1
|
Modica-Napolitano JS, Murray M, Thibault J, Haley-Read JP, Nixdorf L, Shanahan B, Iacovella N, Reyes C. The In Vitro Cytotoxic Effect of Elesclomol on Breast Adenocarcinoma Cells Is Enhanced by Concurrent Treatment with Glycolytic Inhibitors. Cancers (Basel) 2024; 16:4054. [PMID: 39682240 DOI: 10.3390/cancers16234054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Glycolysis and mitochondrial oxidative phosphorylation are the two major metabolic pathways for cellular ATP production. The metabolic plasticity displayed by cancer cells allows them to effectively shift between each of these pathways as a means of adapting to various growth conditions, thus ensuring their survival, proliferation and disease progression. Metabolic plasticity also provides cancer cells with the ability to circumvent many traditional monotherapies aimed at only one or the other of the major ATP-producing pathways. The purpose of this study was to determine the effectiveness of a dual treatment strategy aimed simultaneously at both pathways of ATP production in human breast cancer cells. It was hypothesized that concurrent exposure of these cells to the mitochondria-targeting chemotherapeutic agent, elesclomol, in combination with either of two glycolytic inhibitors, 2-deoxy-D-glucose or 3-bromopyruvate, would yield greater in vitro anticancer effects than those observed for any of the compounds used as a single agent. Methods: Cytotoxicity and clonogenic assays were employed to assess the survival and proliferation of MCF7 and MDA-MB-231 human breast adenocarcinoma cells exposed to the compounds alone and in combination. Results: The data obtained show that the cancer-cell-killing and antiproliferative effects of the dual treatment were significantly enhanced compared to those observed for any of the compounds alone. Conclusions: The results of this study are important in that they suggest the possibility of a novel and effective chemotherapeutic strategy for breast cancer cell killing.
Collapse
Affiliation(s)
| | - Morgan Murray
- Department of Biology, Merrimack College, North Andover, MA 01845, USA
| | - Jacob Thibault
- Department of Biology, Merrimack College, North Andover, MA 01845, USA
| | | | - Lauren Nixdorf
- Department of Biology, Merrimack College, North Andover, MA 01845, USA
| | - Bridget Shanahan
- Department of Biology, Merrimack College, North Andover, MA 01845, USA
| | | | - Carlos Reyes
- Department of Biology, Merrimack College, North Andover, MA 01845, USA
| |
Collapse
|
2
|
Interdonato L, Marino Y, D'Amico R, Impellizzeri D, Cordaro M, Siracusa R, Gugliandolo E, Franco GA, Fusco R, Cuzzocrea S, Di Paola R. Oxidative stress and mitochondrial dysfunction in brain of vinclozolin exposed animals. Neurochem Int 2024; 174:105681. [PMID: 38341035 DOI: 10.1016/j.neuint.2024.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Vinclozolin (VCZ) is a widely used fungicide in agriculture, especially in fruits and wine. Various studies have detailed the effects of VCZ exposure on different organs, but no information is available on its effects on brain tissues. This paper investigated the effects of VCZ exposure on the oxidative stress and mitochondrial dysfunction in brain tissue. C57BL/6 mice were exposed to VCZ (100 mg/kg) by oral gavage for 28 days. Mitochondrial homeostasis, often known as mitochondrial quality control, involves a range of processes, including mitochondrial biogenesis, mitochondrial fusion and fission, mitophagy and autophagy. VCZ administration modified the mRNA expression levels of Sirt1, Sirt3, PGC-1α, TFAM, Nrf1, VDAC-1 and Cyt c in brain tissue, as compared to control animals (CTR). The analyses also showed increased oxidative stress, in particular VCZ administration reduced SOD and CAT activities and GSH levels while increased T-AOC levels and lipid peroxidation. Additionally, brain