhang
- Department of Orthopedic Surgery, Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, P.R. China
| | - Lei Guo
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, 110001, P.R. China
| |
Collapse
|
25
|
Su Y, Yi Y, Li L, Chen C. circRNA-miRNA-mRNA network in age-related macular degeneration: From construction to identification. Exp Eye Res 2020; 203:108427. [PMID: 33383027 DOI: 10.1016/j.exer.2020.108427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/09/2023]
Abstract
The aim of the present study was to investigate the pathogenesis of age-related macular degeneration (AMD) by constructing a regulatory circRNA-miRNA-mRNA network. By adjusting the P value to <0.05 and the absolute log value of fold change to >0.25, 2920 and 1057 differentially expressed mRNAs were identified from GSE50195 and GSE29801, respectively. Based on a literature review, Starbase database analysis, and RNA hybrid assays, we obtained 77 miRNA-mRNA and 331 circRNA-miRNA pairs. After combining these pairs, we constructed a circRNA-miRNA-mRNA network possessing 303 circRNA nodes, 4 miRNA nodes, 51 mRNA nodes, and 408 edges. By utilizing protein-protein network analysis, the MCODE algorithm, and the highest degree of circRNA node, we identified the regulatory axis of hsa_circRNA7329/hsa-miR-9/SCD. Hsa_circRNA7329 may regulate SCD through hsa-miR-9 to promote macrophage-mediated inflammation and pathologic angiogenesis, which lead to AMD development. However, the underlying details require further investigation.
Collapse
Affiliation(s)
- Yu Su
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei province, 430060, PR China
| | - Yuexiong Yi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei province, 430071, PR China
| | - Lu Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei province, 430060, PR China
| | - Changzheng Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei province, 430060, PR China.
| |
Collapse
|
26
|
Zhu X, Han J, Lan H, Lin Q, Wang Y, Sun X. A novel circular RNA hsa_circRNA_103809/miR-377-3p/GOT1 pathway regulates cisplatin-resistance in non-small cell lung cancer (NSCLC). BMC Cancer 2020; 20:1190. [PMID: 33276753 PMCID: PMC7716498 DOI: 10.1186/s12885-020-07680-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Background Cisplatin is the first-line chemotherapeutic drug for non-small cell lung cancer (NSCLC), and emerging evidences suggests that targeting circular RNAs (circRNAs) is an effective strategy to increase cisplatin-sensitivity in NSCLC, but the detailed mechanisms are still not fully delineated. Methods Cell proliferation, viability and apoptosis were examined by using the cell counting kit-8 (CCK-8) assay, trypan blue staining assay and Annexin V-FITC/PI double staining assay, respectively. The expression levels of cancer associated genes were measured by using the Real-Time qPCR and Western Blot analysis at transcriptional and translated levels. Dual-luciferase reporter gene system assay was conducted to validated the targeting sites among hsa_circRNA_103809, miR-377-3p and 3′ untranslated region (3’UTR) of GOT1 mRNA. The expression status, including expression levels and localization, were determined by immunohistochemistry (IHC) assay in mice tumor tissues. Results Here we identified a novel hsa_circRNA_103809/miR-377-3p/GOT1 signaling cascade which contributes to cisplatin-resistance in NSCLC in vitro and in vivo. Mechanistically, parental cisplatin-sensitive NSCLC (CS-NSCLC) cells were subjected to continuous low-dose cisplatin treatment to generate cisplatin-resistant NSCLC (CR-NSCLC) cells, and we found that hsa_circRNA_103809 and GOT1 were upregulated, while miR-377-3p was downregulated in CR-NSCLC cells but not in CS-NSCLC cells. In addition, hsa_circRNA_103809 sponged miR-337-3p to upregulate GOT1 in CS-NSCLC cells, and knock-down of hsa_circRNA_103809 enhanced the inhibiting effects of cisplatin on cell proliferation and viability, and induced cell apoptosis in CR-NSCLC cells, which were reversed by downregulating miR-377-3p and overexpressing GOT1. Consistently, overexpression of hsa_circRNA_103809 increased cisplatin-resistance in CS-NSCLC cells by regulating the miR-377-3p/GOT1 axis. Finally, silencing of hsa_circRNA_103809 aggravated the inhibiting effects of cisplatin treatment on NSCLC cell growth in vivo. Conclusions Analysis of data suggested that targeting the hsa_circRNA_103809/miR-377-3p/GOT1 pathway increased susceptibility of CR-NSCLC cells to cisplatin, and this study provided novel targets to improve the therapeutic efficacy of cisplatin for NSCLC treatment in clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07680-w.
