1
|
Nava-Bringas TI, Manrique CMJ, González-Huerta NC, Morales-Hernández E, Miranda-Duarte A. COMT and SCN9A gene variants do not contribute to chronic low back pain in Mexican-Mestizo patients. Acta Neurochir (Wien) 2024; 166:73. [PMID: 38329587 DOI: 10.1007/s00701-024-05937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/26/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND Chronic low back pain (CLBP) is a complex condition in which genetic factors play a role in its susceptibility. Catechol-O-methyltransferase (COMT) and sodium channel NaV1.7 (SCN9A) genes are implicated in pain perception. The aim is to analyze the association of COMT and SCN9A with CLBP and their interaction, in a Mexican-Mestizo population. METHODS A case-control study was conducted. Cases corresponded to adults of both sexes with CLBP. Controls were adults with no CLBP. Variants of SCN9A and COMT were genotyped. Allelic and genotypic frequencies and Hardy-Weinberg equilibrium (HWE) were calculated. Association was tested under codominant, dominant, and recessive models. Multifactor dimensionality reduction was developed to detect epistasis. RESULTS Gene variants were in HWE, and there was no association under different inheritance models in the whole sample. In women, in codominant and dominant models, a trend to a high risk was observed for AA of rs4680 of COMT (OR = 1.7 [0.5-5.3] and 1.6 [0.7-3.4]) and for TT of rs4633 (OR = 1.6 [0.7-3.7] and 1.6 [0.7-3.4]). In men, a trend to low risk was observed for AG genotype of rs4680 in the same models (OR = 0.6 [0.2-1.7] and 0.7 [0.3-1.7]), and for TC genotype of rs4633 in the codominant model (OR = 0.6 [0.2-1.7]). In the interaction analysis, a model of the SCN9A and COMT variants showed a CVC of 10/10; however, the TA was 0.4141. CONCLUSION COMT and SCN9A variants are not associated with CLBP in the analyzed Mexican-Mestizo population.
Collapse
Affiliation(s)
- Tania Inés Nava-Bringas
- Department of Orthopedic Rehabilitation, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Av. México-Xochimilco 289, Colonia Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| | - Carlos Manuel Juaristi Manrique
- Department of Genomic Medicine, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Av. México-Xochimilco 289, Colonia Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| | - Norma Celia González-Huerta
- Department of Genomic Medicine, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Av. México-Xochimilco 289, Colonia Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| | - Eugenio Morales-Hernández
- Radiology Service, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Av. México-Xochimilco 289, Colonia Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico
| | - Antonio Miranda-Duarte
- Department of Genomic Medicine, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Av. México-Xochimilco 289, Colonia Arenal de Guadalupe, Tlalpan, 14389, Mexico City, Mexico.
| |
Collapse
|
2
|
Bahar ME, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Akter KM, Kim DH, Yang J, Kim DR. Targeting Autophagy for Developing New Therapeutic Strategy in Intervertebral Disc Degeneration. Antioxidants (Basel) 2022; 11:antiox11081571. [PMID: 36009290 PMCID: PMC9405341 DOI: 10.3390/antiox11081571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent cause of low back pain. IVDD is characterized by abnormal expression of extracellular matrix components such as collagen and aggrecan. In addition, it results in dysfunctional growth, senescence, and death of intervertebral cells. The biological pathways involved in the development and progression of IVDD are not fully understood. Therefore, a better understanding of the molecular mechanisms underlying IVDD could aid in the development of strategies for prevention and treatment. Autophagy is a cellular process that removes damaged proteins and dysfunctional organelles, and its dysfunction is linked to a variety of diseases, including IVDD and osteoarthritis. In this review, we describe recent research findings on the role of autophagy in IVDD pathogenesis and highlight autophagy-targeting molecules which can be exploited to treat IVDD. Many studies exhibit that autophagy protects against and postpones disc degeneration. Further research is needed to determine whether autophagy is required for cell integrity in intervertebral discs and to establish autophagy as a viable therapeutic target for IVDD.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Omar Elashkar
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Kazi-Marjahan Akter
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, GyeongNam, Korea
| | - Dong-Hee Kim
- Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University Hospital and Gyeongsang National University College of Medicine, Jinju 52727, GyeongNam, Korea
| | - Jinsung Yang
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, GyeongNam, Korea
- Correspondence: ; Tel.: +82-55-772-8054
| |
Collapse
|
3
|
McDonnell JM, Rigney B, Storme J, Ahern DP, Cunniffe G, Butler JS. Pharmacogenetic profiling and individualised therapy in the treatment of degenerative spinal conditions. Ir J Med Sci 2022:10.1007/s11845-022-03112-9. [PMID: 35962253 DOI: 10.1007/s11845-022-03112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/20/2022] [Indexed: 10/15/2022]