tissues from VCZ group showed DNA oxidation (increased PARP-1 immunostaining) and apoptosis (increased TUNEL+ cells, increased expression of Bax mRNA level and reduced Bcl-2 levels). Western blot and immunohistochemical analyses showed increased mitophagic pathway with the accumulation of PINK1 and Parkin in mitochondria. Additionally, autophagic pathway was also increased with the increased expression and colocalization of LC3 with Neun and GFAP. Overall, this study showed that chronic VCZ exposure impaired mitochondrial homeostasis and increased oxidative stress in brain tissues.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| | | | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| |
Collapse
|
3
|
Li HY, Feng YH, Lin CL, Hsu TI. Mitochondrial Mechanisms in Temozolomide Resistance: Unraveling the Complex Interplay and Therapeutic Strategies in Glioblastoma. Mitochondrion 2024; 75:101836. [PMID: 38158149 DOI: 10.1016/j.mito.2023.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal brain tumor, with temozolomide (TMZ) being the standard chemotherapeutic agent for its treatment. However, TMZ resistance often develops, limiting its therapeutic efficacy and contributing to poor patient outcomes. Recent evidence highlights the crucial role of mitochondria in the development of TMZ resistance through various mechanisms, including alterations in reactive oxygen species (ROS) production, metabolic reprogramming, apoptosis regulation, biogenesis, dynamics, stress response, and mtDNA mutations. This review article aims to provide a comprehensive overview of the mitochondrial mechanisms involved in TMZ resistance and discuss potential therapeutic strategies targeting these mechanisms to overcome resistance in GBM. We explore the current state of clinical trials targeting mitochondria or related pathways in primary GBM or recurrent GBM, as well as the challenges and future perspectives in this field. Understanding the complex interplay between mitochondria and TMZ resistance will facilitate the development of more effective therapeutic strategies and ultimately improve the prognosis for GBM patients.
Collapse
Affiliation(s)
- Hao-Yi Li
- Department of Biochemistry, Ludwig-Maximilians-University, Munich 81377, Germany; Gene Center, Ludwig-Maximilians-University, Munich 81377, Germany
| | | | | | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei 110, Taiwan.
| |
Collapse
|
4
|
Adhikary A, Mukherjee A, Banerjee R, Nagotu S. DRP1: At the Crossroads of Dysregulated Mitochondrial Dynamics and Altered Cell Signaling in Cancer Cells. ACS OMEGA 2023; 8:45208-45223. [PMID: 38075775 PMCID: PMC10701729 DOI: 10.1021/acsomega.3c06547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 10/08/2024]
Abstract
In the past decade, compelling evidence has accumulated that highlights the role of various subcellular structures in human disease conditions. Dysregulation of these structures greatly impacts cellular function and, thereby, disease conditions. One such organelle extensively studied for its role in several human diseases, especially cancer, is the mitochondrion. DRP1 is a GTPase that is considered the master regulator of mitochondrial fission and thereby also affects the proper functioning of the organelle. Altered signaling pathways are a distinguished characteristic of cancer cells. In this review, we aim to summarize our current understanding of the interesting crosstalk between the mitochondrial structure-function maintained by DRP1 and the signaling pathways that are affected in cancer cells. We highlight the structural aspects of DRP1, its regulation by various modifications, and the association of the protein with various cellular pathways altered in cancer. A better understanding of this association may help in identifying potential pharmacological targets for novel therapies in cancer.
