1
|
Kitsugi K, Chida T, Hanaoka T, Umemura M, Yamashita M, Ito J, Ohta K, Noritake H, Suda T, Kawata K. Elevated serum neprilysin levels in patients with chronic hepatitis C and metabolic dysfunction-associated steatotic liver disease: hepatic oxidative stress as an underlying mechanism. Mol Biol Rep 2024; 52:81. [PMID: 39722039 DOI: 10.1007/s11033-024-10152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Neprilysin (NEP) is a metalloprotease that has become a therapeutic target for the treatment of heart failure and hypertension. However, the significance of NEP in chronic liver diseases has rarely been investigated. In this study, we investigated the serum NEP levels in patients with chronic liver disease and their relationship with clinical parameters. METHODS AND RESULTS Thirty-seven patients with chronic hepatitis C (CHC) who achieved sustained virologic response (SVR) after antiviral treatment and 73 patients with metabolic dysfunction-associated steatotic liver disease (MASLD) were enrolled. Serum neprilysin levels were measured using an enzyme-linked immunosorbent assay. The median NEP levels were 2.2 ng/mL in CHC and 4.1 ng/mL in MASLD, with the latter being significantly higher. Notably, in patients with MASLD, a significant correlation was observed between NEP and gamma-glutamyltransferase (GGT) levels at baseline. In contrast, there was no significant correlation between NEP levels and progression of liver fibrosis in either group. In the MASLD group, obesity and lifestyle diseases were significantly more prevalent, and the patients exhibited significantly higher NEP levels. In patients with CHC, NEP levels significantly decreased after SVR. NEP mRNA expression in liver tissues was significantly downregulated following SVR. Furthermore, a significant correlation was observed between the degree of NEP and GGT improvement. CONCLUSIONS Elevated NEP levels were observed in both CHC and MASLD groups. Considering the association between NEP levels and obesity, lifestyle diseases, and GGT levels, this suggests that oxidative stress may be involved in the elevation of NEP levels in patients with CHC and MASLD.
Collapse
Affiliation(s)
- Kensuke Kitsugi
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Takeshi Chida
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
- Department of Regional Medical Care Support, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Tomohiko Hanaoka
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Masahiro Umemura
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Maho Yamashita
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Jun Ito
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kazuyoshi Ohta
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hidenao Noritake
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Takafumi Suda
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kazuhito Kawata
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| |
Collapse
|
2
|
Moraña-Fernández S, Vázquez-Abuín X, Aragón-Herrera A, Anido-Varela L, García-Seara J, Otero-García Ó, Rodríguez-Penas D, Campos-Toimil M, Otero-Santiago M, Rodrigues A, Gonçalves A, Pereira Morais J, Alves IN, Sousa-Mendes C, Falcão-Pires I, González-Juanatey JR, Feijóo-Bandín S, Lago F. Cardiometabolic effects of sacubitril/valsartan in a rat model of heart failure with preserved ejection fraction. Biochem Pharmacol 2024; 230:116571. [PMID: 39424202 DOI: 10.1016/j.bcp.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/30/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
The promising results obtained in the PARADIGM-HF trial prompted the approval of sacubitril/valsartan (SAC/VAL) as a first-in-class treatment for heart failure with reduced ejection fraction (HFrEF) patients. The effect of SAC/VAL treatment was also studied in patients with heart failure with preserved ejection fraction (HFpEF) and, although improvements in New York Heart Association (NYHA) class, HF hospitalizations, and cardiovascular deaths were observed, these results were not so promising. However, the demand for HFpEF therapies led to the approval of SAC/VAL as an alternative treatment, although further studies are needed. We aimed to elucidate the effects of a 9-week SAC/VAL treatment in cardiac function and metabolism using a preclinical model of HFpEF, the Zucker Fatty and Spontaneously Hypertensive (ZSF1) rats. We found that SAC/VAL significantly improved diastolic function parameters and modulated respiratory quotient during exercise. Ex-vivo studies showed that SAC/VAL treatment significantly decreased heart, liver, spleen, and visceral fat weights; cardiac hypertrophy and percentage of fibrosis; lipid infiltration in liver and circulating levels of cholesterol and sodium. Moreover, SAC/VAL reduced glycerophospholipids, cholesterol, and cholesteryl esters while increasing triglyceride levels in cardiac tissue. In conclusion, SAC/VAL treatment improved diastolic and hepatic function, respiratory metabolism, reduced hypercholesterolemia and cardiac fibrosis and hypertrophy, and was able to modulate cardiac metabolic profile. Our findings might provide further insight into the therapeutic benefits of SAC/VAL treatment in obese patients with HFpEF.
