1
|
Friehmann T, Abu Mohsen Y, Schlesinger Y, Ghantous L, Gamaev L, Landau Zenilman C, Harazi A, Galun E, Goldenberg DS. The oncogenic microRNA miR-222 promotes human LINE-1 retrotransposition. RNA Biol 2025. [PMID: 40421600 DOI: 10.1080/15476286.2025.2511318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/11/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Abstract
The Long Interspersed Element-1 (LINE-1) contributes significantly to carcinogenesis and to tumour heterogeneity in many cancer types, including hepatocellular carcinoma (HCC), by its autonomous retrotransposition (RTP) and by its ability to retrotranspose some non-autonomous transposable elements. Previously, multiple proteins and a few microRNAs (miRs) were described as regulators of LINE-1 RTP. Here, we demonstrate that miR-222, which is oncogenic in HCC, promotes LINE-1 RTP in human HCC and some other cell lines in vitro, and that both miR-222-3p and miR-222-5p activate LINE-1 RTP in a cell-type specific manner. We generated miR-222-knockout mutants of the Huh7 and FLC4 HCC cell lines, and performed RNA-seq analysis of Huh7/miR-222-knockout cells and global proteomics analysis of both Huh7 and FLC4 miR-222-knockout mutants. We demonstrate that miR-222 decreases let-7c expression in both Huh7 and FLC4 cells, and that this decrease contributes to promotion of LINE-1 RTP by miR-222 in Huh7 cells.
Collapse
Affiliation(s)
- Tomer Friehmann
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah University Medical Center (Hadassah Hebrew University Hospital), Jerusalem, Israel
| | - Yamama Abu Mohsen
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah University Medical Center (Hadassah Hebrew University Hospital), Jerusalem, Israel
| | - Yehuda Schlesinger
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah University Medical Center (Hadassah Hebrew University Hospital), Jerusalem, Israel
| | - Lucy Ghantous
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah University Medical Center (Hadassah Hebrew University Hospital), Jerusalem, Israel
| | - Lika Gamaev
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah University Medical Center (Hadassah Hebrew University Hospital), Jerusalem, Israel
| | - Chavah Landau Zenilman
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah University Medical Center (Hadassah Hebrew University Hospital), Jerusalem, Israel
| | - Avi Harazi
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah University Medical Center (Hadassah Hebrew University Hospital), Jerusalem, Israel
| | - Eithan Galun
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah University Medical Center (Hadassah Hebrew University Hospital), Jerusalem, Israel
| | - Daniel S Goldenberg
- The Goldyne Savad Institute of Gene and Cell Therapy, Hadassah University Medical Center (Hadassah Hebrew University Hospital), Jerusalem, Israel
| |
Collapse
|
2
|
Aghaei‐Zarch SM, Esmaeili A, Bagheri‐Mohammadi S. A Comprehensive Review on LncRNAs/miRNAs-DNMT1 Axis in Human Cancer: Mechanistic and Clinical Application. J Cell Mol Med 2025; 29:e70604. [PMID: 40387409 PMCID: PMC12087000 DOI: 10.1111/jcmm.70604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/20/2025] Open
Abstract
Cancer constitutes a significant public health concern, and addressing the challenge of cancer holds paramount importance and requires immediate attention. Epigenetic alterations, encompassing DNA methylation, have emerged as pivotal contributors to the development of diverse cancer types. These modifications exert their influence by modulating chromatin structure, gene expression patterns and other nuclear processes, thereby influencing cancer pathogenesis. Over the last two decades, an increasing body of evidence has established the involvement of DNA methyltransferase 1 (DNMT1) in various aspects of cancer development, including tumorigenesis, aggressiveness and treatment response. Furthermore, non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are increasingly recognised as significant modulators in diverse biological processes, encompassing metastasis, apoptosis, cell proliferation and differentiation. Several recent studies have elucidated the intricate relationship between epigenetic machinery, specifically DNMT1, and the expression of ncRNAs in the context of cancer. In this review, we provide a comprehensive overview of the interaction between DNMT1 and ncRNAs in cancer pathogenesis. Furthermore, we discuss the important role of the ncRNAs-DNMT1 axis in cancer stem cells and cancer therapy resistance as critical issues in cancer therapy. Finally, we demonstrate that herbal medicine and synthetic RNA molecules regulate DNMT1 activity and hold great promise in cancer treatment.
Collapse
Affiliation(s)
- Seyed Mohsen Aghaei‐Zarch
- Department of Medical Genetics, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Saeid Bagheri‐Mohammadi
- Department of Paramedicine, Amol School of Paramedical SciencesMazandaran University of Medical SciencesSariIran
- Immunogenetic Research CenterMazandaran University of Medical SciencesSariIran
| |
Collapse
|
3
|
Wei X, Cao W, Wang S, Zhang Y, Gao Z, Wang S, Yao L, Zhang Z, Li X, Deng W, Xie Y, Li M. Progress in the Application of Novel Nanomaterials in Targeted Therapy for Liver Cancer. Int J Nanomedicine 2025; 20:2623-2643. [PMID: 40061885 PMCID: PMC11887507 DOI: 10.2147/ijn.s509409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
In recent years, nanobiotechnology, widely used in hepatoma, holds great promise for improving targeted hepatocarcinoma therapy. On account of the unique properties of low toxicity, good tolerance, biocompatibility, and biodegradability of new nanomaterials, a targeted drug delivery system (TDDS) has been constructed, which can boost the therapeutic effect of hepatoma-targeted drugs, reduce drug toxicity, and minimize off target reactions by enhancing permeability retention effect (EPR) and active targeting, thus improving existing liver cancer targeted therapy strategies. Different nanoparticles have their own advantages and disadvantages. They can be loaded with multiple drugs on the same nanoparticle and can also be surface modified with each other to achieve synergistic anti-tumor effects. This essay provides a comprehensive overview of the current status of targeted therapy for hepatocarcinoma, nanoparticles' structure, advantages and disadvantages of each nanoparticle, and the application progress of nanoparticles in targeted therapy for liver cancer. We hope to provide a basis for the future clinical targeted therapy of hepatoma using nanotechnology.