Abstract
Patients presenting with degenerative spinal changes are often poor surgical candidates due to associated co-morbidities, frailty, or sarcopenia. Additionally, surgeries of a degenerative spine can prove difficult due to the distortion of normal surgical anatomy. Therefore, many patients are managed conservatively with a variety of modalities, including over-the-counter and prescription medications. Nevertheless, several patients do not experience adequate relief from pain with analgesic medications, precipitating multiple hospital visits, and usage of resources. As a result, back pain is regarded as a major economic burden, with total costs of associated treatment exceeding $100 billion annually. Pharmacogenetics is a relatively novel method of evaluating an individual's response to analgesic medications, through analysis of germline polymorphisms. It entails obtaining a genetic sample, often via buccal swab or peripheral blood sample, and genetic analysis achieved through either polymerase chain reaction +/- Sanger sequencing, microassays, restriction length fragment polymorphism analysis, or genetic library preparation and next generation sequencing. The potential efficacy of pharmacogenetic analysis has been highlighted across several specialities to date. However, a paucity of evidence exists regarding spine surgery populations. Nevertheless, regular prospective pharmacogenetic analysis may ultimately prove beneficial when concerning degenerative spinal cohorts due to aforementioned surgical and economic considerations. The purpose of this narrative review is to outline how metaboliser profile variants affect the pharmacokinetics of specific analgesia used to treat back pain, and to discuss the current potential and limitations of employing regular pharmacogenetic analysis for spine surgery populations with degenerative conditions.
Collapse
Affiliation(s)
- Jake M McDonnell
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Eccles St., Dublin, D07 R2WY, Ireland.
| | - Brian Rigney
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Eccles St., Dublin, D07 R2WY, Ireland
| | - James Storme
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Eccles St., Dublin, D07 R2WY, Ireland
| | - Daniel P Ahern
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Eccles St., Dublin, D07 R2WY, Ireland.,School of Medicine, Trinity College, Dublin, Ireland
| | - Gráinne Cunniffe
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Eccles St., Dublin, D07 R2WY, Ireland
| | - Joseph S Butler
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Eccles St., Dublin, D07 R2WY, Ireland.,School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Fricke-Galindo I, Pérez-Aldana BE, Macías-Kauffer LR, González-Arredondo S, Dávila-Ortiz de Montellano D, Aviña-Cervantes CL, López-López M, Rodríguez-Agudelo Y, Monroy-Jaramillo N. Impact of COMT, PRODH and DISC1 Genetic Variants on Cognitive Performance of Patients with Schizophrenia. Arch Med Res 2022; 53:388-398. [DOI: 10.1016/j.arcmed.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022]
|
5
|
Che Z, Xueqin J, Zhang Z. LncRNA OIP5-AS1 accelerates intervertebral disc degeneration by targeting miR-25-3p. Bioengineered 2021; 12:11201-11212. [PMID: 34872452 PMCID: PMC8810189 DOI: 10.1080/21655979.2021.2007697] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
It is obvious that epigenetic processes influence the evolution of intervertebral disc degeneration (IDD). However, its molecular mechanisms are poorly understood. Long noncoding RNAs (lncRNAs) have been validated to exert vital roles in IDD. Therefore, we tested the hypothesis that OIP5-AS1, a potential regulator of IDD, modulates IDD progression. RT-PCR was utilized to detect levels of OIP5-AS1, miR-25-3p, Collagen II and Aggrecan in IDD tissues and nucleus pulposus cells (NPCs). Immunofluorescence assay measured Collagen II expression. CCK-8, EdU, and flow cytometry estimated the levels of proliferation and apoptosis. Proteins were assessed via Western blot. The binding affinity of OIP5-AS1 with miR-25-3p was investigated by luciferase reporter assay. Enzyme-linked immunosorbent assay (ELISA) analyzed the levels of inflammatory factors. OIP5-AS1 was high expressed in IDD tissues and its expression gradually promoted with the increasing of Pfirrmann scores. The cell morphology of NPCs changed into spindle-shaped, and Collagen II expression was low. After OIP5-AS1 was silenced, cell proliferation was boosted whereas both apoptosis and extracellular matrix (ECM) degradation were restrained. In LPS-activated NPCs, OIP5-AS1 depletion also suppressed inflammation response. Further, miR-25-3p was a target of OIP5-AS1. The effects of OIP5-AS1 silence on proliferation, apoptosis, and ECM degradation were reversed upon miR-25-3p downregulation. Moreover, the inhibitory impact of OIP5-AS1 knockdown on the inflammation of LPS-treated NPCs was rescued with miR-25-3p inference. In general, lncRNA OIP5-AS1 exerted its effects in IDD by targeting miR-25-3p, implying the usage of OIP5-AS1/miR-25-3p as a novel regulatory axis for the molecular targets of IDD therapy.