Collapse
Affiliation(s)
- Sandra Moraña-Fernández
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Cardiology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Xocas Vázquez-Abuín
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alana Aragón-Herrera
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura Anido-Varela
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier García-Seara
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Arrhytmia Unit, Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Óscar Otero-García
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain
| | - Diego Rodríguez-Penas
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Cardiology Department Clinical Trial Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain
| | - Manuel Campos-Toimil
- Physiology and Pharmacology of Chronic Diseases (FIFAEC), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Otero-Santiago
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Clinical Biochemistry Laboratory, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain
| | - Alexandre Rodrigues
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Alexandre Gonçalves
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Juliana Pereira Morais
- CINTESIS@RISE, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, UnIC@RISE - Cardiovascular Research Centre, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Inês N Alves
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cláudia Sousa-Mendes
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Cardiovascular R&D Centre - UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Ramón González-Juanatey
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Radiology, Public Health, Nursing and Medicine, IDIS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Cardiology Department, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain
| | - Sandra Feijóo-Bandín
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisca Lago
- Cellular and Molecular Cardiology Research Unit, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, Área Sanitaria Santiago de Compostela e Barbanza (SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Erdogan BR, Yesilyurt-Dirican ZE, Karaomerlioglu I, Muderrisoglu AE, Sevim K, Michel MC, Arioglu-Inan E. Sacubitril/Valsartan Combination Partially Improves Cardiac Systolic, but Not Diastolic, Function through β-AR Responsiveness in a Rat Model of Type 2 Diabetes. Int J Mol Sci 2024; 25:10617. [PMID: 39408945 PMCID: PMC11476658 DOI: 10.3390/ijms251910617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Cardiovascular complications are the major cause of diabetes mellitus-related morbidity and mortality. Increased renin-angiotensin-aldosterone system activity and decreased β-adrenergic receptor (β-AR) responsiveness contribute to diabetic cardiac dysfunction. We evaluated the effect of sacubitril/valsartan (neprilysin inhibitor plus angiotensin receptor antagonist combination) and valsartan treatments on the diabetic cardiac function through β-AR responsiveness and on protein expression of diastolic components. Six-week-old male Sprague Dawley rats were divided into control, diabetic, sacubitril/valsartan (68 mg/kg)-, and valsartan-treated (31 mg/kg) diabetic groups. Diabetes was induced by a high-fat diet plus low-dose streptozotocin (30 mg/kg, intraperitoneal). After 10 weeks of diabetes, rats were treated for 4 weeks. Systolic/diastolic function was assessed by in vivo echocardiography and pressure-volume loop analysis. β-AR-mediated responsiveness was assessed by in vitro papillary muscle and Langendorff heart experiments. Protein expression of sarcoplasmic reticulum calcium ATPase2a, phospholamban, and phosphorylated phospholamban was determined by Western blot. Sacubitril/valsartan improved ejection fraction and fractional shortening to a similar extent as valsartan alone. None of the treatments affected in vivo diastolic parameters or the expression of related proteins. β1-/β2-AR-mediated responsiveness was partially restored in treated animals. β3-AR-mediated cardiac relaxation (an indicator of diastolic function) responses were comparable among groups. The beneficial effect of sacubitril/valsartan on systolic function may be attributed to improved β1-/β2-AR responsiveness.
