1
|
Yang Z, Cai J, Li J, Liu X, Liu W, Cui K, Bai Z, Dong Y, Peng D, Duan Q, Shahzad A, Zhang Q. The Mechanism of TRIM21 Inhibiting the Invasion and Migration of ccRCC by Stabilizing ASS1. Mol Carcinog 2024. [PMID: 39513657 DOI: 10.1002/mc.23840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by its aggressive invasion and metastasis, presenting significant clinical challenges. Gaining insights into the molecular mechanisms underlying its progression is crucial for the development of effective therapeutic strategies. Addressing a critical knowledge gap in understanding ccRCC tumorigenesis, this study aims to elucidate the expression patterns of TRIM21 in ccRCC, unravel its impact on ccRCC patient prognosis, and investigate the regulatory role of TRIM21 in ASS1 expression and urea cycle dysregulation within the context of ccRCC. The results demonstrate that TRIM21 is downregulated in ccRCC, and low expression of TRIM21 predicts an unfavorable prognosis for ccRCC patients. Furthermore, the upregulation of TRIM21 can inhibit the migration and invasion of ccRCC cells by regulating the ubiquitination modification of ASS1. This not only expands the functional role of TRIM21 in ccRCC tumorigenesis but also demonstrates its ability to reverse urea cycle dysregulation through stabilizing ASS1 expression. Specifically, abnormal downregulation of TRIM21 in ccRCC reduces K63 ubiquitination modification of ASS1, leading to decreased stability of the ASS1 protein, aggravated urea cycle dysregulation, and facilitated migration and invasion of ccRCC cells. Additionally, reduction in ASS1 reverses the depressed migration and invasion caused by overexpression of TRIM21 in ccRCC cells. In summary, our findings contribute to a deeper understanding of the functional role played by TRIM21 in ccRCC progression, pinpoint a unique and novel regulatory mechanism involving ectopic downregulation-mediated ASS1 ubiquitination modification and urea cycle dysfunction during ccRCC progression, and provide fresh insights for further investigation into the pathogenesis and metabolic reprogramming associated with ccRCC.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jihao Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Jingjing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Ziyuan Bai
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yurong Dong
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dongmei Peng
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Lu J, Liang K, Zou R, Peng Y, Wang H, Huang R, Zeng Z, Feng Z, Fan Y, Zhang S, Ji Y, Pang X, Wang Y, Zhang H, Wang Z. Comprehensive analysis of the prognostic and immunological signature of eight Tripartitemotif (TRIM) family molecules in human gliomas. Aging (Albany NY) 2023; 15:5798-5825. [PMID: 37367937 PMCID: PMC10333093 DOI: 10.18632/aging.204841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND TRIM family molecules have been identified as being involved in the tumor progression of various cancer types. Increasingly, experimental evidence indicates that some of TRIM family molecules are implicated in glioma tumorigenesis. However, the diverse genomic changes, prognostic values and immunological landscapes of TRIM family of molecules have yet to be fully determined in glioma. METHODS In our study, employing the comprehensive bioinformatics tools, we evaluated the unique functions of 8 TRIM members including TRIM5/17/21/22/24/28/34/47 in gliomas. RESULTS The expression levels of 7 TRIM members (TRIM5/21/22/24/28/34/47) were higher in glioma as well as its diverse cancer subtypes than in normal tissues, whereas the expression level of TRIM17 was the opposite, lower in the former than in the latter. In addition, survival analysis revealed that the high expression profiles of TRIM5/21/22/24/28/34/47 were associated with poor overall survival (OS), disease-specific survival (DSS) and progress-free interval (PFI) in glioma patients, whereas TRIM17 displayed adverse outcomes. Moreover, the 8 TRIM molecules expression as well as methylation profiles remarkably correlated with different WHO grades. And genetic alterations, including mutations and copy number alterations (CNAs), in the TRIM family were correlated with longer OS, DSS and progress-free survival (PFS) in glioma patients. Furthermore, through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis results of these 8 molecules and their related genes, we found that these molecules may change the immune infiltration of the tumor microenvironment and regulate the expression of immune checkpoint molecules (ICMs), affecting the occurrence and development of gliomas. The correlation analyses between the 8 TRIM molecules and TMB (tumor mutational burden)/MSI (microsatellite instability)/ICMs discovered that as the expression level of TRIM5/21/22/24/28/34/47 increased, the TMB score also increased significantly, while TRIM17 showed an opposite outcome. Further, a 6-gene signature (TRIM 5/17/21/28/34/47) for predicting overall survival (OS) in gliomas was built by using the least absolute shrinkage and selection operator (LASSO) regression, and the survival and time-dependent ROC analyses all were found to perform well in testing and validation cohorts. Results of multivariate COX regression analysis showed that TRIM5/28 are both expected to become independent risk predictors to guide clinical treatment. CONCLUSION In general, the results indicate that TRIM5/17/21/22/24/28/34/47 might exert a crucial influence on gliomas tumorigenesis and might be putative prognostic markers and therapeutic targets for glioma patients.