Collapse
Affiliation(s)
- Xiang Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Jing Han
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Huiyin Lan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Qingren Lin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Yuezhen Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Xiaojiang Sun
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
27
|
Yuan J, Jia J, Wu T, Liu X, Hu S, Zhang J, Ding R, Pang C, Cheng X. Comprehensive evaluation of differential long non-coding RNA and gene expression in patients with cartilaginous endplate degeneration of cervical vertebra. Exp Ther Med 2020; 20:260. [PMID: 33199985 PMCID: PMC7664616 DOI: 10.3892/etm.2020.9390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as key regulators in gene expression; however, little is currently known regarding their role in cartilaginous endplate (CE) degeneration (CED) of cervical vertebra. The present study aimed to investigate the expression levels of lncRNAs and analyze their potential functions in CED of cervical vertebra in patients with cervical fracture and cervical spondylosis. Human competitive endogenous RNA (ceRNA) array was used to analyze lncRNA and mRNA expression levels in CE samples from patients with cervical fracture and cervical spondylosis, who received anterior cervical discectomy and fusion. Differentially expressed lncRNAs (DELs) or differentially expressed genes (DEGs) were identified and functionally analyzed, using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. An lncRNA-microRNA(miRNA)-mRNA ceRNA regulatory network was constructed based on the DELs and DEGs, and the ceRNA network was visualized using Cytoscape 3.7.2 software. In total, one downregulated mRNA, one upregulated miRNA and five downstream regulated lncRNAs were identified using reverse transcription-quantitative PCR in CED and healthy CE samples. A total of 369 lncRNAs and 246 mRNAs were identified as differentially expressed in CE. The GO and KEGG analyses demonstrated that the majority of GO and KEGG enrichments were associated with CED. Furthermore, a ceRNA network was established, including 168 putative miRNA response elements, 189 upregulated and 37 downregulated lncRNAs and 47 upregulated and 10dow regulated DEGs. The present study analyzed the function of DEGs in the ceRNA network and filtered out the same items as in DEG-function enrichment analysis. These results provide a new perspective for an improved understanding of ceRNA-mediated gene regulation in cervical spondylosis, and provide a novel theoretical basis for further studies on the function of lncRNA in cervical spondylosis. However, further experiments are required to validate the results of the present study.
Collapse
Affiliation(s)
- Jinghong Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Orthopedics of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Minimally Invasive Orthopedics of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Orthopedics of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Minimally Invasive Orthopedics of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Orthopedics of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Minimally Invasive Orthopedics of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xijuan Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shen Hu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Rui Ding
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chongzhi Pang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Orthopedics of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Institute of Minimally Invasive Orthopedics of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Correspondence to: Professor Xigao Cheng, Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Donghu, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
28
|
Zhang C, Hu J, Yu Y. CircRNA Is a Rising Star in Researches of Ocular Diseases. Front Cell Dev Biol 2020; 8:850. [PMID: 33015046 PMCID: PMC7494781 DOI: 10.3389/fcell.2020.00850] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
A newly rediscovered subclass of noncoding RNAs, circular RNAs (circRNAs), is produced by a back-splicing mechanism with a covalently closed loop structure. They not only serve as the sponge for microRNAs (miRNAs) and proteins but also regulate gene expression and epigenetic modification, translate into peptides, and generate pseudogenes. Dysregulation of circRNA expression has opened a new chapter in the etiology of various human disorders, including cancer and cardiovascular, neurodegenerative, and ocular diseases. Recent studies recognized the vital roles that circRNAs played in the pathogenesis of various eye diseases, highlighting circRNAs as promising biomarkers for diagnosis and assessment of progression and prognosis. Interventions targeting circRNAs provide insights for developing novel treatments for these ocular diseases. This review summarizes our current perception of the properties, biogenesis, and functions of circRNAs and the development of circRNA researches related to ophthalmologic diseases, including diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity, glaucoma, corneal neovascularization, cataract, pterygium, proliferative vitreoretinopathy, retinoblastoma, and ocular melanoma.
Collapse
Affiliation(s)
- Chengshou Zhang
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianghua Hu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Ophthalmology, Jiande Branch, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yibo Yu
- Eye Center of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Plasma metabolites in treatment-requiring retinopathy of prematurity: Potential biomarkers identified by metabolomics. Exp Eye Res 2020; 199:108198. [PMID: 32828955 DOI: 10.1016/j.exer.2020.108198] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/02/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023]
Abstract
Retinopathy of prematurity (ROP) is a potentially blinding condition caused by disruption of retinal vascularization and metabolism. This study aims to identify altered metabolites from plasma in patients with treatment-requiring ROP (TR-ROP) compared with controls. An untargeted metabolomics analysis was performed to reveal the metabolomic profiles of the plasma between TR-ROP patients (n = 38) and age-matched infants (n = 23). The Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to explore the potential signaling pathways of the changed metabolites. Under positive ion mode, a total of 29 metabolites were significantly altered in plasma between TR-ROP patients and controls, and 23 altered metabolites were identified under negative ion mode. KEGG analyses indicated that "protein digestion and absorption" and "aminoacyl-tRNA biosynthesis" were the most enriched pathways of the altered metabolites. These results demonstrated that metabolomic profiles changed in plasma of TR-ROP, and the altered metabolites could be served as potential biomarkers for the diagnosis and prognosis of TR-ROP patients. Besides, the metabolomic profiles might provide clues to discover novel therapeutic strategies in ROP treatment.