Collapse
Affiliation(s)
- Betul R. Erdogan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara 06560, Türkiye; (B.R.E.); (Z.E.Y.-D.); (I.K.); (A.E.M.)
| | - Zeynep E. Yesilyurt-Dirican
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara 06560, Türkiye; (B.R.E.); (Z.E.Y.-D.); (I.K.); (A.E.M.)
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye
| | - Irem Karaomerlioglu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara 06560, Türkiye; (B.R.E.); (Z.E.Y.-D.); (I.K.); (A.E.M.)
| | - Ayhanim Elif Muderrisoglu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara 06560, Türkiye; (B.R.E.); (Z.E.Y.-D.); (I.K.); (A.E.M.)
- Department of Medical Pharmacology, Istanbul Medipol University, Istanbul 34815, Türkiye
| | - Kadir Sevim
- Department of Internal Medicine, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Türkiye;
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara 06560, Türkiye; (B.R.E.); (Z.E.Y.-D.); (I.K.); (A.E.M.)
| |
Collapse
|
4
|
Packer M, Anker SD, Butler J, Cleland JG, Kalra PR, Mentz RJ, Ponikowski P, Talha KM. Redefining Iron Deficiency in Patients With Chronic Heart Failure. Circulation 2024; 150:151-161. [PMID: 38733252 PMCID: PMC11224570 DOI: 10.1161/circulationaha.124.068883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
A serum ferritin level <15 to 20 μg/L historically identified patients who had absent bone marrow iron stores, but serum ferritin levels are distorted by the systemic inflammatory states seen in patients with chronic kidney disease or heart failure. As a result, nearly 25 years ago, the diagnostic ferritin threshold was increased 5- to 20-fold in patients with chronic kidney disease (ie, iron deficiency was identified if the serum ferritin level was <100 μg/L, regardless of transferrin saturation [TSAT], or 100 to 299 μg/L if TSAT was <20%). This guidance was motivated not by the findings of studies of total body or tissue iron depletion, but by a desire to encourage the use of iron supplements to potentiate the response to erythropoiesis-stimulating agents in patients with renal anemia. However, in patients with heart failure, this definition does not reliably identify patients with an absolute or functional iron-deficiency state, and it includes individuals with TSATs (≥20%) and serum ferritin levels in the normal range (20-100 mg/L) who are not iron deficient, have an excellent prognosis, and do not respond favorably to iron therapy. Furthermore, serum ferritin levels may be distorted by the use of both neprilysin and sodium-glucose cotransporter 2 inhibitors, both of which may act to mobilize endogenous iron stores. The most evidence-based and trial-tested definition of iron deficiency is the presence of hypoferremia, as reflected by as a TSAT <20%. These hypoferremic patients are generally iron deficient on bone marrow examination, and after intravenous iron therapy, they exhibit an improvement in exercise tolerance and functional capacity (when meaningfully impaired) and show the most marked reduction (ie, 20%-30%) in the risk of cardiovascular death or total heart failure hospitalizations. Therefore, we propose that the current ferritin-driven definition of iron deficiency in heart failure should be abandoned and that a definition based on hypoferremia (TSAT <20%) should be adopted.
Collapse
Affiliation(s)
- Milton Packer
- Baylor University Medical Center (M.P.), Dallas, TX
- Imperial College, London, UK (M.P.)
| | - Stefan D. Anker
- Department of Cardiology, German Heart Center Charité, Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research, partner site Berlin, Charité Universitätsmedizin, Berlin, Germany (S.D.A.)
| | - Javed Butler
- Baylor Scott and White Research Institute (J.B.), Dallas, TX
- Baylor University Medical Center (M.P.), Dallas, TX
- University of Mississippi Medical Center, Jackson (J.B., K.M.T.)
| | - John G.F. Cleland
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Health (J.G.F.C.), University of Glasgow, UK
| | - Paul R. Kalra
- College of Medical, Veterinary & Life Sciences (P.R.K.), University of Glasgow, UK
- Department of Cardiology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK (P.R.K.)