Collapse
Affiliation(s)
- Ankita Adhikary
- Organelle Biology and Cellular
Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | | | - Riddhi Banerjee
- Organelle Biology and Cellular
Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular
Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
5
|
Chrienova Z, Rysanek D, Novak J, Vasicova P, Oleksak P, Andrys R, Skarka A, Dumanovic J, Milovanovic Z, Jacevic V, Chvojkova M, Holubova K, Vales K, Skoupilova V, Valko M, Jomova K, Alomar SY, Botelho FD, Franca TCC, Kuca K, Hodny Z, Nepovimova E. Frentizole derivatives with mTOR inhibiting and senomorphic properties. Biomed Pharmacother 2023; 167:115600. [PMID: 37783152 DOI: 10.1016/j.biopha.2023.115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
Frentizole is immunosuppressive drug with low acute toxicity and lifespan-prolonging effect. Recently, frentizole´s potential to disrupt toxic amyloid β (Aβ) - Aβ-binding alcohol dehydrogenase (ABAD) interaction in mitochondria in Alzheimer´s brains has been revealed. Another broadly studied drug with anti-aging and immunosuppressive properties is an mTOR inhibitor - rapamycin. Since we do not yet precisely know what is behind the lifespan-prolonging effect of rapamycin and frentizole, whether it is the ability to inhibit the mTOR signaling pathway, reduction in mitochondrial toxicity, immunosuppressive effect, or a combination of all of them, we have decided within our previous work to dock the entire in-house library of almost 240 Aβ-ABAD modulators into the FKBP-rapamycin-binding (FRB) domain of mTOR in order to interlink mTOR-centric and mitochondrial free radical-centric theories of aging and thus to increase the chances of success. Based on the results of the docking study, molecular dynamic simulation and MM-PBSA calculations, we have selected nine frentizole-like compounds (1 - 9). Subsequently, we have determined their real physical-chemical properties (logP, logD, pKa and solubility in water and buffer), cytotoxic/cytostatic, mTOR inhibitory, and in vitro anti-senescence (senolytic and senomorphic) effects. Finally, the three best candidates (4, 8, and 9) have been forwarded for in vivo safety studies to assess their acute toxicity and pharmacokinetic properties. Based on obtained results, only compound 4 demonstrated the best results within in vitro testing, the ability to cross the blood-brain barrier and the lowest acute toxicity (LD50 in male mice 559 mg/kg; LD50 in female mice 575 mg/kg).
Collapse
Affiliation(s)
- Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - David Rysanek
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Josef Novak
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Pavla Vasicova
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Rudolf Andrys
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Adam Skarka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Jelena Dumanovic
- Faculty of Chemistry, University of Belgrade, Studenski trg 16, 11000 Belgrade, Serbia
| | - Zoran Milovanovic
- Special Police Unit, Ministry of Interior, Trebevićka 12/A, 11030 Belgrade, Serbia
| | - Vesna Jacevic
- Department of Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy & Medical Faculty of the Military Medical Academy, University of Defence, 11 Crnotravska, 11000 Belgrade, Serbia
| | - Marketa Chvojkova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Kristina Holubova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Karel Vales
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague 10, Czech Republic
| | - Veronika Skoupilova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia
| | - Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fernanda D Botelho
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD), Military Institute of Engineering, 22290-270 Rio de Janeiro, RJ, Brazil
| | - Tanos C C Franca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic; Laboratory of Molecular Modeling Applied to Chemical and Biological Defense (LMCBD), Military Institute of Engineering, 22290-270 Rio de Janeiro, RJ, Brazil
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic.
| |
Collapse
|
6
|
Honc O, Novotny J. Methadone Potentiates the Cytotoxicity of Temozolomide by Impairing Calcium Homeostasis and Dysregulation of PARP in Glioblastoma Cells. Cancers (Basel) 2023; 15:3567. [PMID: 37509230 PMCID: PMC10377588 DOI: 10.3390/cancers15143567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Methadone is commonly used as an alternative to morphine in patients with pain associated with glioblastoma and other cancers. Although concomitant administration of methadone and cytostatics is relatively common, the effect of methadone on the efficacy of cytostatic drugs has not been well studied until recently. Moreover, the mechanism behind the effect of methadone on temozolomide efficacy has not been investigated in previous studies, or this effect has been automatically attributed to opioid receptors. Our findings indicate that methadone potentiates the effect of temozolomide on rat C6 glioblastoma cells and on human U251 and T98G glioblastoma cells and increases cell mortality by approximately 50% via a mechanism of action independent of opioid receptors. Our data suggest that methadone acts by affecting mitochondrial potential, the level of oxidative stress, intracellular Ca2+ concentration and possibly intracellular ATP levels. Significant effects were also observed on DNA integrity and on cleavage and expression of the DNA repair protein PARP-1. None of these effects were attributed to the activation of opioid receptors and Toll-like receptor 4. Our results provide an alternative perspective on the mechanism of action of methadone in combination with temozolomide and a potential strategy for the treatment of glioblastoma cell resistance to temozolomide.