Collapse
|
30
|
Sun L, Chen X, Jin Z. Emerging roles of non‐coding RNAs in retinal diseases: A review. Clin Exp Ophthalmol 2020; 48:1085-1101. [PMID: 32519377 DOI: 10.1111/ceo.13806] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Lan‐Fang Sun
- Laboratory of Stem Cell and Retinal Regeneration, Division of Ophthalmic Genetics, The Eye Hospital Wenzhou Medical University Wenzhou China
| | - Xue‐Jiao Chen
- Laboratory of Stem Cell and Retinal Regeneration, Division of Ophthalmic Genetics, The Eye Hospital Wenzhou Medical University Wenzhou China
| | - Zi‐Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory Beijing China
| |
Collapse
|
31
|
Liu X, Zhang L, Wang JH, Zeng H, Zou J, Tan W, Zhao H, He Y, Shi J, Yoshida S, Li Y, Zhou Y. Investigation of circRNA Expression Profiles and Analysis of circRNA-miRNA-mRNA Networks in an Animal (Mouse) Model of Age-Related Macular Degeneration. Curr Eye Res 2020; 45:1173-1180. [PMID: 31979995 DOI: 10.1080/02713683.2020.1722179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSES To (i) identify dysregulated circular RNAs (circRNAs) and (ii) elucidate their potential functions in an animal (mouse) model of choroidal neovascularization (CNV), a prominent feature of neovascular age-related macular degeneration (AMD). METHODS Expression profiles for circRNA were identified by microarray analysis. Selected circRNAs were confirmed by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Bioinformatic analyses of identified circRNAs were performed to predict (i) circRNA/microRNA interactions and (ii) occurrence of competing endogenous RNA (ceRNA) networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were applied to predict both the biological functions and potential pathways of the altered parental genes involved in CNV. RESULTS Microarray analysis indicated that 100 circRNAs in RPE-choroid-sclera complexes from CNV mice were significantly altered compared with those from control mice (fold change≥1.5, p < .05). Of these, six were validated by qRT-PCR, and included up-regulated mmu_circRNA_20332 and mmu_circRNA_19388, and down-regulated mmu_circRNA_36481, mmu_circRNA_006555, mmu_circRNA_012588, and mmu_circRNA_005578. GO analysis revealed that the altered parental genes involved in ceRNA networks were mostly enriched in immune system processes and portions of neurons. KEGG analysis revealed that these altered parental genes were also amplified in extracellular matrix (ECM)-receptor interactions, chemokine signaling pathways, and advanced glycation end-product (AGE)-receptors for advanced glycation end-product (RAGE) signaling pathways in diabetic complications. CONCLUSION The study identified statistically significant differences between CNV-mouse circRNAs and control mouse circRNAs, suggesting that circRNAs play vital roles in the pathogenesis of CNV. It is, therefore, reasonable to consider circRNAs as potential therapeutic targets for regulating CNV in AMD patients.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| | - Liwei Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital , East Melbourne, Australia.,Ophthalmology, Department of Surgery, University of Melbourne , East Melbourne, Australia
| | - Huilan Zeng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| | - Han Zhao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| | - Yan He
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| | - Jingming Shi
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine , Kurume, Japan
| | - Yunping Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University , Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease , Changsha, China
| |
Collapse
|
32
|
Peng Y, Zou J, Wang JH, Zeng H, Tan W, Yoshida S, Zhang L, Li Y, Zhou Y. Small RNA Sequencing Reveals Transfer RNA-derived Small RNA Expression Profiles in Retinal Neovascularization. Int J Med Sci 2020; 17:1713-1722. [PMID: 32714074 PMCID: PMC7378657 DOI: 10.7150/ijms.46209] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Retinal neovascularization (RNV) is characterized in retinopathy of prematurity (ROP), diabetic retinopathy (DR), and retinal vein occlusion (RVO), which leads to severe vision loss and even blindness. To reveal the altered transfer RNA-derived small RNA (tsRNA)s in RNV, and to investigate the underlying mechanisms of the altered tsRNAs involved in RNV, we carried out a small RNA sequencing to profile tsRNA expressions in the retinas of mice with oxygen-induced retinopathy (OIR) and control mice. A total of 45 tsRNAs were significantly changed (fold change ≥ 1.5 and P < 0.05) in the retinas of OIR mice compared with controls. Validation by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) in four selected tsRNAs was consistent with the results of small RNA sequencing. Bioinformatics analyses identified 153 altered target genes of the four validated tsRNAs. These altered target genes were largely enriched in developmental process, cell periphery and protein binding, as well as Th1 and Th2 cell differentiation pathway. Our study suggests tsRNAs play key roles in the pathogenesis of RNV, indicating their therapeutic potential to treat patients with RNV. Moreover, small RNA sequencing is a useful tool to identify changes in tsRNA expression, an important indicator of the progress of retinal diseases.
Collapse
Affiliation(s)
- Yingqian Peng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Huilan Zeng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Liwei Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| |
Collapse
|