Collapse
Affiliation(s)
- Xin Wei
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Weihua Cao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Shiyu Wang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Yaqin Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Zixuan Gao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Shuojie Wang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Linmei Yao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Ziyu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Xinxin Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, 100015, People’s Republic of China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, 100015, People’s Republic of China
| |
Collapse
|
4
|
Harrell CR, Volarevic A, Djonov V, Volarevic V. Mesenchymal Stem-Cell-Derived Exosomes as Novel Drug Carriers in Anti-Cancer Treatment: A Myth or Reality? Cells 2025; 14:202. [PMID: 39936993 PMCID: PMC11817634 DOI: 10.3390/cells14030202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Although cancer therapy has significantly advanced in recent decades, patients and healthcare professionals are still quite concerned about adverse effects due to the non-targeted nature of currently used chemotherapeutics. Results obtained in a large number of recently published experimental studies indicated that mesenchymal stem-cell-derived exosomes (MSC-Exos), due to their biocompatibility, ability to cross biological barriers, and inherent targeting capabilities, could be used as a promising drug-delivery system for anti-cancer therapies. Their lipid bilayer protects cargo of anti-cancer drugs, making them excellent candidates for the delivery of therapeutic agents. MSC-Exos could be engineered to express ligands specific for tumor cells and, therefore, could selectively deliver anti-cancer agents directly in malignant cells, minimizing side effects associated with chemotherapeutic-dependent injury of healthy cells. MSC-Exos can carry multiple therapeutic agents, including anti-cancer drugs, micro RNAs, and small bioactive molecules, which can concurrently target multiple signaling pathways, preventing tumor growth and progression and overcoming resistance of tumor cells to many standard chemotherapeutics. Accordingly, in this review article, we summarized current knowledge and future perspectives about the therapeutic potential of MSCs-Exos in anti-cancer treatment, opening new avenues for the targeted therapy of malignant diseases.
Collapse
Affiliation(s)
- Carl Randall Harrell
- Regenerative Processing Plant, LLC, 34176 US Highway 19 N, Palm Harbor, FL 34684, USA;
| | - Ana Volarevic
- Departments of Psychology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia;
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland;
| | - Vladislav Volarevic
- Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia
- Faculty of Pharmacy Novi Sad, Trg Mladenaca 5, 21000 Novi Sad, Serbia
| |
Collapse
|
5
|
Mohapatra P, Chandrasekaran N. In vitro β-catenin attenuation by a mefloquine-loaded core-shell nano emulsion strategy to suppress liver cancer cells. NANOSCALE ADVANCES 2025; 7:748-765. [PMID: 39610791 PMCID: PMC11601157 DOI: 10.1039/d4na00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/26/2024] [Indexed: 11/30/2024]
Abstract
Liver cancer, with its robust metastatic propensity, imposes a substantial global health burden of around 800 000 new cases annually. Mutations in the Wnt/β-catenin pathway genes are common in liver cancer, driving over 80% of cases. Targeting this pathway could potentially lead to better treatments. The aim of the present study was to develop a novel strategy for targeting the Wnt/β-catenin pathway while blocking the growth and division, of liver cancer cells and downregulating gene expression. This was achieved by formulating a repurposed drug (mefloquine)-loaded garlic nano-emulsion (GNE) with gold nanoparticles (GNPs) as a core-shell nano-emulsion (MQ/GNE-GNP). The biocompatible core-shell nano-emulsion (MQ/GNE-GNP) exhibited a size distribution in the range of 50-100 nm, high stability, excellent hydrophilicity, good biosafety, and sustained release. Human liver cancer cells were exposed to MQ/GNE, GNPs, and MQ/GNE-GNP at varying concentrations, and the effects were assessed through analysis of the cytotoxicity, reactive oxygen species, cell death, cell cycle analysis, and gene expression studies. It was found that MQ/GNE-GNP arrested HepG2 cells in the sub G0/G1phase and induced apoptosis. The anticancer efficacy of the core-shell nano-emulsion (MQ/GNE-GNP) resulted in higher cell death in the AO/PI staining studies, demonstrating its greater anticancer efficacy. The administration of MQ/GNE-GNP downregulated the overall expression of nuclear β-catenin, thereby suppressing the Wnt/β-catenin pathway. The protein expression level of Wnt 1 was upregulated, while β-catenin expression was significantly decreased. The core-shell nano-emulsion, incorporating a repurposed drug, could disrupt the β-catenin connections in the Wnt/β-catenin pathway. In conclusion, MQ/GNE-GNP could be a promising core-shell nano emulsion for the effective treatment of liver cancer by targeting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Priyadarshini Mohapatra
- ICMR-SRF, Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, VIT University Vellore 632 014 India +91-416-2243092 +91-416-220-2879
| |
Collapse
|
6
|
Fan Y, Xiao H, Wang Y, Wang S, Sun H. Global research on nanomaterials for liver cancer from 2004 to 2023: a bibliometric and visual analysis. Discov Oncol 2024; 15:838. [PMID: 39722094 DOI: 10.1007/s12672-024-01735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Primary liver cancer, particularly hepatocellular carcinoma, is one of the most common gastrointestinal cancers. An increasing number of studies indicate that nanomaterials play a significant role in the diagnosis and treatment of liver cancer. However, despite the extensive and diverse research on nanomaterials and liver cancer, bibliometric studies in this field have not yet been reported. This study aims to comprehensively evaluate the application prospects and development trends of nanomaterials in primary liver cancer over the past 20 years. By elucidating the current state of research on liver cancer, we intend to provide valuable reference information for researchers in this field. METHODS We conducted a comprehensive search of the Web of Science Core Collection for publications related to liver cancer and nanomaterials from January 1, 2004, to December 31, 2023. Relevant literature was selected based on specific inclusion and exclusion criteria. These selected publications were subsequently analyzed using CiteSpace, VOSviewer, and the R package "bibliometrix" to identify trends, influential countries, institutions, authors, journals, and research hotspots in this field. RESULTS This study included a total of 1641 publications, with an annual growth rate of 25.45%. China and the United States are leading in this field, accounting for 67.46% and 11.27% of the total publications, respectively. The Chinese Academy of Sciences and Shao D are the most cited institution and author, respectively. The International Journal of Nanomedicine is the most influential journal in this field, while Biomaterials is the most highly cited and co-cited journal. Research hotspots mainly focus on improving drug delivery efficiency, inducing cancer cell apoptosis, photodynamic therapy, photothermal therapy, and combination treatments. Emerging research directions include the tumor microenvironment, polyethylene glycol, and immunogenic cell death. CONCLUSION The results of this study indicate that the application of nanomaterials in the field of liver cancer is gradually becoming a significant research area, with a focus on improving drug delivery efficiency, enhancing therapeutic efficacy, and reducing side effects.