Collapse
Affiliation(s)
- Ondrej Honc
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| |
Collapse
|
7
|
Zhu Y, Wang S, Niu P, Chen H, Zhou J, Jiang L, Li D, Shi D. Raptor couples mTORC1 and ERK1/2 inhibition by cardamonin with oxidative stress induction in ovarian cancer cells. PeerJ 2023; 11:e15498. [PMID: 37304865 PMCID: PMC10257395 DOI: 10.7717/peerj.15498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Background A balance on nutrient supply and redox homeostasis is required for cell survival, and increased antioxidant capacity of cancer cells may lead to chemotherapy failure. Objective To investigate the mechanism of anti-proliferation of cardamonin by inducing oxidative stress in ovarian cancer cells. Methods After 24 h of drug treatment, CCK8 kit and wound healing test were used to detect cell viability and migration ability, respectively, and the ROS levels were detected by flow cytometry. The differential protein expression after cardamonin administration was analyzed by proteomics, and the protein level was detected by Western blotting. Results Cardamonin inhibited the cell growth, which was related to ROS accumulation. Proteomic analysis suggested that MAPK pathway might be involved in cardamonin-induced oxidative stress. Western blotting showed that cardamonin decreased Raptor expression and the activity of mTORC1 and ERK1/2. Same results were observed in Raptor KO cells. Notably, in Raptor KO cells, the effect of cardamonin was weakened. Conclusion Raptor mediated the function of cardamonin on cellular redox homeostasis and cell proliferation through mTORC1 and ERK1/2 pathways.
Collapse
|
8
|
D’Amico R, Impellizzeri D, Cordaro M, Siracusa R, Interdonato L, Marino Y, Crupi R, Gugliandolo E, Macrì F, Di Paola D, Peritore AF, Fusco R, Cuzzocrea S, Di Paola R. Complex Interplay between Autophagy and Oxidative Stress in the Development of Endometriosis. Antioxidants (Basel) 2022; 11:antiox11122484. [PMID: 36552692 PMCID: PMC9774576 DOI: 10.3390/antiox11122484] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Endometriosis (Endo) is a chronic gynecological disease. This paper aimed to evaluate the modulation of autophagy, oxidative stress and apoptosis with Açai Berries in a rat model of endometriosis. Endometriosis was induced with an intraperitoneal injection of minced uterus tissue from a donor rat into a recipient one. The abdominal high-frequency ultrasound (hfUS) analysis was performed at 7 and 14 days from the endometriosis induction to evaluate the growth of the lesion during the experiment. Seven days from the induction, once the lesions were implanted, an Açai Berry was administered daily by gavage for the next seven days. At the end of the experiment, the hfUS analysis showed a reduced lesion diameter in animals given the Açai Berry. A macroscopical and histological analysis confirmed this result. From the molecular point of view, Western blot analyses were conducted to evaluate the autophagy induction. Samples collected from the Endo group showed impaired autophagy, while the Açai Berry administration inhibited PI3K and AKT and ERK1/2 phosphorylation and promoted autophagy by inactivating mTOR. Additionally, Açai Berry administration dephosphorylated ATG1, promoting the activity of the ATG1/ULK1 complex that recruited Ambra1/Beclin1 and Atg9 to promote autophagosome nucleation and LC3II expression. Açai Berry administration also restored mitophagy, which increased Parkin cytosolic expression. The Açai Berry increased the expression of NRF2 in the nucleus and the expression of its downstream antioxidant proteins as NQO-1 and HO-1, thereby restoring the oxidative imbalance. It also restored the impaired apoptotic pathway by reducing BCL-2 and increasing BAX expression. This result was also confirmed by the TUNEL assay. Overall, our results displayed that Açai Berry administration was able to modulate autophagy, oxidative stress and apoptosis during endometriosis.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Francesco Macrì
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
- Correspondence:
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, n 31, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Viale Annunzita, 98168 Messina, Italy
