1
|
Hsu CY, Rab SO, Zwamel AH, Oghenemaro EF, Chandra M, Rajotiya S, Hjazi A, Prasad K, Atteri S, Chauhan AS. From diagnosis to therapy: The role of LncRNA GAS5 in combatting some cancers affecting women. Gene 2025; 941:149217. [PMID: 39756550 DOI: 10.1016/j.gene.2025.149217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Long non-coding RNAs (lncRNAs) are a collection of non-coding RNA molecules that consist of more than 200 nucleotides. In human malignancies, these lncRNAs exhibit abnormal expression patterns and play a significant role in either suppressing or promoting tumor growth. They achieve this by modulating various functions and mechanisms within cancer cells, including proliferation, invasion, metastasis, apoptosis, and resistance to different therapeutic approaches. The downregulation of long non-coding RNA growth arrest‑specific transcript 5 (GAS5) has been observed in multiple tumor types, indicating its role as a tumor suppressor in cancer. GAS5 exhibits interactions with various proteins, DNA, and microRNAs (miRNAs), leading to the upregulation of several mRNAs encoding suppressor proteins like PTEN. Consequently, this upregulation inhibits tumor growth. In this review, we have examined the existing literature concerning the expression of GAS5 and its diagnostic significance in female tissue-specific cancers, including breast, cervical, ovarian, and endometrial cancers. Additionally, we have explored its interactions with different miRNAs and its impact on cancer progression and resistance to therapy in these malignancies.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| | - Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, PMB 1, Abraka, Delta State, Nigeria
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics,Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat 360003, India
| | - Sumit Rajotiya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Princse Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Kdv Prasad
- Symbiosis Institute of Business Management, Hyderabad; Symbiosis International (Deemed University), Pune, India
| | - Shikha Atteri
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab 140307, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
2
|
Majidpour M, Sargazi S, Ghasemi M, Sabeti Akbar-Abad M, Sarhadi M, Saravani R. LncRNA MEG3, GAS5, and HOTTIP Polymorphisms Association with Risk of Polycystic Ovary Syndrome: A Case-Control Study and Computational Analyses. Biochem Genet 2024:10.1007/s10528-024-10977-1. [PMID: 39613922 DOI: 10.1007/s10528-024-10977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024]
Abstract
As a multifactorial and endocrine disease, polycystic ovary syndrome (PCOS) affects approximately 5-20% of women worldwide. Recently, long noncoding RNAs (lncRNAs) have emerged as potent predictors of a particular phenotype in PCOS. Our preliminary study examines the link between polymorphisms in lncRNAs MEG3, HOTTIP, and GAS5 and the risk of PCOS. The present study included 200 women with PCOS and 200 healthy women. The studied variations were genotyped by applying the PCR-RFLP and the tetra-ARMS-PCR reaction) techniques. The effect of variation in lncRNA on miRNA:lncRNA interactions, lncRNA-RNA interaction network, and the impact of the variations on the splicing site were predicted using different computational databases. The codominant heterozygous (TC vs. TT) model, the dominant (TC + CC vs. TT) model, the overdominant (TT + CC vs. TC) model, the C allele of rs2023843, and the C allele of rs55829688 had a protective role against PCOS. The A allele of rs4081134 and G allele of rs7158663 of the MEG3 conferred an increased risk of PCOS by 1.37 and 1.44 folds, respectively. The interaction analysis revealed that TC/GG/AA/TC and TC/GG/GA/TC strongly decreased the risk of PCOS by 94 and 92%, respectively. Interestingly, MEG3 and HOTTIP variants can create or disrupt binding sites for several splicing factors. In our population, MEG3 rs4081134 and rs7158663, GAS5 rs55829688, and HOTTIP rs2023843 polymorphisms were associated with PCOS risk. Replication studies on larger sample sizes must be conducted to confirm these findings and investigate other potential causative factors involved in the pathophysiology of PCOS.