Collapse
Affiliation(s)
- Jiajie Lu
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Kairong Liang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Renheng Zou
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yuecheng Peng
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Haojian Wang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Rihong Huang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Zhaorong Zeng
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Zejia Feng
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Yongyang Fan
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou 510182, China
| | - Shizhen Zhang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yunxiang Ji
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Xiao Pang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yezhong Wang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Hongri Zhang
- Department of Neurosurgery, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Zhaotao Wang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
3
|
Weng Y, Ning P. Construction of a prognostic prediction model for renal clear cell carcinoma combining clinical traits. Sci Rep 2023; 13:3358. [PMID: 36849551 PMCID: PMC9970964 DOI: 10.1038/s41598-023-30020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is one of the common malignant tumors of the urinary system. Patients with different risk levels are other in terms of disease progression patterns and disease regression. The poorer prognosis for high-risk patients compared to low-risk patients. Therefore, it is essential to accurately high-risk screen patients and gives accurate and timely treatment. Differential gene analysis, weighted correlation network analysis, Protein-protein interaction network, and univariate Cox analysis were performed sequentially on the train set. Next, the KIRC prognostic model was constructed using the least absolute shrinkage and selection operator (LASSO), and the Cancer Genome Atlas (TCGA) test set and the Gene Expression Omnibus dataset verified the model's validity. Finally, the constructed models were analyzed; including gene set enrichment analysis (GSEA) and immune analysis. The differences in pathways and immune functions between the high-risk and low-risk groups were observed to provide a reference for clinical treatment and diagnosis. A four-step key gene screen resulted in 17 key factors associated with disease prognosis, including 14 genes and 3 clinical features. The LASSO regression algorithm selected the seven most critical key factors to construct the model: age, grade, stage, GDF3, CASR, CLDN10, and COL9A2. In the training set, the accuracy of the model in predicting 1-, 2- and 3-year survival rates was 0.883, 0.819, and 0.830, respectively. The accuracy of the TCGA dataset was 0.831, 0.801, and 0.791, and the accuracy of the GSE29609 dataset was 0.812, 0.809, and 0.851 in the test set. Model scoring divided the sample into a high-risk group and a low-risk group. There were significant differences in disease progression and risk scores between the two groups. GSEA analysis revealed that the enriched pathways in the high-risk group mainly included proteasome and primary immunodeficiency. Immunological analysis showed that CD8 (+) T cells, M1 macrophages, PDCD1, and CTLA4 were upregulated in the high-risk group. In contrast, antigen-presenting cell stimulation and T-cell co-suppression were more active in the high-risk group. This study added clinical characteristics to constructing the KIRC prognostic model to improve prediction accuracy. It provides help to assess the risk of patients more accurately. The differences in pathways and immunity between high and low-risk groups were also analyzed to provide ideas for treating KIRC patients.