| |
Collapse
|
9
|
Kłos P, Perużyńska M, Baśkiewicz-Hałasa M, Skupin-Mrugalska P, Majcher M, Sawczuk M, Szostak B, Droździk M, Machaliński B, Chlubek D. Response of Skin-Derived and Metastatic Human Malignant Melanoma Cell Lines to Thymoquinone and Thymoquinone-Loaded Liposomes. Pharmaceutics 2022; 14:2309. [PMID: 36365127 PMCID: PMC9698994 DOI: 10.3390/pharmaceutics14112309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 09/29/2023] Open
Abstract
Thymoquinone has been proved to be effective against neoplasms, including skin cancer. Its high lipophilicity, however, may limit its potential use as a drug. Melanoma remains the deadliest of all skin cancers worldwide, due to its high heterogeneity, depending on the stage of the disease. Our goal was to compare the anti-cancer activity of free thymoquinone and thymoquinone-loaded liposomes on two melanoma cell lines that originated from different stages of this cancer: skin-derived A375 and metastatic WM9. We evaluated the proapoptotic effects of free thymoquinone by flow cytometry and Western blot, and its mitotoxicity by means of JC-1 assay. Additionally, we compared the cytotoxicity of free thymoquinone and thymoquinone in liposomes by WST-1 assay. Our results revealed a higher antiproliferative effect of TQ in WM9 cells, whereas its higher proapoptotic activity was observed in the A375 cell line. Moreover, the thymoquinone-loaded liposome was proved to exert stronger cytotoxic effect on both cell lines studied than free thymoquinone. Differences in the response of melanoma cells derived from different stages of the disease to thymoquinone, as well as their different responses to free and carrier-delivered thymoquinone, are essential for the development of new anti-melanoma therapies. However, further research is required to fully understand them.
Collapse
Affiliation(s)
- Patrycja Kłos
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Magdalena Perużyńska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Magdalena Baśkiewicz-Hałasa
- Department of General Pathology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Paulina Skupin-Mrugalska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Małgorzata Majcher
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland
| | - Magdalena Sawczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Marek Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
10
|
Brusnakov M, Golovchenko O, Velihina Y, Liavynets O, Zhirnov V, Brovarets V. Evaluation of Anticancer Activity of 1,3-Oxazol-4-ylphosphonium Salts in Vitro. ChemMedChem 2022; 17:e202200319. [PMID: 36037305 PMCID: PMC9825890 DOI: 10.1002/cmdc.202200319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/22/2022] [Indexed: 01/11/2023]
Abstract
A novel series of 1,3-oxazol-4-yltriphenylphosphonium salts has been synthesized and functionalized. Oxazole derivatives were subjected to NCI in vitro assessment. Seven most active derivatives have been selected for five-dose assay. Among them, compounds 9 ([2-(4-methylphenyl)-5-[(4-methylphenyl)sulfanyl]-1,3-oxazol-4-yl]triphenylphosphonium perchlorate), 1 ([5-(4-methylphenyl)amino]-2-phenyl-1,3-oxazol-4-yl]triphenylphosphonium perchlorate) and 4 ([5-phenyl-2-[(4-methylphenyl)amino]-1,3-oxazol-4-yl]triphenylphosphonium perchlorate) were the most active against all tested cancer subpanels. Statistical analysis of the total panel data showed average values of parameters of anticancer activity in the range of 0.3-1.1 μM (GI50 ), 1.2-2.5 μM (TGI) and 5-6 μM (LC50 ). It was found that the presence of phenyl or 4-methylphenyl groups at C(2) and C(5) in the oxazole ring is of critical importance for the manifestation of the anticancer activity. Matrix COMPARE analysis using LC50 vector showed a high positive correlation of compound 9 with standard anticancer agents that can directly disrupt mitochondrial function, causing programmed death of cancer cells. The obtained results indicate the anticancer activity of 1,3-oxazol-4-ylphosphonium salts, which could be useful for developing new anticancer drugs. The most active of them can be recommended for further in-depth studies and synthesis of new derivatives with antitumor activity on their basis.