Collapse
Affiliation(s)
- Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Marzieh Ghasemi
- Pregnancy Health Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Moloud Infertility Center, Ali Ibn Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahboobeh Sabeti Akbar-Abad
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
3
|
Yang PJ, Ting KH, Tsai PY, Su SC, Yang SF. Association of long noncoding RNA GAS5 gene polymorphism with progression of diabetic kidney disease. Int J Med Sci 2024; 21:2201-2207. [PMID: 39239549 PMCID: PMC11373544 DOI: 10.7150/ijms.99545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/04/2024] [Indexed: 09/07/2024] Open
Abstract
Diabetic kidney disease (DKD) is a common microvascular complication of diabetes, whose complex etiology involves a genetic component. Growth arrest-specific 5 (GAS5), a long noncoding RNA (lncRNA) gene, has been recently shown to regulate renal fibrosis. Here, we aimed to explore the potential role of GAS5 gene polymorphisms in the predisposition to DKD. One single-nucleotide (rs55829688) and one insertion/deletion polymorphism (rs145204276) of GAS5 gene were surveyed in 778 DKD cases and 788 DKD-free diabetic controls. We demonstrated that diabetic subjects who are heterozygous at rs55829688 (TC; AOR, 1.737; 95% CI, 1.028-2.937; p=0.039) are more susceptible to advanced DKD but not early-staged DKD, as compared to diabetic subjects who are homozygous for the major allele of rs55829688 (TT). Carriers of at least one minor allele (C) of rs55829688 (TC and CC; AOR, 1.317; 95% CI, 1.023-1.696; p=0.033) more frequently suffer from advanced DKD than do those homozygotes for the major allele (TT). Furthermore, in comparison to those who do not carry the minor allele of rs55829688 (TT), advanced DKD patients possessing at least one minor allele of rs55829688 (TC and CC) exhibited a lower glomerular filtration rate, revealing an impact of rs55829688 on renal co-morbidities of diabetes. In conclusion, our data indicate an association of GAS5 gene polymorphisms with the progression of DKD.
Collapse
Affiliation(s)
- Po-Jen Yang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ke-Hsin Ting
- Division of Cardiology, Department of Internal Medicine, Changhua Christian Hospital, Yunlin Branch, Yunlin, Taiwan
- Department of Medicine and Nursing, Hungkuang University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Po-Yu Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Imaduwage I, Hewadikaram M. Predicted roles of long non-coding RNAs in abiotic stress tolerance responses of plants. MOLECULAR HORTICULTURE 2024; 4:20. [PMID: 38745264 PMCID: PMC11094901 DOI: 10.1186/s43897-024-00094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/06/2024] [Indexed: 05/16/2024]
Abstract
The plant genome exhibits a significant amount of transcriptional activity, with most of the resulting transcripts lacking protein-coding potential. Non-coding RNAs play a pivotal role in the development and regulatory processes in plants. Long non-coding RNAs (lncRNAs), which exceed 200 nucleotides, may play a significant role in enhancing plant resilience to various abiotic stresses, such as excessive heat, drought, cold, and salinity. In addition, the exogenous application of chemicals, such as abscisic acid and salicylic acid, can augment plant defense responses against abiotic stress. While how lncRNAs play a role in abiotic stress tolerance is relatively well-studied in model plants, this review provides a comprehensive overview of the current understanding of this function in horticultural crop plants. It also delves into the potential role of lncRNAs in chemical priming of plants in order to acquire abiotic stress tolerance, although many limitations exist in proving lncRNA functionality under such conditions.
Collapse
Affiliation(s)
- Iuh Imaduwage
- Department of Biomedical Sciences, Faculty of Science, NSBM Green University, Pitipana, Homagama, Sri Lanka
| | - Madhavi Hewadikaram
- Department of Biomedical Sciences, Faculty of Science, NSBM Green University, Pitipana, Homagama, Sri Lanka.