- Faculty of Science and Health, University of Portsmouth, UK (P.R.K.)
| | - Robert J. Mentz
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC (R.J.M.)
- Duke Clinical Research Institute, Durham, NC (R.J.M.)
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Poland (P.P.)
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland (P.P.)
| | - Khawaja M. Talha
- University of Mississippi Medical Center, Jackson (J.B., K.M.T.)
| |
Collapse
|
5
|
Chiu HW, Wu CH, Lin WY, Wong WT, Tsai WC, Hsu HT, Ho CL, Cheng SM, Cheng CC, Yang SP, Li LH, Hua KF. The Angiotensin II Receptor Neprilysin Inhibitor LCZ696 Inhibits the NLRP3 Inflammasome By Reducing Mitochondrial Dysfunction in Macrophages and Alleviates Dextran Sulfate Sodium-induced Colitis in a Mouse Model. Inflammation 2024; 47:696-717. [PMID: 38319541 DOI: 10.1007/s10753-023-01939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/12/2023] [Accepted: 11/24/2023] [Indexed: 02/07/2024]
Abstract
The intracellular sensor protein complex known as the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in regulating inflammatory diseases by overseeing the production of interleukin (IL)-1β and IL-18. Targeting its abnormal activation with drugs holds significant promise for inflammation treatment. This study highlights LCZ696, an angiotensin receptor-neprilysin inhibitor, as an effective suppressor of NLRP3 inflammasome activation in macrophages stimulated by ATP, nigericin, and monosodium urate. LCZ696 also reduces caspase-11 and GSDMD activation, lactate dehydrogenase release, propidium iodide uptake, and the extracellular release of NLRP3 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) in ATP-activated macrophages, suggesting a potential mitigation of pyroptosis. Mechanistically, LCZ696 lowers mitochondrial reactive oxygen species and preserves mitochondrial integrity. Importantly, it does not significantly impact NLRP3, proIL-1β, inducible nitric oxide synthase, cyclooxygenase-2 expression, or NF-κB activation in lipopolysaccharide-activated macrophages. LCZ696 partially inhibits the NLRP3 inflammasome through the induction of autophagy. In an in vivo context, LCZ696 alleviates NLRP3-associated colitis in a mouse model by reducing colonic expression of IL-1β and tumor necrosis factor-α. Collectively, these findings suggest that LCZ696 holds significant promise as a therapeutic agent for ameliorating NLRP3 inflammasome activation in various inflammatory diseases, extending beyond its established use in hypertension and heart failure treatment.
Collapse
Affiliation(s)
- Hsiao-Wen Chiu
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Yu Lin
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Ting Wong
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Wei-Che Tsai
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsien-Ta Hsu
- Division of Neurosurgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chung Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ping Yang
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
6
|
Mohyeldin RH, Alaaeldin R, Sharata EE, Attya ME, Elhamadany EY, Fathy M. LCZ696 attenuates sepsis-induced liver dysfunction in rats; the role of oxidative stress, apoptosis, and JNK1/2-P38 signaling pathways. Life Sci 2023; 334:122210. [PMID: 37883863 DOI: 10.1016/j.lfs.2023.122210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
AIM Sepsis is a serious inflammatory response to infection with an annual incidence rate of >48 million cases and 11 million fatalities worldwide. Furthermore, sepsis remains the world's fifth-greatest cause of death. For the first time, the current study aims to evaluate the possible hepatoprotective benefits of LCZ696, a combination of an angiotensin receptor blocker (valsartan) and a neprilysin inhibitor prodrug (sacubitril), on cecal ligation and puncture (CLP)-induced sepsis in rats. MAIN METHODS CLP was employed to induce sepsis. Hepatic malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), interleukin-6 (IL-6), IL-1β, tumor necrosis factor-alpha (TNF-α), and caspase 3 were assessed using ELISA. Serum alanine transaminase (ALT) and aspartate transaminase (AST) were also measured. Western blot assay was used to determine the expression of JNK1/2 and P38 proteins. The histology of liver tissues was also examined. KEY FINDINGS CLP resulted in significant elevation of AST, ALT, MDA, IL-6, IL-1β, TNF-α, and caspase 3 levels, and up-regulation of p/t JNK1/2, and p/t P38 proteins, as compared to the sham group. However, level of GSH, and SOD activity were reduced in CLP group. LCZ696 significantly improved all the previously mentioned biochemical and histological abnormalities better than using valsartan alone. SIGNIFICANCE LCZ696 substantially ameliorated CLP-induced liver damage, compared to valsartan, by reducing proinflammatory mediators, inhibiting the JNK1/2 and P38 signaling pathway, and attenuating apoptosis.