Collapse
Affiliation(s)
- Mykhailo Brusnakov
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic BasesV. P. Kukhar Institute of Bioorganic Chemistry and PetrochemistryNational Academy of Sciences of UkraineMurmanska st. 102094KyivUkraine
| | - Olexandr Golovchenko
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic BasesV. P. Kukhar Institute of Bioorganic Chemistry and PetrochemistryNational Academy of Sciences of UkraineMurmanska st. 102094KyivUkraine
| | - Yevheniia Velihina
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic BasesV. P. Kukhar Institute of Bioorganic Chemistry and PetrochemistryNational Academy of Sciences of UkraineMurmanska st. 102094KyivUkraine
- Laboratoire COBRAINSA Rouen NormandieBâtiment IRCOF, rue Tesnière 176821Mont Saint-Aignan CedexFrance
| | - Oleksandr Liavynets
- Department of General Chemistry and Chemistry of MaterialsYuriy Fedkovych Chernivtsi National UniversityKotsyubynsky st. 258012ChernivtsiUkraine
| | - Victor Zhirnov
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic BasesV. P. Kukhar Institute of Bioorganic Chemistry and PetrochemistryNational Academy of Sciences of UkraineMurmanska st. 102094KyivUkraine
| | - Volodymyr Brovarets
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic BasesV. P. Kukhar Institute of Bioorganic Chemistry and PetrochemistryNational Academy of Sciences of UkraineMurmanska st. 102094KyivUkraine
| |
Collapse
|
11
|
Stoyanov GS, Lyutfi E, Georgieva R, Georgiev R, Dzhenkov D, Petkova L, Ivanov BD, Kaprelyan A, Ghenev P. Diaph3 underlines tumor cell heterogeneity in glioblastoma with implications for treatment modalities resistance. J Neurooncol 2022; 157:523-531. [PMID: 35380294 DOI: 10.1007/s11060-022-03996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the most aggressive central nervous system (CNS) tumor with astrocytic differentiation. The growth pattern of GBM mimics that of the precursor cell migration during the fetal development of the brain. Diaphanous homolog (Diaph3) has been established to play a role in both CNS maturation and cancer progression as it is required both for cell migration and division. Furthermore, Diaph3 has been shown to play a role in malignant disease progression through hyperactivation of the EGFR/MEK/ERK in loss of expression and its overexpression correlating to hyperactivity of the mTOR pathway, both of which are with a well-established role in GBM. Herein, we aimed at establishing the diagnostic role of Diaph3 immunohistochemistry expression patterns in GBM and their possible implications for molecular response to different therapies. MATERIALS AND METHODS The study utilized a retrospective nonclinical approach. Results of Diaph3 immunohistochemical expression were compared to healthy controls and reactive gliosis and statistically analyzed for correlation with neuroradiological tumor parameters and patient survival. RESULTS Healthy controls showed individual weakly positive cells, while reactive gliosis controls showed a strong expression in astrocytic projections. GBM samples showed a heterogeneous positive reaction to Diaph3, mean number of positive cells 62.66%, median 61.5, range 12-96%. Areas of migrating cells showed a strong diffuse cytoplasmic reaction. Cells located in the tumor core and those in areas of submeningeal aggregation had no antibody expression. Statistical analysis revealed no correlation with tumor size or patient survival. CONCLUSION The different expression pattern of Diaph3 in healthy controls, reactive gliosis and GBM shows promise as a clinical differentiating marker. Despite Diaph3 expression not correlating with survival and tumor size in GBM, there is an accumulating body of evidence that Diaph3 correlates with mTOR activity and can thus be used as a predictor for response to rapamycin and taxanes, clinical studies of which have shown promising, if mixed results in GBM.