| |
Collapse
|
5
|
Abdi E, Latifi-Navid S, Panahi A. Long noncoding RNA polymorphisms in gynecological cancers. Per Med 2024; 21:59-68. [PMID: 38095072 DOI: 10.2217/pme-2023-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Gynecological malignancies are one of the main causes of cancer-induced mortality. Despite remarkable recent therapeutic advances, current therapeutic options are not sufficient. Regarding the effect of long noncoding RNAs (lncRNAs) on cell differentiation, proliferation and apoptosis, variations in their expression cause different anomalies, such as tumorigenesis. SNPs influence lncRNA function and expression. LncRNA polymorphisms can predict cancer risk and are effective for early diagnosis and customized therapy. In this literature review, we comprehensively investigate the effect of lncRNA polymorphisms on gynecological cancers. LncRNA-related variants are proposed to evaluate cancer incidence, early detection and management of personalized therapy. Nonetheless, more studies are required to validate the consistency of current findings in numerous samples and across various ethnic groups.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| | - Alireza Panahi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 5619911367, Iran
| |
Collapse
|
6
|
Sun YH, Chen LJ, Wang CH, Lee CY, Hsiao YH, Yang SF, Wang PH. Impact of LINC00673 genetic variants on uterine cervical cancer clinicopathologic characteristics. J Cancer 2023; 14:2529-2537. [PMID: 37670967 PMCID: PMC10475370 DOI: 10.7150/jca.86678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/06/2023] [Indexed: 09/07/2023] Open
Abstract
To date, no study delineates the relationships among the genetic variants of long intergenic noncoding RNA 673 (LINC00673) and uterine cervical carcinogenesis as well as clinicopathological parameters and 5 years survival of cervical cancer patients in Taiwan. Therefore, the involvement of LINC00673 polymorphisms in cervical cancer was investigated. Genotypic frequencies of three LINC00673 polymorphisms rs6501551, rs9914618 and rs11655237 were determined in 199 patients including 115 patients with invasive cancer, 84 with precancerous lesions, and 274 control females using real-time polymerase chain reaction. It revealed that LINC00673 polymorphisms were not found significantly related to development of cervical cancer. Cervical cancer patients with genotypes AG/GG in LINC00673 rs6501551 had more risk to have tumor diameter larger than 4 cm as compared to those with genotype AA (p=0.043). Cervical cancer patients with genotype GG in rs6501551 had worse 5 years survival as compared to those with genotypes AA/AG in multivariate analysis (hazard ratio: 4.70; p=0.097). However, only two patients exhibiting GG were noted, and one had mortality, another had no mortality. In conclusion, larger sample size needs to verify the associations of LINC00673 genetic variants with clinicopathological parameters and patient survival of cervical cancer for Taiwanese females.
Collapse
Affiliation(s)
- Yi-Hung Sun
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chi-Mei Foundation Medical Center, Tainan, Taiwan
| | - Liang-Jou Chen
- School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hao Wang
- Department of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Yuan Lee
- Department of Obstetrics and Gynecology, Chiayi Chang Gung Memorial Hospital Chiayi, Taiwan
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi, Taiwan
| | - Yi-Hsuan Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
Zeng M, Zhang T, Lin Y, Lin Y, Wu Z. The Common LncRNAs of Neuroinflammation-Related Diseases. Mol Pharmacol 2023; 103:113-131. [PMID: 36456192 DOI: 10.1124/molpharm.122.000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Spatio-temporal specific long noncoding RNAs (lncRNAs) play important regulatory roles not only in the growth and development of the brain but also in the occurrence and development of neurologic diseases. Generally, the occurrence of neurologic diseases is accompanied by neuroinflammation. Elucidation of the regulatory mechanisms of lncRNAs on neuroinflammation is helpful for the clinical treatment of neurologic diseases. This paper focuses on recent findings on the regulatory effect of lncRNAs on neuroinflammatory diseases and selects 10 lncRNAs that have been intensively studied to analyze their mechanism action. The clinical treatment status of lncRNAs as drug targets is also reviewed. SIGNIFICANCE STATEMENT: Gene therapies such as clustered regularly interspaced short palindrome repeats technology, antisense RNA technology, and RNAi technology are gradually applied in clinical treatment, and the development of technology is based on a large number of basic research investigations. This paper focuses on the mechanisms of lncRNAs regulation of neuroinflammation, elucidates the beneficial or harmful effects of lncRNAs in neurosystemic diseases, and provides theoretical bases for lncRNAs as drug targets.