Collapse
Affiliation(s)
- Reham H Mohyeldin
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Ehab E Sharata
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Mina Ezzat Attya
- Department of Pathology, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| | - Eyad Y Elhamadany
- Innovative Research Center, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| |
Collapse
|
7
|
Alanazi AZ, Al-Rejaie SS, Ahmed MM, Alhazzani K, Alhosaini K, As Sobeai HM, Alsanea S, Alam P, Almarfadi OM, Alqahtani AS, Alhamed AS, Alqinyah M, Alhamami HN, Almutery MF, Mohany M. Protective role of Dodonaea viscosa extract against streptozotocin-induced hepatotoxicity and nephrotoxicity in rats. Saudi Pharm J 2023; 31:101669. [PMID: 37576853 PMCID: PMC10415224 DOI: 10.1016/j.jsps.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/04/2023] [Indexed: 08/15/2023] Open
Abstract
Previous investigations have shown that D. viscosa herbal extract is often used to treat a variety of diseases. Therefore, the purpose of this study was to investigate any additional potential impacts on rat liver and kidney damage induced by diabetes. Streptozotocin (STZ) (60 mg/kg/day) was given as a single dosage to cause type 1 diabetes. After then, diabetic rats received oral doses of D. viscosa for four weeks at 150 and 300 mg/kg/day. Blood, liver, and kidney tissues were collected at the end of the treatment and examined. Analysis was made of the serum lipid profile, liver, and kidney functions, as well as blood biochemistry. Moreover, the levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), prostaglandin E-2 (PGE-2), and nitric oxide (NO) were estimated in serum. In liver and kidney samples, thiobarbituric acid reactive substances (TBARs) and reduced glutathione (GSH), as well as the pro-inflammatory cytokines and enzymatic activities of glutathione peroxidase (GPx), glutathione reeducates (GR), glutathione-S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) were analyzed. Histological changes in liver and kidney cross-sections were also observed. Our findings demonstrated that D. viscosa dramatically decreased pro-inflammatory indicators in blood, kidney, and liver tissues as well as blood glucose, and restored insulin levels, and lipid profiles. Additionally, it significantly raises the antioxidant enzyme activity SOD, CAT, GPx, and GST, while significantly lowering TBARs levels. The above-mentioned biochemical changes that took place in tissues were further supported by histological alterations. These findings imply that D. viscosa protects against STZ-induced hyperglycemia, aberrant lipid synthesis, and oxidative stress and that these benefits may be mediated by interacting with various targets to increase the levels of antioxidant enzymes in the liver and kidneys. Its mode of action and safety for use as medicine against various metabolic problems caused by diabetes require more research.