Collapse
Affiliation(s)
- George S Stoyanov
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Faculty of Medicine, Medical University Varna "Prof. Dr. Paraskev Stoyanov", Marin Drinov 55 Str, 9002, Varna, Bulgaria.
| | - Emran Lyutfi
- Department of Neurology and Neuroscience, Faculty of Medicine, Medical University Varna "Prof. Dr. Paraskev Stoyanov", Varna, Bulgaria
| | - Reneta Georgieva
- Student, Faculty of Medicine, Medical University Varna "Prof. Dr. Paraskev Stoyanov", Varna, Bulgaria
| | - Radoslav Georgiev
- Department of Imaging Diagnostics, Interventional Radiology and Radiotherapy, Faculty of Medicine, Medical University Varna "Prof. Dr. Paraskev Stoyanov", Varna, Bulgaria
| | - Deyan Dzhenkov
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Faculty of Medicine, Medical University Varna "Prof. Dr. Paraskev Stoyanov", Marin Drinov 55 Str, 9002, Varna, Bulgaria
| | - Lilyana Petkova
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Faculty of Medicine, Medical University Varna "Prof. Dr. Paraskev Stoyanov", Marin Drinov 55 Str, 9002, Varna, Bulgaria
| | - Borislav D Ivanov
- Department of Clinical Medical Sciences, Faculty of Dental Medicine, Medical University Varna "Prof. Dr. Paraskev Stoyanov", Varna, Bulgaria
| | - Ara Kaprelyan
- Department of Neurology and Neuroscience, Faculty of Medicine, Medical University Varna "Prof. Dr. Paraskev Stoyanov", Varna, Bulgaria
| | - Peter Ghenev
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Faculty of Medicine, Medical University Varna "Prof. Dr. Paraskev Stoyanov", Marin Drinov 55 Str, 9002, Varna, Bulgaria
| |
Collapse
|
12
|
Steckiewicz KP, Cieciórski P, Barcińska E, Jaśkiewicz M, Narajczyk M, Bauer M, Kamysz W, Megiel E, Inkielewicz-Stepniak I. Silver Nanoparticles as Chlorhexidine and Metronidazole Drug Delivery Platforms: Their Potential Use in Treating Periodontitis. Int J Nanomedicine 2022; 17:495-517. [PMID: 35140461 PMCID: PMC8820264 DOI: 10.2147/ijn.s339046] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose Materials and Methods Results Conclusion
Collapse
Affiliation(s)
- Karol P Steckiewicz
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | | | - Ewelina Barcińska
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Maciej Jaśkiewicz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Marta Bauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | | | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
- Correspondence: Iwona Inkielewicz-Stepniak Tel +48 58 349 1516Fax +48 58 349 1517 Email
| |
Collapse
|
13
|
Liu H, Qiu W, Sun T, Wang L, Du C, Hu Y, Liu W, Feng F, Chen Y, Sun H. Therapeutic strtegies of glioblastoma (GBM): The current advances in the molecular targets and bioactive small molecule compounds. Acta Pharm Sin B 2021; 12:1781-1804. [PMID: 35847506 PMCID: PMC9279645 DOI: 10.1016/j.apsb.2021.12.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/02/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common aggressive malignant tumor in brain neuroepithelial tumors and remains incurable. A variety of treatment options are currently being explored to improve patient survival, including small molecule inhibitors, viral therapies, cancer vaccines, and monoclonal antibodies. Among them, the unique advantages of small molecule inhibitors have made them a focus of attention in the drug discovery of glioblastoma. Currently, the most used chemotherapeutic agents are small molecule inhibitors that target key dysregulated signaling pathways in glioblastoma, including receptor tyrosine kinase, PI3K/AKT/mTOR pathway, DNA damage response, TP53 and cell cycle inhibitors. This review analyzes the therapeutic benefit and clinical development of novel small molecule inhibitors discovered as promising anti-glioblastoma agents by the related targets of these major pathways. Meanwhile, the recent advances in temozolomide resistance and drug combination are also reviewed. In the last part, due to the constant clinical failure of targeted therapies, this paper reviewed the research progress of other therapeutic methods for glioblastoma, to provide patients and readers with a more comprehensive understanding of the treatment landscape of glioblastoma.
