1
|
Chen B, Moriarty T, Steenackers H, Vles G, Onsea J, Vackier T, Spriet I, Lavigne R, Richards RG, Metsemakers WJ. Exploring the potential of naturally occurring antimicrobials for managing orthopedic-device-related infections. J Bone Jt Infect 2024; 9:249-260. [PMID: 39539734 PMCID: PMC11555427 DOI: 10.5194/jbji-9-249-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/29/2024] [Indexed: 11/16/2024] Open
Abstract
Orthopedic-device-related infections (ODRIs) are challenging clinical complications that are often exacerbated by antibiotic resistance and biofilm formation. This review explores the efficacy of naturally occurring antimicrobials - including agents sourced from bacteria, fungi, viruses, animals, plants and minerals - against pathogens common in ODRIs. The limitations of traditional antibiotic agents are presented, and innovative naturally occurring antimicrobials, such as bacteriophage therapy and antimicrobial peptides, are evaluated with respect to their interaction with conventional antibiotics and antibiofilm efficacy. The integration of these natural agents into clinical practice could revolutionize ODRI treatment strategies, offering effective alternatives to conventional antibiotics and mitigating resistance development. However, the translation of these compounds from research into the clinic may require the substantial investment of intellectual and financial resources.
Collapse
Affiliation(s)
- Baixing Chen
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Hans Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Georges F. Vles
- Department of Orthopaedic Surgery, University Hospitals Leuven, Leuven, Belgium
- Institute for Orthopaedic Research and Training (IORT), KU Leuven, Leuven, Belgium
| | - Jolien Onsea
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Thijs Vackier
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Isabel Spriet
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
- Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | | | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Kazemzadeh-Narbat M, Memic A, McGowan KB, Memic A, Tamayol A. Advances in antimicrobial orthopaedic devices and FDA regulatory challenges. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 6:032002. [PMID: 39655841 DOI: 10.1088/2516-1091/ad5cb1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/27/2024] [Indexed: 12/18/2024]
Abstract
Implant-associated infections, caused by the formation of biofilms especially antibiotic resistant organisms, are among the leading causes of orthopaedic implant failure. Current strategies to combat infection and biofilm focus on either inhibiting bacterial growth or preventing bacterial adherence that could lead to biofilm creation. Despite research on developing numerous antimicrobial orthopaedic devices, to date, no robust solution has been translated to the clinic. One of the key bottlenecks is the disconnect between researchers and regulatory agencies. In this review, we outline recent strategies for minimizing orthopaedic implant-associated infections. In addition, we discuss the relevant Food and Drug Administration regulatory perspectives, challenges. We also highlight emerging technologies and the directions the field that is expected to expand. We discuss in depth challenges that include identifying strategies that render implants antibacterial permanently or for a long period of time without the use of antimicrobial compounds that could generate resistance in pathogens and negatively impact osseointegration.
Collapse
Affiliation(s)
| | - Asija Memic
- College of Nursing, Wayne State University, Detroit, MI 48202, United States of America
| | - Kevin B McGowan
- MCRA LLC, 803 7th Street NW, Washington, DC 20001, United States of America
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| |
Collapse
|
3
|
Aboona F, Bou-Akl T, Miller AJ, Fry M, Wu B, Pawlitz P, Ren W, Markel DC. Effects of Vancomycin/Tobramycin-Doped Ceramic Composite (Polyvinyl Alcohol Composite-Vancomycin/Tobramycin-Polymeric Dicalcium Phosphate Dihydrate) in a Rat Femur Model Implanted With Contaminated Porous Titanium Cylinders. J Arthroplasty 2024; 39:S310-S316. [PMID: 38718912 DOI: 10.1016/j.arth.2024.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Periprosthetic joint infection (PJI) remains common and problematic. We hypothesized that using a bioceramic that provided rapid release of the antibiotics (vancomycin [VAN] or VAN and tobramycin [VAN and TOB]) from a polyvinyl-alcohol-composite (PVA) combined with a delayed and sustained antibiotic release from polymeric-dicalcium-phosphate-dihydrate (PDCPD) ceramic would inhibit S. aureus-associated implant infections. METHODS A total of 50 male Sprague Dawley rats were randomly divided into 5 groups-I: negative control; II: bacteria only; III: bacteria + saline wash; IV: bacteria + PVA-VAN-PDCPD, and V: bacteria + PVA-VAN-TOB-PDCPD. A porous titanium (Ti) implant was press-fit into the rat knee. S. aureus-containing broth was added into the joint space creating a PJI. After 1 week, the joints from groups III to V were washed with saline and the fluid collected for bacterial quantification. This was followed by saline irrigation treatment (groups III to V) and application of the antibiotic-loaded PVA-PDCPD bioceramic (groups IV and V). On day 21, joint fluid was collected, and the implants harvested for bacterial quantification. RESULTS No bacteria were isolated from the negative control (group I). The positive control (group II) was positive on both days 7 and 21. Bacteria were still present on day 21 in the fluid and implant in group III. Groups (IV and V) showed a decrease in the bacterial burden in the fluid and implant on day 21. There were significant differences in bacteria levels in the collected wash fluid and on the implant at day 21 between the saline wash (group III) and treatment groups (IV and V). CONCLUSIONS In this animal model of acute periprosthetic infection, treatment with PVA-VAN-PDCPD and PVA-VAN/TOB-PDCPD reduced bacterial load in the infected joint and the infected Ti implant. Application of PVA-VAN-PDCPD and/or PVA-VAN/TOB-PDCPD after saline irrigation could be used as an addition to the treatment of PJI.