Collapse
Affiliation(s)
- Zhaoping Che
- Department of Operation, The Traditional Chinese Medical Hospital of Lianyungang, Lianyungang, Jiangsu Province, China
| | - Jie Xueqin
- Department of Operation, The Second People's Hospital of Lianyungang, Lianyungang Jiangsu Province, China
| | - Zongyu Zhang
- Department of Orthopaedics, The Traditional Chinese Medical Hospital of Lianyungang, Lianyungang Jiangsu Province, China
| |
Collapse
|
6
|
Cornett EM, Carroll Turpin MA, Pinner A, Thakur P, Sekaran TSG, Siddaiah H, Rivas J, Yates A, Huang GJ, Senthil A, Khurmi N, Miller JL, Stark CW, Urman RD, Kaye AD. Pharmacogenomics of Pain Management: The Impact of Specific Biological Polymorphisms on Drugs and Metabolism. Curr Oncol Rep 2020; 22:18. [PMID: 32030524 DOI: 10.1007/s11912-020-0865-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Pain is multifactorial and complex, often with a genetic component. Pharmacogenomics is a relative new field, which allows for the development of a truly unique and personalized therapeutic approach in the treatment of pain. RECENT FINDINGS Until recently, drug mechanisms in humans were determined by testing that drug in a population and calculating response averages. However, some patients will inevitably fall outside of those averages, and it is nearly impossible to predict who those outliers might be. Pharmacogenetics considers a patient's unique genetic information and allows for anticipation of that individual's response to medication. Pharmacogenomic testing is steadily making progress in the management of pain by being able to identify individual differences in the perception of pain and susceptibility and sensitivity to drugs based on genetic markers. This has a huge potential to increase efficacy and reduce the incidence of iatrogenic drug dependence and addiction. The streamlining of relevant polymorphisms of genes encoding receptors, transporters, and drug-metabolizing enzymes influencing the pain phenotype can be an important guide to develop safe new strategies and approaches to personalized pain management. Additionally, some challenges still prevail and preclude adoption of pharmacogenomic testing universally. These include lack of knowledge about pharmacogenomic testing, inadequate standardization of the process of data handling, questionable benefits about the clinical and financial aspects of pharmacogenomic testing-guided therapy, discrepancies in clinical evidence supporting these tests, and doubtful reimbursement of the tests by health insurance agencies.