Collapse
Affiliation(s)
- Yitao Fan
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
- Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Han Xiao
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
- Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Yan Wang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
- Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Shuhan Wang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
- Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Hui Sun
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China.
- Lanzhou University, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
7
|
Song G, Yu X, Shi H, Sun B, Amateau S. miRNAs in HCC, pathogenesis, and targets. Hepatology 2024:01515467-990000000-01097. [PMID: 39626210 PMCID: PMC12119976 DOI: 10.1097/hep.0000000000001177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Liver cancer is the third leading cause of cancer-related mortality worldwide. HCC, the most common type of primary liver cancer, is driven by complex genetic, epigenetic, and environmental factors. MicroRNAs, a class of naturally occurring small noncoding RNAs, play crucial roles in HCC by simultaneously modulating the expression of multiple genes in a fine-tuning manner. Significant progress has been made in understanding how miRNAs influence key oncogenic pathways, including cell proliferation, apoptosis, angiogenesis, and epithelial-mesenchymal transition (EMT), as well as their role in modulating the immune microenvironment in HCC. Due to the unexpected stability of miRNAs in the blood and fixed HCC tumors, recent advancements also highlight their potential as noninvasive diagnostic tools. Restoring or inhibiting specific miRNAs has offered promising strategies for targeted HCC treatment by suppressing malignant hepatocyte growth and enhancing antitumor immunity. In this comprehensive review, we consolidate previous research and provide the latest insights into how miRNAs regulate HCC and their therapeutic and diagnostic potential. We delve into the dysregulation of miRNA biogenesis in HCC, the roles of miRNAs in the proliferation and apoptosis of malignant hepatocytes, angiogenesis and metastasis of HCC, the immune microenvironment in HCC, and drug resistance. We also discuss the therapeutic and diagnostic potential of miRNAs and delivery approaches of miRNA drugs to overcome the limitations of current HCC treatment options. By thoroughly summarizing the roles of miRNAs in HCC, our goal is to advance the development of effective therapeutic drugs with minimal adverse effects and to establish precise tools for early diagnosis of HCC.
Collapse
Affiliation(s)
- Guisheng Song
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaofan Yu
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Hongtao Shi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan City, China
| | - Bo Sun
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Stuart Amateau
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Abtahi MS, Fotouhi A, Rezaei N, Akalin H, Ozkul Y, Hossein-Khannazer N, Vosough M. Nano-based drug delivery systems in hepatocellular carcinoma. J Drug Target 2024; 32:977-995. [PMID: 38847573 DOI: 10.1080/1061186x.2024.2365937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/19/2024]
Abstract
The high recurrence rate of hepatocellular carcinoma (HCC) and poor prognosis after medical treatment reflects the necessity to improve the current chemotherapy protocols, particularly drug delivery methods. Development of targeted and efficient drug delivery systems (DDSs), in all active, passive and stimuli-responsive forms for selective delivery of therapeutic drugs to the tumour site has been extended to improve efficacy and reduce the severe side effects. Recent advances in nanotechnology offer promising breakthroughs in the diagnosis, treatment and monitoring of cancer cells. In this review, the specific design of DDSs based on the different nano-particles and their surface engineering is discussed. In addition, the innovative clinical studies in which nano-based DDS was used in the treatment of HCC were highlighted.
Collapse
Affiliation(s)
- Maryam Sadat Abtahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Fotouhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nikoo Hossein-Khannazer
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
9
|
Xing L, Chen Y, Zheng T. Research progress of nanoparticles in diagnosis and treatment of hepatocellular carcinoma. Open Life Sci 2024; 19:20220932. [PMID: 39220591 PMCID: PMC11365471 DOI: 10.1515/biol-2022-0932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common malignant liver tumors. Despite progress in anticancer drugs and surgical approaches, early detection of HCC remains challenging, often leading to late-stage diagnosis where rapid disease progression precludes surgical intervention, leaving chemotherapy as the only option. However, the systemic toxicity, low bioavailability, and significant adverse effects of chemotherapy drugs often lead to resistance, rendering treatments ineffective for many patients. This article outlines how nanoparticles, following functional modification, offer high sensitivity, reduced drug toxicity, and extended duration of action, enabling precise targeting of drugs to HCC tissues. Combined with other therapeutic modalities and imaging techniques, this significantly enhances the diagnosis, treatment, and long-term prognosis of HCC. The advent of nanomedicine provides new methodologies and strategies for the precise diagnosis and integrated treatment of HCC.
Collapse
Affiliation(s)
- Lijun Xing
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Hubei University of Medicine, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, P. R. China
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, P. R. China
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, P. R. China
| |
Collapse
|
10
|
Roshani M, Rezaian-Isfahni A, Lotfalizadeh MH, Khassafi N, Abadi MHJN, Nejati M. Metal nanoparticles as a potential technique for the diagnosis and treatment of gastrointestinal cancer: a comprehensive review. Cancer Cell Int 2023; 23:280. [PMID: 37981671 PMCID: PMC10657605 DOI: 10.1186/s12935-023-03115-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023] Open
Abstract
Gastrointestinal (GI) cancer is a major health problem worldwide, and current diagnostic and therapeutic approaches are often inadequate. Various metallic nanoparticles (MNPs) have been widely studied for several biomedical applications, including cancer. They may potentially overcome the challenges associated with conventional chemotherapy and significantly impact the overall survival of GI cancer patients. Functionalized MNPs with targeted ligands provide more efficient localization of tumor energy deposition, better solubility and stability, and specific targeting properties. In addition to enhanced therapeutic efficacy, MNPs are also a diagnostic tool for molecular imaging of malignant lesions, enabling non-invasive imaging or detection of tumor-specific or tumor-associated antigens. MNP-based therapeutic systems enable simultaneous stability and solubility of encapsulated drugs and regulate the delivery of therapeutic agents directly to tumor cells, which improves therapeutic efficacy and minimizes drug toxicity and leakage into normal cells. However, metal nanoparticles have been shown to have a cytotoxic effect on cells in vitro. This can be a concern when using metal nanoparticles for cancer treatment, as they may also kill healthy cells in addition to cancer cells. In this review, we provide an overview of the current state of the field, including preparation methods of MNPs, clinical applications, and advances in their use in targeted GI cancer therapy, as well as the advantages and limitations of using metal nanoparticles for the diagnosis and treatment of gastrointestinal cancer such as potential toxicity. We also discuss potential future directions and areas for further research, including the development of novel MNP-based approaches and the optimization of existing approaches.