Collapse
Affiliation(s)
- Yujie Weng
- grid.410612.00000 0004 0604 6392College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110 Inner Mongolia Autonomous Region China
| | - Pengfei Ning
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
4
|
Huang N, Sun X, Li P, Liu X, Zhang X, Chen Q, Xin H. TRIM family contribute to tumorigenesis, cancer development, and drug resistance. Exp Hematol Oncol 2022; 11:75. [PMID: 36261847 PMCID: PMC9583506 DOI: 10.1186/s40164-022-00322-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
The tripartite-motif (TRIM) family represents one of the largest classes of putative single protein RING-finger E3 ubiquitin ligases. TRIM family is involved in a variety of cellular signaling transductions and biological processes. TRIM family also contributes to cancer initiation, progress, and therapy resistance, exhibiting oncogenic and tumor-suppressive functions in different human cancer types. Moreover, TRIM family members have great potential to serve as biomarkers for cancer diagnosis and prognosis. In this review, we focus on the specific mechanisms of the participation of TRIM family members in tumorigenesis, and cancer development including interacting with dysregulated signaling pathways such as JAK/STAT, PI3K/AKT, TGF-β, NF-κB, Wnt/β-catenin, and p53 hub. In addition, many studies have demonstrated that the TRIM family are related to tumor resistance; modulate the epithelial–mesenchymal transition (EMT) process, and guarantee the acquisition of cancer stem cells (CSCs) phenotype. In the end, we havediscussed the potential of TRIM family members for cancer therapeutic targets.
Collapse
Affiliation(s)
- Ning Huang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xiaolin Sun
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Peng Li
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China
| | - Xin Liu
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.,PharmaLegacy Laboratories Co.,Ltd, Shengrong Road No.388, Zhangjiang High-tech Park, Pudong New Area, Shanghai, China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Qian Chen
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy & General Surgery of Minhang Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
5
|
Xu Y, Li H, Lan A, Wu Q, Tang Z, Shu D, Tan Z, Liu X, Liu Y, Liu S. Cuprotosis-Related Genes: Predicting Prognosis and Immunotherapy Sensitivity in Pancreatic Cancer Patients. JOURNAL OF ONCOLOGY 2022; 2022:2363043. [PMID: 36117848 PMCID: PMC9481390 DOI: 10.1155/2022/2363043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/25/2022]
Abstract
Based on TCGA, GTEx, and TIMER databases and various bioinformatics analysis methods, the potential biological roles of cuprotosis-related genes in pancreatic cancer were deeply explored, and a predictive model for pancreatic cancer patients was constructed. We downloaded the RNA-Seq data and clinicopathological and predictive data of 179 pancreatic cancer tissues and 332 adjacent normal tissues from TCGA and GTEx databases. The differential expression of cuprotosis-related genes in pancreatic cancer tissue and adjacent normal tissue was analyzed, and the LASSO regression algorithm was used to construct a prediction model and verify the validity of the model prediction. Based on the LASSO regression algorithm, a predictive model composed of three genes LIPT1, LIAS, and DLAT was screened. The corresponding survival curves showed that the constructed prediction model could significantly distinguish the prognosis of pancreatic cancer patients, and the prognosis of patients in the high-risk group was worse (P = 0.00557). The ROC curve showed that the area under the curve of the predictive model for predicting the 4-, 5-, and 6-year survival rates in pancreatic cancer was 0.816, 0.836, and 0.956, respectively. The AUC value of this risk model was significantly higher than 0.7, which could more accurately predict the prognosis of pancreatic cancer patients. This study determined a risk-scoring model of cuprotosis-related genes, which can provide an essential basis for judging the prognosis of pancreatic cancer patients.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Han Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Ailin Lan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Qiulin Wu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Zhenrong Tang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Dan Shu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Zhaofu Tan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Xin Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yang Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Shengchun Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| |
Collapse
|
6
|