Collapse
Affiliation(s)
- Ahmed Z. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 1145, Saudi Arabia
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 1145, Saudi Arabia
| | - Mohammed M. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 1145, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 1145, Saudi Arabia
| | - Khaled Alhosaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 1145, Saudi Arabia
| | - Homood M. As Sobeai
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 1145, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 1145, Saudi Arabia
| | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 1145, Saudi Arabia
| | - Omer M. Almarfadi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 1145, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 1145, Saudi Arabia
| | - Abdullah S. Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 1145, Saudi Arabia
| | - Mohammed Alqinyah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 1145, Saudi Arabia
| | - Hussain N. Alhamami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 1145, Saudi Arabia
| | - Mohammed F. Almutery
- Department of Pathology and Laboratory Medicine, College of Medicine, King Saud, University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 1145, Saudi Arabia
| |
Collapse
|
8
|
Hu WS, Lin CL. Association of Heart Failure Patients With and Without Sacubitril-Valsartan Use With Incident Cancer Risk. J Cardiovasc Pharmacol 2023; 82:157-161. [PMID: 37133967 DOI: 10.1097/fjc.0000000000001433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023]
Abstract
ABSTRACT This study was to evaluate the association between heart failure (HF) patients with and without sacubitril-valsartan use with incident cancer risk. This study consisted of 18,072 patients receiving sacubitril-valsartan and 18,072 control group participants. In the Fine and Gray model, which extends the standard Cox proportional hazards regression model, we estimated the relative risk of developing cancer between the sacubitril-valsartan cohort and the non-sacubitril-valsartan cohort by using subhazard ratios (SHRs) and 95% confidence intervals (CIs). The incidence rates of cancer were 12.02 per 1000 person-years for the sacubitril-valsartan cohort and 23.31 per 1000 person-years for the non-sacubitril-valsartan cohort. Patients receiving sacubitril-valsartan had a significantly lower risk of developing cancer with an adjusted SHR of 0.60 (0.51, 0.71). Sacubitril-valsartan users were less to be associated with the development of cancer.
Collapse
Affiliation(s)
- Wei-Syun Hu
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung, Taiwan; and
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
Ding J, Cui S, Li SY, Cui LY, Nan QY, Lin XJ, Xuan MY, Jin J, Piao SG, Jiang YJ, Zheng HL, Jin JZ, Chung BH, Yang CW, Cui JH, Li C. The angiotensin receptor neprilysin inhibitor LCZ696 attenuates renal fibrosis via ASK1/JNK/p38 MAPK-mediated apoptosis in unilateral ureteral obstruction. PLoS One 2023; 18:e0286903. [PMID: 37310976 DOI: 10.1371/journal.pone.0286903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
The angiotensin receptor neprilysin inhibitor LCZ696 affords superior cardioprotection and renoprotection compared with renin-angiotensin blockade monotherapy, but the underlying mechanisms remain elusive. Herein, we evaluated whether LCZ696 attenuates renal fibrosis by inhibiting ASK1/JNK/p38 mitogen-activated protein kinase (MAPK)-mediated apoptosis in a rat model of unilateral ureteral obstruction (UUO) and in vitro. Rats with UUO were treated daily for 7 days with LCZ696, valsartan, or the selective ATP competitive inhibitor of apoptosis signal-regulating kinase 1 (ASK1), GS-444217. The effects of LCZ696 on renal injury were examined by assessing the histopathology, oxidative stress, intracellular organelles, apoptotic cell death, and MAPK pathways. H2O2-exposed human kidney 2 (HK-2) cells were also examined. LCZ696 and valsartan treatment significantly attenuated renal fibrosis caused by UUO, and this was paralleled by downregulation of proinflammatory cytokines and decreased inflammatory cell influx. Intriguingly, LCZ696 had stronger effects on renal fibrosis and inflammation than valsartan. UUO-induced oxidative stress triggered mitochondrial destruction and endoplasmic reticulum stress, which resulted in apoptotic cell death; these effects were reversed by LCZ696. Both GS-444217 and LCZ696 hampered the expression of death-associated ASK1/JNK/p38 MAPKs. In H2O2-treated HK-2 cells, LCZ696 and GS-444217 increased cell viability but decreased the production of intracellular reactive oxygen species and MitoSOX and apoptotic cell death. Both agents also deactivated H2O2-stimulated activation of ASK1/JNK/p38 MAPKs. These findings suggest that LCZ696 protects against UUO-induced renal fibrosis by inhibiting ASK1/JNK/p38 MAPK-mediated apoptosis.