Collapse
Affiliation(s)
- Mohammad Roshani
- Internal Medicine and Gastroenterology, Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arya Rezaian-Isfahni
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hassan Jafari Najaf Abadi
- Research Center for Health Technology Assessment and Medical Informatics, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Escutia-Gutiérrez R, Sandoval-Rodríguez A, Zamudio-Ojeda A, Guevara-Martínez SJ, Armendáriz-Borunda J. Advances of Nanotechnology in the Diagnosis and Treatment of Hepatocellular Carcinoma. J Clin Med 2023; 12:6867. [PMID: 37959332 PMCID: PMC10647688 DOI: 10.3390/jcm12216867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Nanotechnology has emerged as a promising technology in the field of hepatocellular carcinoma (HCC), specifically in the implementation of diagnosis and treatment strategies. Nanotechnology-based approaches, such as nanoparticle-based contrast agents and nanoscale imaging techniques, have shown great potential for enhancing the sensitivity and specificity of HCC detection. These approaches provide high-resolution imaging and allow for the detection of molecular markers and alterations in cellular morphology associated with HCC. In terms of treatment, nanotechnology has revolutionized HCC therapy by enabling targeted drug delivery, enhancing therapeutic efficacy, and minimizing off-target effects. Nanoparticle-based drug carriers can be functionalized with ligands specific to HCC cells, allowing for selective accumulation of therapeutic agents at the tumor site. Furthermore, nanotechnology can facilitate combination therapy by co-encapsulating multiple drugs within a single nanoparticle, allowing for synergistic effects and overcoming drug resistance. This review aims to provide an overview of recent advances in nanotechnology-based approaches for the diagnosis and treatment of HCC. Further research is needed to optimize the design and functionality of nanoparticles, improve their biocompatibility and stability, and evaluate their long-term safety and efficacy. Nonetheless, the integration of nanotechnology in HCC management holds great promise and may lead to improved patient outcomes in the future.
Collapse
Affiliation(s)
- Rebeca Escutia-Gutiérrez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.E.-G.); (A.S.-R.)
| | - Ana Sandoval-Rodríguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.E.-G.); (A.S.-R.)
| | - Adalberto Zamudio-Ojeda
- Department of Physics, Exact Sciences and Engineering University Center, University of Guadalajara, Guadalajara 44340, Mexico;
| | - Santiago José Guevara-Martínez
- Department of Physics, Exact Sciences and Engineering University Center, University of Guadalajara, Guadalajara 44340, Mexico;
| | - Juan Armendáriz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico; (R.E.-G.); (A.S.-R.)
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Zapopan 45201, Mexico
| |
Collapse
|
12
|
Alqurashi YE, Al-Hetty HRAK, Ramaiah P, Fazaa AH, Jalil AT, Alsaikhan F, Gupta J, Ramírez-Coronel AA, Tayyib NA, Peng H. Harnessing function of EMT in hepatocellular carcinoma: From biological view to nanotechnological standpoint. ENVIRONMENTAL RESEARCH 2023; 227:115683. [PMID: 36933639 DOI: 10.1016/j.envres.2023.115683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 05/08/2023]
Abstract
Management of cancer metastasis has been associated with remarkable reduction in progression of cancer cells and improving survival rate of patients. Since 90% of mortality are due to cancer metastasis, its suppression can improve ability in cancer fighting. The EMT has been an underlying cause in increasing cancer migration and it is followed by mesenchymal transformation of epithelial cells. HCC is the predominant kind of liver tumor threatening life of many people around the world with poor prognosis. Increasing patient prognosis can be obtained via inhibiting tumor metastasis. HCC metastasis modulation by EMT and HCC therapy by nanoparticles are discussed here. First of all, EMT happens during progression and advanced stages of HCC and therefore, its inhibition can reduce tumor malignancy. Moreover, anti-cancer compounds including all-trans retinoic acid and plumbaging, among others, have been considered as inhibitors of EMT. The EMT association with chemoresistance has been evaluated. Moreover, ZEB1/2, TGF-β, Snail and Twist are EMT modulators in HCC and enhancing cancer invasion. Therefore, EMT mechanism and related molecular mechanisms in HCC are evaluated. The treatment of HCC has not been only emphasized on targeting molecular pathways with pharmacological compounds and since drugs have low bioavailability, their targeted delivery by nanoparticles promotes HCC elimination. Moreover, nanoparticle-mediated phototherapy impairs tumorigenesis in HCC by triggering cell death. Metastasis of HCC and even EMT mechanism can be suppressed by cargo-loaded nanoparticles.
Collapse
Affiliation(s)
- Yaser E Alqurashi
- Department of Biology, College of Science Al-zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | | | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
13
|
Wang L, Chen M, Ran X, Tang H, Cao D. Sorafenib-Based Drug Delivery Systems: Applications and Perspectives. Polymers (Basel) 2023; 15:2638. [PMID: 37376284 DOI: 10.3390/polym15122638] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
As a Food and Drug Administration (FDA)-approved molecular-targeted chemotherapeutic drug, sorafenib (SF) can inhibit angiogenesis and tumor cell proliferation, leading to improved patient overall survival of hepatocellular carcinoma (HCC). In addition, SF is an oral multikinase inhibitor as a single-agent therapy in renal cell carcinoma. However, the poor aqueous solubility, low bioavailability, unfavorable pharmacokinetic properties and undesirable side effects (anorexia, gastrointestinal bleeding, and severe skin toxicity, etc.) seriously limit its clinical application. To overcome these drawbacks, the entrapment of SF into nanocarriers by nanoformulations is an effective strategy, which delivers SF in a target tumor with decreased adverse effects and improved treatment efficacy. In this review, significant advances and design strategies of SF nanodelivery systems from 2012 to 2023 are summarized. The review is organized by type of carriers including natural biomacromolecule (lipid, chitosan, cyclodextrin, etc.); synthetic polymer (poly(lactic-co-glycolic acid), polyethyleneimine, brush copolymer, etc.); mesoporous silica; gold nanoparticles; and others. Co-delivery of SF and other active agents (glypican-3, hyaluronic acid, apolipoprotein peptide, folate, and superparamagnetic iron oxide nanoparticles) for targeted SF nanosystems and synergistic drug combinations are also highlighted. All these studies showed promising results for targeted treatment of HCC and other cancers by SF-based nanomedicines. The outlook, challenges and future opportunities for the development of SF-based drug delivery are presented.