Collapse
Affiliation(s)
- Meixing Zeng
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Ting Zhang
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yongluan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Zhuomin Wu
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| |
Collapse
|
8
|
Liu Y, Zhang Q, Ni R. Association between genetic variants (rs920778, rs4759314, and rs217727) in LncRNAs and cervical cancer susceptibility in Chinese population: A systematic review and meta-analysis. Front Genet 2022; 13:988207. [PMID: 36313463 PMCID: PMC9608570 DOI: 10.3389/fgene.2022.988207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/24/2022] [Indexed: 01/27/2024] Open
Abstract
Objective: The relationship between gene polymorphisms in long non-coding RNAs (LncRNAs) and cervical cancer susceptibility has been thoroughly analyzed; however, the conclusions are inconsistent. Therefore, this systematic review and meta-analysis aimed to accurately assess the relationship between them. Method: Eligible literatures were retrieved from PubMed, Medline, China National Knowledge Infrastructure (CNKI), and WanFang databases before 1 April 2022. The odds ratios with the corresponding 95% confidence intervals were used to evaluate the strength of these relationships. Sensitivity analysis for publication bias was conducted to assess the stability and reliability of included literatures. Results: A total of 59 SNPs in 11 LncRNAs were summarized for a systematic review in this study, and then, a meta-analysis of rs920778 and rs4759314 polymorphisms in HOTAIR and rs217727 polymorphisms in H19 was conducted. The results demonstrated that rs920778 and rs4759314 polymorphisms were significantly correlated with cervical cancer susceptibility. Further subgroup analysis of rs920778 polymorphism showed that both small sample size and large sample size subgroups were associated with cervical cancer susceptibility. However, no association was found between rs217727 polymorphism and cervical cancer risk in all five genetic models. Conclusion: In conclusion, the rs4759314, rs920778, and rs217717 polymorphisms of HOTAIR and H19 may be associated with cervical cancer. However, the results should be interpreted with caution due to the limited sample and heterogeneity in this study. Large-scale and well-designed studies need to be practiced to validate our results.
Collapse
Affiliation(s)
- Yi Liu
- Department of Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefectrue, Enshi, Hubei, China
| | - Qian Zhang
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefectrue, Enshi, Hubei, China
| | - Rong Ni
- Department of Gynecology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefectrue, Enshi, Hubei, China
| |
Collapse
|
9
|
Tumor Suppressive Effects of GAS5 in Cancer Cells. Noncoding RNA 2022; 8:ncrna8030039. [PMID: 35736636 PMCID: PMC9228804 DOI: 10.3390/ncrna8030039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022] Open
Abstract
In recent years, long non-coding RNAs (lncRNAs) have been shown to play important regulatory roles in cellular processes. Growth arrests specific transcript 5 (GAS5) is a lncRNA that is highly expressed during the cell cycle arrest phase but is downregulated in actively growing cells. Growth arrests specific transcript 5 was discovered to be downregulated in several cancers, primarily solid tumors, and it is known as a tumor suppressor gene that regulates cell proliferation, invasion, migration, and apoptosis via multiple molecular mechanisms. Furthermore, GAS5 polymorphism was found to affect GAS5 expression and functionality in a cell-specific manner. This review article focuses on GAS5’s tumor-suppressive effects in regulating oncogenic signaling pathways, cell cycle, apoptosis, tumor-associated genes, and treatment-resistant cells. We also discussed genetic polymorphisms of GAS5 and their association with cancer susceptibility.
Collapse
|
10
|
Chung JF, Chen CL, Nassef Y, Shiu BH, Wang CH, Kuo FH, Hsiao YH, Yang SF, Wang PH. Effect of tissue inhibitor of metalloproteinases-3 genetics polymorphism on clinicopathological characteristics of uterine cervical cancer patients in Taiwan. Int J Med Sci 2022; 19:1013-1022. [PMID: 35813301 PMCID: PMC9254369 DOI: 10.7150/ijms.72378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/23/2022] [Indexed: 11/05/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) of tissue inhibitor of metalloproteinases-3 (TIMP-3) have been revealed to be related to various cancers. To date, no study explores the relationships between TIMP-3 polymorphisms and uterine cervical cancer. The purposes of this research were to investigate the associations among genetic variants of TIMP-3 and development and clinicopathological factors of uterine cervical cancer, and patient 5 years survival in Taiwanese women. The study included 123 patients with invasive cancer and 97 with precancerous lesions of uterine cervix, and 300 control women. TIMP-3 polymorphisms rs9619311, rs9862 and rs11547635 were checked and their genotypic distributions were determined by real-time polymerase chain reaction. It showed that women with genotypes CT/TT in rs9862 were found to display a higher risk of developing cervical cancer with moderate and poor cell differentiation. Moreover, it revealed that cervical cancer patients carrying genotypes CC in rs9619311 exhibited a poorer 5 years survival, as compared to those with TT/TC in Taiwanese women, using univariate analysis. In addition, pelvic lymph node metastasis was determined to independently predict 5 years survival in cervical cancer patients using multivariate analysis. Conclusively, TIMP-3 SNPs polymorphisms rs9619311 are related to cervical patient survival in Taiwanese women.