Xie T, Tan M, Gao Y, Yang H. CRABP2 accelerates epithelial mesenchymal transition in serous ovarian cancer cells by promoting TRIM16 methylation via upregulating EZH2 expression. ENVIRONMENTAL TOXICOLOGY 2022; 37:1957-1967. [PMID: 35442568 DOI: 10.1002/tox.23542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 05/28/2023]
Abstract
Recently, it was covered that cellular retinoic acid-binding protein 2 (CRABP2) is upregulated in ovarian cancer and participates in tumor progression, however, the specific mechanism remains to be explored. The pcDNA-CRABP2 or si-CRABP2 was transfected into SKOV3 and OVCAR3 ovarian cancer cells, respectively, and we observed that overexpression of CRABP2 inhibited cell apoptosis, promoted cell invasion and expression of epithelial mesenchymal transition (EMT) marker proteins, and transfection of si-CRABP2 had the opposite effect. Furthermore, we predicted that EZH2 interacted with CRABP2, and overexpression of CRABP2 promoted EZH2 expression, knockdown of CRABP2 inhibited EZH2 expression, and co-immunoprecipitation assay confirmed their binding relationship. The SKOV3 and OVCAR3 cells were then incubated with pcDNA-CRABP2 alone together with si-EZH2, and we found that si-EZH2 reversed the effect of pcDNA-CRABP2 on promotion of EZH2 expression, cell invasion and EMT maker protein levels. Next, we found that EZH2 could bind to DNMT1, and overexpression of EZH2 inhibited TRIM16 expression and knockdown of EZH2 promoted TRIM16 expression. Moreover, the promoter of TRIM16 contains the CpG island, and ChIP assay observed enriched DNMT1 on the promoter of TRIM16, and overexpression of EZH2 increased the promoter methylation level of TRIM16 and knockdown of EZH2 suppressed the methylation. The SKOV3 cells were incubated with si-EZH2 alone or combined with si-TRIM16, and we found that si-TRIM16 reversed the effect of si-EZH2. In vivo studies showed that knockdown of CRABP2 inhibited tumor volume and weight, suppressed the expression of EZH2 and EMT related proteins vimentin and snail, and increased the expression of TRIM16 and E-cadherin.
Collapse
Affiliation(s)
- Tingting Xie
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Minghua Tan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Yang Gao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Hong Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Zheng D, Zhang Y, Xia Y, Cheng F. A Novel Gene Signature of Tripartite Motif Family for Predicting the Prognosis in Kidney Renal Clear Cell Carcinoma and Its Association With Immune Cell Infiltration. Front Oncol 2022; 12:840410. [PMID: 35371994 PMCID: PMC8968921 DOI: 10.3389/fonc.2022.840410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/22/2022] [Indexed: 12/26/2022] Open
Abstract
Given the importance of tripartite motif (TRIM) proteins in diverse cellular biological processes and that their dysregulation contributes to cancer progression, we constructed a robust TRIM family signature to stratify patients with kidney renal clear cell carcinoma (KIRC). Transcriptomic profiles and corresponding clinical information of KIRC patients were obtained from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases. Prognosis-related TRIM family genes were screened and used to construct a novel TRIM family-based signature for the training cohort. The accuracy and generalizability of the prognostic signature were assessed in testing, entire, and external ICGC cohorts. We analyzed correlations among prognostic signatures, tumor immune microenvironment, and immune cell infiltration. The results of univariate Cox regression and Kaplan-Meier survival analyses revealed 27 TRIMs that were robustly associated with the prognosis of patients with KIRC. We applied Lasso regression and multivariate Cox regression analyses to develop a prognostic signature containing the TRIM1, 13, 35, 26, 55, 2, 47, and 27 genes to predict the survival of patients with KIRC. The accuracy and generalizability of this signature were confirmed in internal and external validation cohorts. We also constructed a predictive nomogram based on the signature and the clinicopathological characteristics of sex, age, and T and M status to aid clinical decision-making. We analyzed immune cell infiltration analysis and found that CD8 T cells, memory resting CD4 T cells, and M2 macrophages were the most enriched components in the KIRC tumor immune microenvironment. A higher level of immune infiltration by plasma cells, follicular helper T cells, and activated NK cells, and a lower level of immune infiltration by memory resting CD4 T cells, M1 and M2 macrophages, and resting dendritic cells were associated with higher risk scores. Overall, our eight-gene TRIM family signature has sufficient accuracy and generalizability for predicting the overall survival of patients with KIRC. Furthermore, this prognostic signature is associated with tumor immune status and distinct immune cell infiltrates in the tumor microenvironment.