Collapse
Affiliation(s)
- Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Meihuan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Xueguang Ran
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510641, China
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| |
Collapse
|
14
|
Basu A, Namporn T, Ruenraroengsak P. Critical Review in Designing Plant-Based Anticancer Nanoparticles against Hepatocellular Carcinoma. Pharmaceutics 2023; 15:1611. [PMID: 37376061 DOI: 10.3390/pharmaceutics15061611] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC), accounting for 85% of liver cancer cases, continues to be the third leading cause of cancer-related deaths worldwide. Although various forms of chemotherapy and immunotherapy have been investigated in clinics, patients continue to suffer from high toxicity and undesirable side effects. Medicinal plants contain novel critical bioactives that can target multimodal oncogenic pathways; however, their clinical translation is often challenged due to poor aqueous solubility, low cellular uptake, and poor bioavailability. Nanoparticle-based drug delivery presents great opportunities in HCC therapy by increasing selectivity and transferring sufficient doses of bioactives to tumor areas with minimal damage to adjacent healthy cells. In fact, many phytochemicals encapsulated in FDA-approved nanocarriers have demonstrated the ability to modulate the tumor microenvironment. In this review, information about the mechanisms of promising plant bioactives against HCC is discussed and compared. Their benefits and risks as future nanotherapeutics are underscored. Nanocarriers that have been employed to encapsulate both pure bioactives and crude extracts for application in various HCC models are examined and compared. Finally, the current limitations in nanocarrier design, challenges related to the HCC microenvironment, and future opportunities are also discussed for the clinical translation of plant-based nanomedicines from bench to bedside.
Collapse
Affiliation(s)
- Aalok Basu
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| | - Thanaphon Namporn
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| | - Pakatip Ruenraroengsak
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| |
Collapse
|
15
|
Raut H, Jadhav C, Shetty K, Laxane N, Nijhawan HP, Rao GSNK, Alavala RR, Joshi G, Patro CN, Soni G, Yadav KS. Sorafenib tosylate novel drug delivery systems: implications of nanotechnology in both approved and unapproved indications. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Sousa DP, Conde J. Gold Nanoconjugates for miRNA Modulation in Cancer Therapy: From miRNA Silencing to miRNA Mimics. ACS MATERIALS AU 2022; 2:626-640. [PMID: 36397876 PMCID: PMC9650716 DOI: 10.1021/acsmaterialsau.2c00042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022]
Abstract
![]()
Cancer is a major healthcare burden and cause of death
worldwide,
with an estimated 19.3 million new cancer cases and 10 million cancer
deaths globally only in 2020. While several anticancer therapeutics
are available to date, many of these still show low treatment efficacy
and high off-target effects and adverse reactions. This prompts a
serious need to develop novel therapies that can decrease the side
effects and increase treatment efficacy. MicroRNAs (miRNAs) can have
a role in tumor development and progression, making them important
targets for the improvement of anticancer therapies. In this context,
gold nanoparticles have been widely studied for different clinical
applications due to their biocompatibility and possibility of customization,
and gold nanoconjugates targeting miRNAs are being developed for cancer
diagnosis and treatment. Here we summarize the research developed
so far and how it can contribute to cancer treatment, discuss how
it can be improved, and present the current challenges and future
perspectives on their design and application.
Collapse
Affiliation(s)
- Diana P. Sousa
- NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
- ToxOmics, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - João Conde
- NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
- ToxOmics, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| |
Collapse
|
17
|
Ho CM, Lin KT, Shen R, Gu DL, Lee SS, Su WH, Jou YS. Prognostic comparative genes predict targets for sorafenib combination therapies in hepatocellular carcinoma. Comput Struct Biotechnol J 2022; 20:1752-1763. [PMID: 35495118 PMCID: PMC9024375 DOI: 10.1016/j.csbj.2022.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
Large-scale comparative transcriptomics analysis of hepatocellular carcinoma reveals 664 prognostic comparative HCC (pcHCC) genes. pcHCC genes included novel targets with potential utility in sorafenib combination therapies. Knockdown of the selective pcHCC genes NCAPG and CENPW downregulated the p38/STAT3 axis to enhance sorafenib combination treatments.
With the increasing incidence and mortality of human hepatocellular carcinoma (HCC) worldwide, revealing innovative targets to improve therapeutic strategies is crucial for prolonging the lives of patients. To identify innovative targets, we conducted a comprehensive comparative transcriptome analysis of 5,410 human HCCs and 974 mouse liver cancers to identify concordantly expressed genes associated with patient survival. Among the 664 identified prognostic comparative HCC (pcHCC) genes, upregulated pcHCC genes were associated with prognostic clinical features, including large tumor size, vascular invasion and late HCC stages. Interestingly, after validating HCC patient prognoses in multiple independent datasets, we matched the 664 aberrant pcHCC genes with the sorafenib-altered genes in TCGA_LIHC patients and found these 664 pcHCC genes were enriched in sorafenib-related functions, such as downregulated xenobiotic and lipid metabolism and upregulated cell proliferation. Therapeutic agents targeting aberrant pcHCC genes presented divergent molecular mechanisms, including suppression of sorafenib-unrelated oncogenic pathways, induction of sorafenib-unrelated ferroptosis, and modulation of sorafenib transportation and metabolism, to potentiate sorafenib therapeutic effects in HCC combination therapy. Moreover, the pcHCC genes NCAPG and CENPW, which have not been targeted in combination with sorafenib treatment, were knocked down and combined with sorafenib treatment, which reduced HCC cell viability based on disruption to the p38/STAT3 axis, thereby hypersensitizing HCC cells. Together, our results provide important resources and reveal that 664 pcHCC genes represent innovative targets suitable for developing therapeutic strategies in combination with sorafenib based on the divergent synergistic mechanisms for HCC tumor suppression.