Collapse
Affiliation(s)
- Jui-Fu Chung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chia-Lin Chen
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yasser Nassef
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Bei-Hao Shiu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Hao Wang
- Department of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fu-Hsuan Kuo
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Hsuan Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Genetic Variants of lncRNA GAS5 Are Associated with the Clinicopathologic Development of Oral Cancer. J Pers Med 2021; 11:jpm11050348. [PMID: 33925911 PMCID: PMC8146215 DOI: 10.3390/jpm11050348] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
The long noncoding RNA, Growth arrest-specific 5 (GAS5) plays a crucial role in the development of oral cancer. However, potential genetic variants in GAS5 that affect the susceptibility and progression of oral cancer have rarely been explored. In this study, two loci of GAS5 single nucleotide polymorphisms (SNPs) (rs145204276 and rs55829688) were genotyped by using the TaqMan allelic discrimination in 1125 oral cancer patients and 1195 non-oral-cancer individuals. After statistical analyses, the distribution of both the GAS5 SNP rs145204276 and GAS5 SNP rs55829688 frequencies were similar between the study and control groups. However, the patients with GAS5 SNP rs145204276 variants (Ins/Del or Del/Del) showed a higher tendency of moderate to poor cell differentiation of oral cancer (OR: 1.454, 95% CI: 1.041–2.031, p = 0.028). Moreover, the GAS5 SNP rs145204276 variants (Ins/Del or Del/Del) in the non-alcohol-drinking population were associated with significantly advanced tumor stage (OR: 1.500, 95% CI: 1.081–2.081, p = 0.015) and larger tumor size (OR: 1.494, 95% CI: 1.076–2.074, p = 0.016). Furthermore, individuals with the GAS5 SNP rs145204276 variant were associated with a higher expression of GAS5 in the GTEx database (p = 0.002), and the higher GAS5 level was associated with poor cell differentiation, advanced tumor stage and larger tumor size in head and neck squamous cell carcinoma from the TCGA database (all p < 0.05). In conclusion, the GAS5 SNP rs145204276 variant is related to poor-differentiation cell status in oral cancer. Besides, the presence of the GAS5 SNP rs145204276 variant is associated with a worse tumor stage and tumor size in oral cancer patients without alcohol drinking.
Collapse
|
12
|
Wu PJ, Wang CH, Hsieh MH, Lee CY, Wang PH, Lin CW, Yang SF, Lee MS. The impact of Aurora kinase A genetic polymorphisms on cervical cancer progression and clinicopathologic characteristics. Int J Med Sci 2021; 18:2457-2465. [PMID: 33967624 PMCID: PMC8100634 DOI: 10.7150/ijms.58516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/04/2021] [Indexed: 02/03/2023] Open
Abstract
The aims of this study were to explore the involvement of Aurora kinase A (AURKA) gene single nucleotide polymorphisms (SNPs) in uterine cervical cancer that has not yet been investigated. One hundred and six patients with cervical invasive cancer and 94 patients with precancerous lesions, and 302 Taiwanese female individuals were included. AURKA SNPs rs2273535, rs6024836, rs2064863 and rs1047972 were analyzed for genotypic distributions using real-time polymerase chain reaction. There were no statistically significant differences in the genetic frequencies of AURKA SNPs among patients with invasive cancer and those with precancerous lesions of uterine cervix and control women. There were no associations among AURKA SNPs and clinicopathologcal variables and recurrence and survival events. However, in a multivariate analysis, cervical cancer patients with adenocarcinoma (HR: 3.18, 95% CI: 1.23-8.23; p=0.017) and larger tumor (HR: 5.61, 95% CI: 2.10-14.95; p=0.001) had poorer recurrence-free survival. In conclusion, tumor size and pelvic lymph node status rather than AURKA SNPs were the most obvious independent parameter that could significantly predict 5 years survival rate in Taiwanese women with cervical cancer.
Collapse
Affiliation(s)
- Pei-Ju Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Hao Wang
- Department of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hong Hsieh
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chung-Yuan Lee
- Department of Obstetrics and Gynecology, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Maw-Sheng Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|