Collapse
Affiliation(s)
- Elyse M Cornett
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Michelle A Carroll Turpin
- Department of Biomedical Sciences, College of Medicine, University of Houston, Health 2 Building, Room 8037, Houston, TX, USA
| | - Allison Pinner
- Ochsner LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Pankaj Thakur
- Department of Anesthesiology, Ochsner LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | | | - Harish Siddaiah
- Department of Anesthesiology, Ochsner LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Jasmine Rivas
- Department of Family Medicine, ECU Vidant Medical Center, 101 Heart Drive, Greenville, NC, 27834, USA
| | - Anna Yates
- LSU Health Shreveport School of Medicine, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - G Jason Huang
- Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Anitha Senthil
- Department of Anesthesiology, Lahey Hospital & Medical Center, 41Mall Road, Burlington, MA, 01805, USA
| | - Narjeet Khurmi
- Department of Anesthesiology & Perioperative Medicine, Mayo Clinic Arizona, 5777 East Mayo Boulevard, Phoenix, AZ, 85054, USA
| | - Jenna L Miller
- LSU Health Sciences Center New Orleans, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Cain W Stark
- Medical College of Wisconsin, 8701 West Watertown Plank Road, Wauwatosa, WI, 53226, USA
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Alan David Kaye
- Department of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, Louisiana State University School of Medicine, 1501 Kings Hwy, Shreveport, LA, 71103, USA
| |
Collapse
|
7
|
Yamamoto PA, Conchon Costa AC, Lauretti GR, de Moraes NV. Pharmacogenomics in chronic pain therapy: from disease to treatment and challenges for clinical practice. Pharmacogenomics 2019; 20:971-982. [DOI: 10.2217/pgs-2019-0066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pharmacogenomics (PGx) has emerged as an encouraging tool in chronic pain therapy. Genetic variations associated with drug effectiveness or adverse reactions (amitriptyline/nortriptyline/codeine/oxycodone/tramadol-CYP2D6, amitriptyline-CYP2C19, carbamazepine-HLA-A, carbamazepine/oxcarbazepine-HLA-B) can be used to guide chronic pain management. Despite this evidence, many obstacles still need to be overcome for the effective clinical implementation of PGx. To translate the pharmacogenetic testing into actionable clinical decisions, the Clinical Pharmacogenetics Implementation Consortium has been developing guidelines for several drug–gene pairs. This review will show the applicability of PGx in chronic pain from disease to treatment; report the drug–gene pairs with strongest evidences in the clinic; and the challenges for the clinical implementation of PGx.
Collapse
Affiliation(s)
- Priscila Akemi Yamamoto
- São Paulo State University, UNESP - School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Ana Carolina Conchon Costa
- São Paulo University, USP – School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Gabriela Rocha Lauretti
- São Paulo University, USP – School of Medicine of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Natália Valadares de Moraes
- São Paulo State University, UNESP - School of Pharmaceutical Sciences, Araraquara, SP, Brazil
- Queen's University Belfast, Belfast, UK
| |
Collapse
|
8
|
Severe Lumbar Intervertebral Disc Degeneration Is Associated with Modic Changes and Fatty Infiltration in the Paraspinal Muscles at all Lumbar Levels, Except for L1-L2: A Cross-Sectional Analysis of 50 Symptomatic Women and 50 Age-Matched Symptomatic Men. World Neurosurg 2018; 122:e1069-e1077. [PMID: 30415054 DOI: 10.1016/j.wneu.2018.10.229] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Low back pain is a common public health problem associated with lumbar intervertebral disc degeneration. It is still unclear, however, whether intervertebral disc degeneration is an isolated process or accompanied by other degenerative events. We analyzed whether disc degeneration was associated with vertebral end-plate changes and fatty infiltration in the paraspinal muscles. We also aimed to identify whether the severity of disc degeneration influenced this association. METHODS Intervertebral disc degeneration, vertebral end-plate changes, and fatty infiltration in the multifidus, erector spinae, and psoas muscles at all lumbar intervertebral disc levels were evaluated on lumbar spine magnetic resonance images of 50 symptomatic women and 50 age-matched symptomatic men. RESULTS The women had greater lumbar intervertebral disc degeneration scores at L4-L5 and L5-S1 and in total. The women had more fatty infiltration in the multifidus and erector spinae muscles at L4-L5 and L5-S1. The men had more fatty infiltration in the psoas muscle at L5-S1. Patients with severe intervertebral disc degeneration were more likely to have increased fatty infiltration in the multifidus and erector spinae muscles. The rate of vertebral end-plate changes was also greater in the patients with severe intervertebral disc degeneration. CONCLUSIONS Severe disc degeneration in the lumbar spine is closely associated with Modic changes and fatty infiltration in the multifidus and erector spinae muscles. We suggest that disc degeneration is not an isolated event but, rather, a continuum of events that could more clearly be shown in future prospective, large sample-size studies.