Collapse
|
18
|
Hu X, Zhu H, Shen Y, Zhang X, He X, Xu X. The Role of Non-Coding RNAs in the Sorafenib Resistance of Hepatocellular Carcinoma. Front Oncol 2021; 11:696705. [PMID: 34367979 PMCID: PMC8340683 DOI: 10.3389/fonc.2021.696705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death. Sorafenib is approved by the U.S. Food and Drug Administration to be a first-line chemotherapy agent for patients with advanced HCC. A portion of advanced HCC patients can benefit from the treatment with sorafenib, but many patients ultimately develop sorafenib resistance, leading to a poor prognosis. The molecular mechanisms of sorafenib resistance are sophisticated and indefinite. Notably, non-coding RNAs (ncRNAs), which include long ncRNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs), are critically participated in the occurrence and progression of tumors. Moreover, growing evidence has suggested that ncRNAs are crucial regulators in the development of resistance to sorafenib. Herein, we integrally and systematically summarized the molecular mechanisms and vital role of ncRNAs impact sorafenib resistance of HCC, and ultimately explored the potential clinical administrations of ncRNAs as new prognostic biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xinyao Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Shen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyu Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoqin He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Donovan PD, McHale NM, Venø MT, Prehn JHM. tsRNAsearch: A pipeline for the identification of tRNA and ncRNA fragments from small RNA-sequencing data. Bioinformatics 2021; 37:4424-4430. [PMID: 34255836 DOI: 10.1093/bioinformatics/btab515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 05/27/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
MOTIVATION tRNAs were originally considered uni-functional RNA molecules involved in the delivery of amino acids to growing peptide chains on the ribosome. More recently, the liberation of tRNA fragments from tRNAs via specific enzyme cleavage has been characterized. Detection of tRNA fragments in sequencing data is difficult due to tRNA sequence redundancy and the short length of both tRNAs and their fragments. RESULTS Here we introduce tsRNAsearch, a Nextflow pipeline for the identification of differentially abundant tRNA fragments and other non-coding RNAs from small RNA-sequencing data. tsRNAsearch is intended for use when comparing two groups of datasets, such as control and treatment groups. tsRNAsearch comparatively searches for tRNAs and ncRNAs with irregular read distribution profiles (a proxy for RNA cleavage) using a combined score made up of four novel methods and a differential expression analysis, and reports the top ranked results in simple PDF and TEXT files. In this study, we used publicly available small RNA-seq data to replicate the identification of tsRNAs from chronic hepatitis-infected liver tissue data. In addition, we applied tsRNAsearch to pancreatic ductal adenocarcinoma (PDAC) and matched healthy pancreatic tissue small RNA-sequencing data. Our results support the identification of miR135b from the original study as a potential biomarker of PDAC and identify other potentially stronger miRNA biomarkers of PDAC. AVAILABILITY https://github.com/GiantSpaceRobot/tsRNAsearch. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Paul D Donovan
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, St Stephen's Green, Dublin, Ireland
| | - Natalie M McHale
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, St Stephen's Green, Dublin, Ireland
| | | | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, St Stephen's Green, Dublin, Ireland
| |
Collapse
|
20
|
Therapeutic strategies for miRNA delivery to reduce hepatocellular carcinoma. Semin Cell Dev Biol 2021; 124:134-144. [PMID: 33926792 DOI: 10.1016/j.semcdb.2021.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/21/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Malignancies of hepatocellular carcinoma (HCC) are rapidly spreading and commonly fatal. Like most cancers, the gene expression patterns in HCC vary significantly from patient to patient. Moreover, the expression networks during HCC progression are largely controlled by microRNAs (miRNAs) regulating multiple oncogenes and tumor supressors. Therefore, miRNA-based therapeutic strategies altering these networks may significantly influence the cellular behavior enough for them to cure HCC. However, the most substantial challenges in developing such therapies are the stability of the oligos themselves and that of their delivery systems. Here we provide a comprehensive update describing various miRNA delivery systems, including virus-based delivery and non-viral delivery. The latter may be achieved using inorganic nanoparticles, polymer based nano-carriers, lipid-based vesicles, exosomes, and liposomes. Leaky vasculature in HCC-afflicted livers helps untargeted nanocarriers to accumulate in the tumor tissue but may result in side effects during higher dose of treatment. On the other hand, the strategies for actively targeting miRNA therepeutics to cancerous cells through nano-conjugates or vesicles by decorating their surface with antibodies against or ligands for HCC-specific antigens or receptors are more efficient in preventing damage to healthy tissue and cancer recurrence.
Collapse
|
21
|
Estevinho MM, Fernandes C, Silva JC, Gomes AC, Afecto E, Correia J, Carvalho J. Role of ATP-binding Cassette Transporters in Sorafenib Therapy for Hepatocellular Carcinoma: an overview. Curr Drug Targets 2021; 23:21-32. [PMID: 33845738 DOI: 10.2174/1389450122666210412125018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Molecular therapy with sorafenib remains the mainstay for advanced-stage hepatocellular carcinoma. Notwithstanding, treatment efficacy is low, with few patients obtaining long-lasting benefits due to the high chemoresistance rate. OBJECTIVE To perform, for the first time, an overview of the literature concerning the role of adenosine triphosphate-binding cassette (ABC) transporters in sorafenib therapy for hepatocellular carcinoma. METHODS Three online databases (PubMed, Web of Science and Scopus) were searched, from inception to October 2020. Studies selection, analysis and data collection was independently performed by two authors. RESULTS The search yielded 224 results; 29 were selected for inclusion. Most studies were pre-clinical, using HCC cell lines; three used human samples. Studies highlight the effect of sorafenib in decreasing ABC transporters expression. Conversely, it is described the role of ABC transporters, particularly multidrug resistance protein 1 (MDR-1), multidrug resistance-associated proteins 1 and 2 (MRP-1 and MRP-2) and ABC subfamily G member 2 (ABCG2) in sorafenib pharmacokinetics and pharmacodynamics, being key resistance factors. Combination therapy with naturally available or synthetic compounds that modulate ABC transporters may revert sorafenib resistance, by increasing absorption and intracellular concentration. CONCLUSION A deeper understanding of ABC transporters' mechanisms may provide guidance for developing innovative approaches for hepatocellular carcinoma. Further studies are warranted to translate the current knowledge into practice and paving the way to individualized therapy.