Collapse
|
8
|
Dai W, Wang J, Wang Z, Xiao Y, Li J, Hong L, Pei M, Zhang J, Yang P, Wu X, Tang W, Jiang X, Jiang P, Xiang L, Li A, Lin J, Liu S, Wang J. Comprehensive Analysis of the Prognostic Values of the TRIM Family in Hepatocellular Carcinoma. Front Oncol 2022; 11:767644. [PMID: 35004288 PMCID: PMC8733586 DOI: 10.3389/fonc.2021.767644] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Background Accumulating studies have demonstrated the abnormal expressions and prognostic values of certain members of the tripartite motif (TRIM) family in diverse cancers. However, comprehensive prognostic values of the TRIM family in hepatocellular carcinoma (HCC) are yet to be clearly defined. Methods The prognostic values of the TRIM family were evaluated by survival analysis and univariate Cox regression analysis based on gene expression data and clinical data of HCC from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The expression profiles, protein–protein interaction among the TRIM family, prediction of transcription factors (TFs) or miRNAs, genetic alterations, correlations with the hallmarks of cancer and immune infiltrates, and pathway enrichment analysis were explored by multiple public databases. Further, a TRIM family gene-based signature for predicting overall survival (OS) in HCC was built by using the least absolute shrinkage and selection operator (LASSO) regression. TCGA–Liver Hepatocellular Carcinoma (LIHC) cohort was used as the training set, and GSE76427 was used for external validation. Time-dependent receiver operating characteristic (ROC) and survival analysis were used to estimate the signature. Finally, a nomogram combining the TRIM family risk score and clinical parameters was established. Results High expressions of TRIM family members including TRIM3, TRIM5, MID1, TRIM21, TRIM27, TRIM32, TRIM44, TRIM47, and TRIM72 were significantly associated with HCC patients’ poor OS. A novel TRIM family gene-based signature (including TRIM5, MID1, TRIM21, TRIM32, TRIM44, and TRIM47) was built for OS prediction in HCC. ROC curves suggested the signature’s good performance in OS prediction. HCC patients in the high-risk group had poorer OS than the low-risk patients based on the signature. A nomogram integrating the TRIM family risk score, age, and TNM stage was established. The ROC curves suggested that the signature presented better discrimination than the similar model without the TRIM family risk score. Conclusion Our study identified the potential application values of the TRIM family for outcome prediction in HCC.
Collapse
Affiliation(s)
- Weiyu Dai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhi Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yizhi Xiao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaying Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Linjie Hong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Miaomiao Pei
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jieming Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Yang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaosheng Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimei Tang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoling Jiang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Jiang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xiang
- Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianjiao Lin
- Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, China
| | - Jide Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Longgang District People's Hospital, Shenzhen, China
| |
Collapse
|
9
|
Wu G, Li X, Liu Y, Li Q, Xu Y, Wang Q. Study on HOXBs of Clear Cell Renal Cell Carcinoma and Detection of New Molecular Target. JOURNAL OF ONCOLOGY 2021; 2021:5541423. [PMID: 34306077 PMCID: PMC8282400 DOI: 10.1155/2021/5541423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/04/2021] [Accepted: 06/12/2021] [Indexed: 11/18/2022]
Abstract
Our study examined the transcriptional and survival data of HOXBs in patients with clear cell renal cell carcinoma (ccRCC) from the ONCOMINE database, Human Protein Atlas, and STRING website. We discovered that the expression levels of HOXB3/5/6/8/9 were significantly lower in ccRCC than in normal nephritic tissues. In ccRCC, patients with a high expression of HOXB2/5/6/7/8/9 mRNA have a higher overall survival (OS) than patients with low expression. Further analysis by the GSCALite website revealed that the methylation of HOXB3/5/6/8 in ccRCC was significantly negatively correlated to gene expression, while HOXB5/9 was positively correlated to the CCT036477 drug target. As DNA abnormal methylation is one of the mechanisms of tumorigenesis, we hypothesized that HOXB5/6/8/9 are potential therapeutic targets for patients with ccRCC. We analyzed the function of enrichment data of HOXBs in patients with ccRCC from the Kyoto Encyclopedia of Genes and Genomes pathway enrichment and the PANTHER pathway. The results of the analysis show that the function of HOXBs might be associated with the Wnt pathway and that HOXB5/6/8/9 was coexpressed with multiple Wnt pathway classical genes and proteins, such as MYC, CTNNB, Cyclin D1 (CCND1), and tumor protein P53 (TP53), which further confirms that HOXBs inhibit the growth of renal carcinoma cells through the Wnt signaling pathway. In conclusion, our analysis of the family of HOXBs and their molecular mechanism may provide a theoretical basis for further research.
Collapse
Affiliation(s)
- Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaowei Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yuanxin Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Quanlin Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|