Collapse
|
9
|
A common polymorphism of COMT was associated with symptomatic lumbar disc herniation based on a large sample with Chinese Han ancestry. Sci Rep 2018; 8:13000. [PMID: 30158547 PMCID: PMC6115408 DOI: 10.1038/s41598-018-31240-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023] Open
Abstract
Lumbar disc herniation (LDH) is a common spine disease characterized by a tear in the disc ring and bulges out at the soft portion. COMT is a protein coding gene located at 22q11.21, and its gene product is a major mammalian enzyme involved in the degradation of catecholamines. A total of 2,678 study subjects with Chinese Han ancestry were recruited and 15 SNPs were selected for genotyping in our study subjects. A synonymous coding SNP, rs4633, was identified to be significantly associated with the disease status of LDH after adjusting for BMI (OR = 0.76, P = 4.83 × 10−5). This SNP was also identified to be significantly associated with COMT gene expression in three types of human tissues. Minor alleles of rs4633 (T) increased the expression of COMT in these 3 tissues. We have identified a significant SNP of COMT, rs4633, which is associated with symptomatic LDH in a large Chinese Han-based sample of the study subjects. This significant finding is further replicated by haplotypic analysis. Evidence from bioinformatics analyses have shown that rs4633 is also significantly associated with the gene expression of COMT. Our findings provide additional supportive evidence for an important role of COMT gene in the symptomatic LDH susceptibility.
Collapse
|
10
|
Knezevic NN, Tverdohleb T, Knezevic I, Candido KD. The Role of Genetic Polymorphisms in Chronic Pain Patients. Int J Mol Sci 2018; 19:E1707. [PMID: 29890676 PMCID: PMC6032204 DOI: 10.3390/ijms19061707] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/23/2018] [Accepted: 06/01/2018] [Indexed: 01/11/2023] Open
Abstract
It is estimated that the total annual financial cost for pain management in the U.S. exceeds 100 billion dollars. However, when indirect costs are included, such as functional disability and reduction in working hours, the cost can reach more than 300 billion dollars. In chronic pain patients, the role of pharmacogenetics is determined by genetic effects on various pain types, as well as the genetic effect on drug safety and efficacy. In this review article, we discuss genetic polymorphisms present in different types of chronic pain, such as fibromyalgia, low back pain, migraine, painful peripheral diabetic neuropathy and trigeminal neuralgia. Furthermore, we discuss the role of CYP450 enzymes involved in metabolism of drugs, which have been used for treatment of chronic pain (amitriptyline, duloxetine, opioids, etc.). We also discuss how pharmacogenetics can be applied towards improving drug efficacy, shortening the time required to achieve therapeutic outcomes, reducing risks of side effects, and reducing medical costs and reliance upon polypharmacy.
Collapse
Affiliation(s)
- Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA.
- Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
| | - Tatiana Tverdohleb
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA.
| | - Ivana Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA.
| | - Kenneth D Candido
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA.
- Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
| |
Collapse
|
11
|
Martirosyan NL, Patel AA, Carotenuto A, Kalani MYS, Belykh E, Walker CT, Preul MC, Theodore N. Genetic Alterations in Intervertebral Disc Disease. Front Surg 2016; 3:59. [PMID: 27917384 PMCID: PMC5116693 DOI: 10.3389/fsurg.2016.00059] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is considered a multifactorial disease that is influenced by both environmental and genetic factors. The last two decades of research strongly demonstrate that genetic factors contribute about 75% of the IVDD etiology. Recent total genome sequencing studies have shed light on the various single-nucleotide polymorphisms (SNPs) that are associated with IVDD. AIM This review presents comprehensive and updated information about the diversity of genetic factors in the inflammatory, degradative, homeostatic, and structural systems involved in the IVDD. An organized collection of information is provided regarding genetic polymorphisms that have been identified to influence the risk of developing IVDD. Understanding the proteins and signaling systems involved in IVDD can lead to improved understanding and targeting of therapeutics. MATERIALS AND METHODS An electronic literature search was performed using the National Library of Medicine for publications using the keywords genetics of IVDD, lumbar disc degeneration, degenerative disc disease, polymorphisms, SNPs, and disc disease. The articles were then screened based on inclusion criteria that included topics that covered the correlation of SNPs with developing IVDD. Sixty-five articles were identified as containing relevant information. Articles were excluded if they investigated lower back pain or just disc herniation without an analysis of disc degeneration. This study focuses on the chronic degeneration of IVDs. RESULTS Various genes were identified to contain SNPs that influenced the risk of developing IVDD. Among these are genes contributing to structural proteins, such as COL1A1, COL9A3, COL9A3, COL11A1, and COL11A2, ACAN, and CHST3. Furthermore, various SNPs found in the vitamin-D receptor gene are also associated with IVDD. SNPs related to inflammatory cytokine imbalance are associated with IVDD, although some effects are limited by sex and certain populations. SNPs in genes that code for extracellular matrix-degrading enzymes, such as MMP-1, MMP-2, MMP-3, MMP-9, MMP-14, ADAMTS-4, and ADAMTS-5 are also associated with IVDD. Apoptosis-mediating genes, such as caspase 9 gene (CASP9), TRAIL, and death receptor 4 (DR4), as well as those for growth factors, such as growth differentiation factor 5 and VEGF, are identified to have polymorphisms that influence the risk of developing IVDD. CONCLUSION Within the last 10 years, countless new SNPs have been identified in genes previously unknown to be associated with IVDD. Furthermore, the last decade has also revealed new SNPs identified in genes already known to be involved with increased risk of developing IVDD. Improved understanding of the numerous genetic variants behind various pathophysiological elements of IVDD could help advance personalized care and pharmacotherapeutic strategies for patients suffering from IVDD in the future.