Collapse
Affiliation(s)
- Maria Manuela Estevinho
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| | - Carlos Fernandes
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| | - João Carlos Silva
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| | - Ana Catarina Gomes
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| | - Edgar Afecto
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| | - João Correia
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| | - João Carvalho
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| |
Collapse
|
22
|
Kong FH, Ye QF, Miao XY, Liu X, Huang SQ, Xiong L, Wen Y, Zhang ZJ. Current status of sorafenib nanoparticle delivery systems in the treatment of hepatocellular carcinoma. Theranostics 2021; 11:5464-5490. [PMID: 33859758 PMCID: PMC8039945 DOI: 10.7150/thno.54822] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and one of the leading causes of cancer-related death worldwide. Advanced HCC displays strong resistance to chemotherapy, and traditional chemotherapy drugs do not achieve satisfactory therapeutic efficacy. Sorafenib is an oral kinase inhibitor that inhibits tumor cell proliferation and angiogenesis and induces cancer cell apoptosis. It also improves the survival rates of patients with advanced liver cancer. However, due to its poor solubility, fast metabolism, and low bioavailability, clinical applications of sorafenib have been substantially restricted. In recent years, various studies have been conducted on the use of nanoparticles to improve drug targeting and therapeutic efficacy in HCC. Moreover, nanoparticles have been extensively explored to improve the therapeutic efficacy of sorafenib, and a variety of nanoparticles, such as polymer, lipid, silica, and metal nanoparticles, have been developed for treating liver cancer. All these new technologies have improved the targeted treatment of HCC by sorafenib and promoted nanomedicines as treatments for HCC. This review provides an overview of hot topics in tumor nanoscience and the latest status of treatments for HCC. It further introduces the current research status of nanoparticle drug delivery systems for treatment of HCC with sorafenib.
Collapse
Affiliation(s)
- Fan-Hua Kong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Centre of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Qi-Fa Ye
- Institute of Hepatobiliary Diseases of Wuhan University, Transplant Centre of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Xiong-Ying Miao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Si-Qi Huang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zi-Jian Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Ghafouri-Fard S, Honarmand Tamizkar K, Hussen BM, Taheri M. MicroRNA signature in liver cancer. Pathol Res Pract 2021; 219:153369. [PMID: 33626406 DOI: 10.1016/j.prp.2021.153369] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Liver cancer is the 7th utmost frequent neoplasm and the 4th principal source of cancer deaths. This malignancy is linked with several environmental and lifestyle-related factors emphasizing the role of epigenetics in its pathogenesis. MicroRNAs (miRNAs) have been regarded as potent epigenetic mechanisms partaking in the pathogenesis of liver cancer. Dysregulation of miRNAs has been related with poor outcome of patients with liver cancer. In the current manuscript, we provide a concise review of the results of recent studies about the role of miRNAs in the progression of liver cancer and their diagnostic and prognostic utility.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Hwang GR, Yuen JG, Ju J. Roles of microRNAs in Gastrointestinal Cancer Stem Cell Resistance and Therapeutic Development. Int J Mol Sci 2021; 22:ijms22041624. [PMID: 33562727 PMCID: PMC7915611 DOI: 10.3390/ijms22041624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance to cancer treatment is one of the major challenges currently faced when treating gastrointestinal (GI) cancers. A major contributing factor to this resistance is the presence of cancer stem cells (CSCs) in GI cancers (e.g., colorectal, pancreatic, gastric, liver cancer). Non-coding RNAs, such as microRNAs (miRNAs), have been found to regulate several key targets that are responsible for cancer stemness, and function as oncogenic miRNAs (oncomiRs) or tumor suppressor miRNAs. As a result, several miRNAs have been found to alter, or be altered by, the expression of CSC-defining markers and their related pathways. These miRNAs can be utilized to affect stemness in multiple ways, including directly targeting CSCs and enhancing the efficacy of cancer therapeutics. This review highlights current studies regarding the roles of miRNAs in GI CSCs, and efforts towards the development of cancer therapeutics.
Collapse
|
25
|
Effects of miRNA-140 on the Growth and Clinical Prognosis of SMMC-7721 Hepatocellular Carcinoma Cell Line. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6638915. [PMID: 33628799 PMCID: PMC7884124 DOI: 10.1155/2021/6638915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/27/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Background A growing number of studies have suggested that microRNAs exert an essential role in the development and occurrence of multiple tumours and act as crucial regulators in various biological processes. However, the expression and function of miRNA-140 in hepatocellular carcinoma (HCC) cells are not yet adequately identified and manifested. Methods The expression of miRNA-140 was determined in HCC tissues and adjacent nontumour tissues by quantitative real-time polymerase chain reaction (qRT-PCR). Kaplan-Meier survival analysis and Cox regression analysis were performed to explore the correlation between miRNA-140 expression level and the survival rate of patients with HCC. Additionally, overexpression experiments were conducted to investigate the biological role of miRNA-140 in HCC cells. Bioinformatics was used to predict the related target genes and pathways of miRNA-140. Results QRT-PCR results signified that the expression level of miRNA-140 in HCC was lower than that of adjacent normal tissues (P < 0.0001). Compared with the control group, the SMMC-7721 HCC cells in the miRNA-140 mimic group had a decrease in proliferation, migration, and invasion (P < 0.05), whereas those in the miRNA-140 inhibitor group had an increase in proliferation, migration, and invasion (P < 0.05). Cell cycle arrest occurred in the G0/1 phase. Prognosis analysis showed that the expression level of miRNA-140 was not related to the prognosis of HCC. Furthermore, the Kaplan-Meier test revealed that patients with lower miRNA-140 expression levels in liver cancer tissue had significantly shorter disease-free survival (DFS, P = 0.004) and overall survival (OS) times (P = 0.010) after hepatectomy. Cox regression analysis further indicated that miRNA-140 was an independent risk factor that may affect the DFS (P = 0.004) and OS times (P = 0.014) of patients after hepatectomy. Our results suggested that miRNA-140 might be a crucial regulator involved in the HCC progression and is thus considered a potential prognostic biomarker and therapeutic target for HCC.