Collapse
|
14
|
Gupta D, Abdullah TS. Regulation of mitochondrial dynamics in skin: role in pathophysiology. Int J Dermatol 2021; 61:541-547. [PMID: 34363608 DOI: 10.1111/ijd.15744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/04/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022]
Abstract
Skin is a dynamic interface between the external environment and internal organs. It has high turnover that allows the renewal of dead skin cells, thus maintaining a healthy skin homeostasis. Mitochondria fulfills all the energy needs for these cells. In addition, mitochondria are an active source of free radicals that have been determined as crucially important in skin health and disease. The common notion of limited role of mitochondria as merely the cellular powerhouse has drastically changed. Several extracellular stressors have proved to induce impairment in the dynamic properties of mitochondria such as fusion and fission, which further leads to an activation of selective autophagic response known as mitophagy. Altered mitochondrial dynamics have been lately associated with skin photodamage and cutaneous manifestations of several diseased states, thereby suggesting it to be an effective therapeutic target. This review summarizes the molecular mechanisms involved with impaired mitochondrial dynamics and its potential role in skin health and disease.
Collapse
Affiliation(s)
- Divya Gupta
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tasduq S Abdullah
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, J&K, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Wei J, Wang Z, Wang W, Liu X, Wan J, Yuan Y, Li X, Ma L, Liu X. Oxidative Stress Activated by Sorafenib Alters the Temozolomide Sensitivity of Human Glioma Cells Through Autophagy and JAK2/STAT3-AIF Axis. Front Cell Dev Biol 2021; 9:660005. [PMID: 34277607 PMCID: PMC8282178 DOI: 10.3389/fcell.2021.660005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
The development of temozolomide (TMZ) resistance in glioma leads to poor patient prognosis. Sorafenib, a novel diaryl urea compound and multikinase inhibitor, has the ability to effectively cross the blood-brain barrier. However, the effect of sorafenib on glioma cells and the molecular mechanism underlying the ability of sorafenib to enhance the antitumor effects of TMZ remain elusive. Here, we found that sorafenib could enhance the cytotoxic effects of TMZ in glioma cells in vitro and in vivo. Mechanistically, the combination of sorafenib and TMZ induced mitochondrial depolarization and apoptosis inducing factor (AIF) translocation from mitochondria to nuclei, and this process was dependent on STAT3 inhibition. Moreover, the combination of sorafenib and TMZ inhibited JAK2/STAT3 phosphorylation and STAT3 translocation to mitochondria. Inhibition of STAT3 activation promoted the autophagy-associated apoptosis induced by the combination of sorafenib and TMZ. Furthermore, the combined sorafenib and TMZ treatment induced oxidative stress while reactive oxygen species (ROS) clearance reversed the treatment-induced inhibition of JAK2/STAT3. The results indicate that sorafenib enhanced the temozolomide sensitivity of human glioma cells by inducing oxidative stress-mediated autophagy and JAK2/STAT3-AIF axis.
Collapse
Affiliation(s)
- Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengfeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoge Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongjie Yuan
- Department of Interventional Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|