Collapse
Affiliation(s)
- Nikolay L Martirosyan
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA; Division of Neurosurgery, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Arpan A Patel
- College of Medicine - Phoenix, University of Arizona , Phoenix, AZ , USA
| | | | - M Yashar S Kalani
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute , Phoenix, AZ , USA
| | - Evgenii Belykh
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA; Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia; Irkutsk State Medical University, Irkutsk, Russia
| | - Corey T Walker
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute , Phoenix, AZ , USA
| | - Mark C Preul
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute , Phoenix, AZ , USA
| | - Nicholas Theodore
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute , Phoenix, AZ , USA
| |
Collapse
|
12
|
Gruber HE, Hoelscher GL, Bethea S, Ingram J, Cox M, Hanley EN. High-mobility group box-1 gene, a potent proinflammatory mediators, is upregulated in more degenerated human discs in vivo and its receptor upregulated by TNF-α exposure in vitro. Exp Mol Pathol 2015; 98:427-30. [PMID: 25746662 DOI: 10.1016/j.yexmp.2015.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/02/2015] [Indexed: 01/23/2023]
Abstract
Mechanisms which control and enhance proinflammatory cytokine expression during human disc degeneration are still poorly understood. The high-mobility group box-1 gene (HMGB1) produces a protein which can itself act as a cytokine, or can function as a potent proinflammatory mediator. Little is known about expression of HMGB1 in the human disc. Since proinflammatory cytokines increase significantly during human disc degeneration, in this work we hypothesized that HMGB1 may show upregulation with advancing stages of degeneration, and upregulation in cells exposed to TNF-α. Immunohistochemistry was performed to confirm the presence of HMGB1 in the human disc, and human annulus cells were cultured and challenged with 10(3)pM TNF-α for 14days in 3D culture. Cells with positive HMGB1 immunolocalization were abundant in the outer annulus. Molecular analysis of cultured cells showed an 8-fold significant increase in HMGB1 expression in more degenerated Thompson grade V discs compared to healthier grade I/II discs (p=0.033). Human disc tissue was assessed in molecular studies. Herniated specimens showed a 6.3-fold significantly greater expression level than that seen in control specimens (p=0.001). In culture experiments, expression of the receptor to HMGB1, toll-like receptor 2, showed a 24-fold upregulation in vitro in cells exposed to TNF-α vs. controls (p=0.0003).
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, P.O. Box 32861, Charlotte, NC, USA.
| | - Gretchen L Hoelscher
- Department of Orthopaedic Surgery, Carolinas Medical Center, P.O. Box 32861, Charlotte, NC, USA
| | - Synthia Bethea
- Department of Orthopaedic Surgery, Carolinas Medical Center, P.O. Box 32861, Charlotte, NC, USA
| | - Jane Ingram
- Department of Orthopaedic Surgery, Carolinas Medical Center, P.O. Box 32861, Charlotte, NC, USA
| | - Michael Cox
- Department of Orthopaedic Surgery, Carolinas Medical Center, P.O. Box 32861, Charlotte, NC, USA
| | - Edward N Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, P.O. Box 32861, Charlotte, NC, USA
| |
Collapse
|