Collapse
Affiliation(s)
- Jun Ding
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Sheng Cui
- Department of Nephrology, Yanbian University Hospital, Yanji, China
- Department of Internal Medicine, Transplantation Research Center, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Song Yu Li
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Lin Yan Cui
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Qi Yan Nan
- Department of Intensive Care Unit, Yanbian University Hospital, Yanji, China
| | - Xue Jing Lin
- Department of Radionuclide Medicine, Yanbian University Hospital, Yanji, China
| | - Mei Ying Xuan
- Department of Health Examination Central, Yanbian University, Yanji, China
| | - Jian Jin
- Department of General Practice, Yanbian University Hospital, Yanji, China
| | - Shang Guo Piao
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Yu Ji Jiang
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Hai Lan Zheng
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Ji Zhe Jin
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Byung Ha Chung
- Department of Internal Medicine, Transplantation Research Center, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, Division of Nephrology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chul Woo Yang
- Department of Internal Medicine, Transplantation Research Center, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, Division of Nephrology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jing Hao Cui
- College of Pharmaceutical Sciences, Soochow University, Jiangsu Prov., Suzhou, China
| | - Can Li
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| |
Collapse
|
10
|
Karayakali M, Altinoz E, Elbe H, Koca O, Onal MO, Bicer Y, Demir M. Crocin treatment exerts anti-inflammatory and anti-oxidative effects in liver tissue damage of pinealectomized diabetic rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47670-47684. [PMID: 36746856 DOI: 10.1007/s11356-023-25766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder with an increasing global prevalence that leads to significant morbidity and mortality. The liver plays a vital role in glycemic regulation in physiological and pathological conditions such as DM. Free radical formation and inhibition of antioxidant defense systems play a role in the liver damage pathogenesis in diabetic patients The antioxidant, anti-diabetic, anti-inflammatory, and radical scavenging properties of crocin are known. This study was designed to determine the possible protective effects of crocin against liver tissue damage in pinealectomized diabetic rats. Sixty rats were divided into six groups: Control, Sham+streptozotocin (STZ), Pinealectomy (PINX), PINX+STZ, PINX+Crocin, and PINX+STZ+Crocin. PNX procedure was carried out on the first day of the experiment. Intraperitoneal (i.p.) injection of 50 mg/kg STZ was performed on the 30th day of the experiment to induce DM. Crocin (50 mg/kg; i.p.) was applied for 15 days after the pinealectomy procedure and induction of DM. Crocin decreased the markers (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), interleukin-1β (IL-1β), and malondialdehyde (MDA)) of liver damage and increased antioxidant enzyme levels and tissue total antioxidant status. Histological results showed that the administration of crocin exhibited a protective effect against liver damage caused by STZ. These results indicate that crocin evidence protection against liver injury caused by STZ.
Collapse
Affiliation(s)
- Melike Karayakali
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Eyup Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Oguzhan Koca
- Department of Biochemistry, Karabuk University Education and Research Hospital, Karabuk, Turkey
| | - Melike Ozgul Onal
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Yasemin Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Mehmet Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| |
Collapse
|
11
|
Elshenawy DSA, Ramadan NM, Abdo VB, Ashour RH. Sacubitril/valsartan combination enhanced cardiac glycophagy and prevented the progression of murine diabetic cardiomyopathy. Biomed Pharmacother 2022; 153:113382. [PMID: 36076522 DOI: 10.1016/j.biopha.2022.113382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
|
12
|
Zhang X, Zhou Y, Ma R. Potential effects and application prospect of angiotensin receptor-neprilysin inhibitor in diabetic kidney disease. J Diabetes Complications 2022; 36:108056. [PMID: 34893426 DOI: 10.1016/j.jdiacomp.2021.108056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022]
Abstract
Diabetic kidney disease (DKD) is one of the main causes of end-stage renal disease (ESRD) and all-cause mortality in diabetic patients, despite the extensive use of angiotensin-converting enzyme inhibitor (ACEI) and angiotensin II receptor blocker (ARB). Angiotensin receptor-neprilysin inhibitor (ARNI), combining ARB and neutral endopeptidase inhibitor (NEPI), is likely to have potential favorable effects in DKD. This review summarizes existing preclinical and clinical studies on mechanism of ARNI and its potential effects on DKD. In preclinical studies, ARNI manifested its renoprotective effects by improving natriuresis, ameliorating inflammation, oxidative stress and renal dysfunction, and slowing down glomerulosclerosis and tubulointerstitial injury of kidney, but its effect on proteinuria is still controversial. Beneficial effects of ARNI on blood glucose regulation and glycometabolism have also been reported. There are no clinical studies of ARNI that specifically focus on DKD patients so far. ARNI has application potential in DKD, but there still need clinical studies that focus on DKD patients to determine its effectiveness, safety and underlying mechanism.