Collapse
|
26
|
Ezhilarasan D. Advantages and challenges in nanomedicines for chronic liver diseases: A hepatologist's perspectives. Eur J Pharmacol 2021; 893:173832. [PMID: 33359144 DOI: 10.1016/j.ejphar.2020.173832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
Chronic liver diseases (CLD) are responsible for significant morbidity and mortality worldwide. CLD patients are at a high risk of developing progressive liver fibrosis, cirrhosis, hepatocellular carcinoma (HCC), and subsequent liver failure. To date, there is no specific and effective therapies exist for patients with various forms of CLD. The application of nanotechnology has emerged as a rapidly developing area of interest for the safe and target-specific delivery of poorly aqueous soluble hepatoprotective agents and nucleic acids (siRNA/miRNAs) in CLD. The nanoparticle combination improves bioavailability and plasma stability of drugs with poor aqueous solubility. However, the extent of successful functional delivery of nanoparticles into hepatocytes is often surprisingly low. High Kupffer cells interaction reduces the nanomedicine efficacy. During fibrosis, the extracellular matrix accumulation in the perisinusoidal space restricts nanoparticle delivery to hepatocytes. The availability and uptake of nanoparticles exposure to different cells in the liver microenvironment is as Kupffer cells > sinusoidal endothelial cells > HSCs > hepatocytes. The most widely used strategy to reduce nanoparticles and macrophages interaction is to coat the particle surface with polyethylene glycol. The cationic charged nanoparticles have increased hepatocyte delivery by increased cellular interaction by disrupting the endosomal system via their pH buffering capacity. The immune clearance and toxicity of nanoparticles are mainly unpredictable. Therefore, more elaborate knowledge on exact cellular uptake and intracellular accumulation, trafficking, and endosomal sorting of nanoparticle is the need of the hour to improve the rational carrier design.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Drug and Molecular Medicine Laboratory (The Blue Lab), Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), No.162, PH Road, Chennai, Tamil Nadu, 600 077, India.
| |
Collapse
|
27
|
Kundu D, Kennedy L, Meadows V, Baiocchi L, Alpini G, Francis H. The Dynamic Interplay Between Mast Cells, Aging/Cellular Senescence, and Liver Disease. Gene Expr 2020; 20:77-88. [PMID: 32727636 PMCID: PMC7650013 DOI: 10.3727/105221620x15960509906371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mast cells are key players in acute immune responses that are evidenced by degranulation leading to a heightened allergic response. Activation of mast cells can trigger a number of different pathways contributing to metabolic conditions and disease progression. Aging results in irreversible physiological changes affecting all organs, including the liver. The liver undergoes senescence, changes in protein expression, and cell signaling phenotypes during aging, which regulate disease progression. Cellular senescence contributes to the age-related changes. Unsurprisingly, mast cells also undergo age-related changes in number, localization, and activation throughout their lifetime, which adversely affects the etiology and progression of many physiological conditions including liver diseases. In this review, we discuss the role of mast cells during aging, including features of aging (e.g., senescence) in the context of biliary diseases such as primary biliary cholangitis and primary sclerosing cholangitis and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Debjyoti Kundu
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lindsey Kennedy
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vik Meadows
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leonardo Baiocchi
- †Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gianfranco Alpini
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- ‡Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Heather Francis
- *Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- ‡Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
28
|
Gerosa C, Crisponi G, Nurchi VM, Saba L, Cappai R, Cau F, Faa G, Van Eyken P, Scartozzi M, Floris G, Fanni D. Gold Nanoparticles: A New Golden Era in Oncology? Pharmaceuticals (Basel) 2020; 13:E192. [PMID: 32806755 PMCID: PMC7464886 DOI: 10.3390/ph13080192] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 01/01/2023] Open
Abstract
In recent years, the spectrum of possible applications of gold in diagnostics and therapeutic approaches in clinical practice has changed significantly, becoming surprisingly broad. Nowadays, gold-based therapeutic agents are used in the therapy of multiple human diseases, ranging from degenerative to infectious diseases and, in particular, to cancer. At the basis of these performances of gold, there is the development of new gold-based nanoparticles, characterized by a promising risk/benefit ratio that favors their introduction in clinical trials. Gold nanoparticles appear as attractive elements in nanomedicine, a branch of modern clinical medicine, which combines high selectivity in targeting tumor cells and low toxicity. Thanks to these peculiar characteristics, gold nanoparticles appear as the starting point for the development of new gold-based therapeutic strategies in oncology. Here, the new gold-based therapeutic agents developed in recent years are described, with particular emphasis on the possible applications in clinical practice as anticancer agents, with the aim that their application will give rise to a new golden age in oncology and a breakthrough in the fight against cancer.
Collapse
Affiliation(s)
- Clara Gerosa
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (C.G.); (F.C.); (G.F.)
| | - Guido Crisponi
- Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, 09042 Cagliari, Italy; (V.M.N.); (R.C.)
| | - Valeria Marina Nurchi
- Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, 09042 Cagliari, Italy; (V.M.N.); (R.C.)
| | - Luca Saba
- UOC Radiologia, AOU Cagliari, University of Cagliari, 09042 Cagliari, Italy;
| | - Rosita Cappai
- Dipartimento di Scienze della Vita e dell’Ambiente, University of Cagliari, 09042 Cagliari, Italy; (V.M.N.); (R.C.)
| | - Flaviana Cau
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (C.G.); (F.C.); (G.F.)
| | - Gavino Faa
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (C.G.); (F.C.); (G.F.)
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Peter Van Eyken
- Department of Pathology, Genk Regional Ziekenhuis, 3600 Genk, Belgium;
| | - Mario Scartozzi
- UOC Oncologia Medica, AOU Cagliari, University of Cagliari, 09042 Cagliari, Italy;
| | - Giuseppe Floris
- Pathologische Ontleedkunde K.U. Leuven, 3000 Leuven, Belgium;
| | - Daniela Fanni
- UOC Anatomia Patologica, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (C.G.); (F.C.); (G.F.)
| |
Collapse
|
29
|
MicroRNA-221: A Fine Tuner and Potential Biomarker of Chronic Liver Injury. Cells 2020; 9:cells9081767. [PMID: 32717951 PMCID: PMC7464779 DOI: 10.3390/cells9081767] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
The last decade has witnessed significant advancements in our understanding of how small noncoding RNAs, such as microRNAs (miRNAs), regulate disease progression. One such miRNA, miR-221, has been shown to play a key role in the progression of liver fibrosis, a common feature of most liver diseases. Many reports have demonstrated the upregulation of miR-221 in liver fibrosis caused by multiple etiologies such as viral infections and nonalcoholic steatohepatitis. Inhibition of miR-221 via different strategies has shown promising results in terms of the suppression of fibrogenic gene signatures in vitro, as well as in vivo, in independent mouse models of liver fibrosis. In addition, miR-221 has also been suggested as a noninvasive serum biomarker for liver fibrosis and cirrhosis. In this review, we discuss the biology of miR-221, its significance and use as a biomarker during progression of liver fibrosis, and finally, potential and robust approaches that can be utilized to suppress liver fibrosis via inhibition of miR-221.
Collapse
|