Collapse
Affiliation(s)
- Xingjian Zhang
- Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yan Zhou
- Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ruixia Ma
- Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
13
|
Salah HM, Pandey A, Soloveva A, Abdelmalek MF, Diehl AM, Moylan CA, Wegermann K, Rao VN, Hernandez AF, Tedford RJ, Parikh KS, Mentz RJ, McGarrah RW, Fudim M. Relationship of Nonalcoholic Fatty Liver Disease and Heart Failure With Preserved Ejection Fraction. JACC Basic Transl Sci 2021; 6:918-932. [PMID: 34869957 PMCID: PMC8617573 DOI: 10.1016/j.jacbts.2021.07.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022]
Abstract
Although there is an established bidirectional relationship between heart failure with reduced ejection fraction and liver disease, the association between heart failure with preserved ejection fraction (HFpEF) and liver diseases, such as nonalcoholic fatty liver disease (NAFLD), has not been well explored. In this paper, the authors provide an in-depth review of the relationship between HFpEF and NAFLD and propose 3 NAFLD-related HFpEF phenotypes (obstructive HFpEF, metabolic HFpEF, and advanced liver fibrosis HFpEF). The authors also discuss diagnostic challenges related to the concurrent presence of NAFLD and HFpEF and offer several treatment options for NAFLD-related HFpEF phenotypes. The authors propose that NAFLD-related HFpEF should be recognized as a distinct HFpEF phenotype.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- AV, arteriovenous
- BCAA, branched-chain amino acid
- GLP, glucagon-like peptide
- HF, heart failure
- HFpEF
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- IL, interleukin
- LV, left ventricular
- LVEF, left ventricular ejection fraction
- NAFLD
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- NT-proBNP, N terminal pro–B-type natriuretic peptide
- RAAS, renin-angiotensin aldosterone system
- SGLT2, sodium-glucose cotransporter 2
- SPSS, spontaneous portosystemic shunt(s)
- TNF, tumor necrosis factor
- cardiomyopathy
- heart failure
- liver
Collapse
Affiliation(s)
- Husam M. Salah
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ambarish Pandey
- Division of Cardiology, Department of Medicine, University of Texas Southwestern, and Parkland Health and Hospital System, Dallas, Texas, USA
| | - Anzhela Soloveva
- Department of Cardiology, Almazov National Medical Research Centre, Saint Petersburg, Russian Federation
| | - Manal F. Abdelmalek
- Division of Gastroenterology and Hepatology, Duke University, Durham, North Carolina, USA
| | - Anna Mae Diehl
- Division of Gastroenterology and Hepatology, Duke University, Durham, North Carolina, USA
| | - Cynthia A. Moylan
- Division of Gastroenterology and Hepatology, Duke University, Durham, North Carolina, USA
| | - Kara Wegermann
- Division of Gastroenterology and Hepatology, Duke University, Durham, North Carolina, USA
| | - Vishal N. Rao
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Adrian F. Hernandez
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Ryan J. Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kishan S. Parikh
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Robert J. Mentz
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Robert W. McGarrah
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Marat Fudim
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Durham, North Carolina, USA
| |
Collapse
|