Collapse
Affiliation(s)
- Fadi Aboona
- Section of Orthopaedic Surgery, Ascension-Providence Hospital, Southfield, Michigan
| | - Therese Bou-Akl
- Section of Orthopaedic Surgery, Ascension-Providence Hospital, Southfield, Michigan
| | - Adam J Miller
- Section of Orthopaedic Surgery, Ascension-Providence Hospital, Southfield, Michigan
| | - Mike Fry
- Section of Orthopaedic Surgery, Ascension-Providence Hospital, Southfield, Michigan
| | - Bin Wu
- Section of Orthopaedic Surgery, Ascension-Providence Hospital, Southfield, Michigan
| | - Paula Pawlitz
- Section of Orthopaedic Surgery, Ascension-Providence Hospital, Southfield, Michigan
| | - Weiping Ren
- Section of Orthopaedic Surgery, Ascension-Providence Hospital, Southfield, Michigan; Virotech Co., Inc., Troy, Michigan
| | - David C Markel
- Section of Orthopaedic Surgery, Ascension-Providence Hospital, Southfield, Michigan; The Core Institute, Novi, Michigan
| |
Collapse
|
4
|
Karampikas V, Gavriil P, Goumenos S, Trikoupis IG, Roustemis AG, Altsitzioglou P, Kontogeorgakos V, Mavrogenis AF, Papagelopoulos PJ. Risk factors for peri-megaprosthetic joint infections in tumor surgery: A systematic review. SICOT J 2024; 10:19. [PMID: 38819289 PMCID: PMC11141517 DOI: 10.1051/sicotj/2024008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/05/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Peri-megaprosthetic joint infections (PJI) in tumor surgery are complex and challenging complications that significantly impact the outcomes of the patients. The occurrence of PJI poses a substantial threat to the success of these operations. This review aims to identify and summarize the risk factors associated with PJI in tumor surgery with megaprosthetic reconstruction as well as to determine the overall risk of PJI in limb salvage surgery. METHODS A thorough examination of published literature, scrutinizing the incidence of PJI in tumor prostheses after limb salvage surgery was done. Research studies that documented the incidence of PJI in tumor patients who underwent limb salvage surgery, and explored the risk factors associated with the occurrence of PJI were deemed eligible. RESULTS A total of 15 studies were included in the analysis and underwent comprehensive examination. After the exploration of key parameters, several significant risk factors for PJI concerning the type of implant coating, surgical site characteristics, patient demographics, and procedural factors were recorded. DISCUSSION The findings underscore the need for a nuanced approach in managing tumor patients undergoing limb salvage surgery and megaprosthetic reconstruction, with emphasis on individualized risk assessments and individualized preventive strategies.
Collapse
Affiliation(s)
- Vasileios Karampikas
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, 41 Ventouri Street, 15562, Holargos, Athens, Greece
| | - Panayiotis Gavriil
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, 41 Ventouri Street, 15562, Holargos, Athens, Greece
| | - Stavros Goumenos
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, 41 Ventouri Street, 15562, Holargos, Athens, Greece
| | - Ioannis G Trikoupis
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, 41 Ventouri Street, 15562, Holargos, Athens, Greece
| | - Anastasios G Roustemis
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, 41 Ventouri Street, 15562, Holargos, Athens, Greece
| | - Pavlos Altsitzioglou
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, 41 Ventouri Street, 15562, Holargos, Athens, Greece
| | - Vasileios Kontogeorgakos
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, 41 Ventouri Street, 15562, Holargos, Athens, Greece
| | - Andreas F Mavrogenis
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, 41 Ventouri Street, 15562, Holargos, Athens, Greece
| | - Panayiotis J Papagelopoulos
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, 41 Ventouri Street, 15562, Holargos, Athens, Greece
| |
Collapse
|
5
|
Sattari SA, Xia Y, Azad TD, Caraway CA, Chang L. Advances in Implant Technologies for Spine Surgery. Neurosurg Clin N Am 2024; 35:217-227. [PMID: 38423737 DOI: 10.1016/j.nec.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Spine implants are becoming increasingly diversified. Taking inspiration from other industries, three-dimensional modeling of the spinal column has helped meet the custom needs of individual patients as both en bloc replacements and pedicle screw designs. Intraoperative tailoring of devices, a common need in the operating room, has led to expandable versions of cages and interbody spacers.
Collapse
Affiliation(s)
- Shahab Aldin Sattari
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yuanxuan Xia
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Tej D Azad
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA; Department of Neurosurgery, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, 1800 Orleans Street, 6007 Zayed Tower, Baltimore, MD 21287, USA
| | - Chad A Caraway
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Louis Chang
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
6
|
Onorato F, Masoni V, Gagliardi L, Comba LC, Rivera F. What to Know about Antimicrobial Coatings in Arthroplasty: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:574. [PMID: 38674220 PMCID: PMC11052078 DOI: 10.3390/medicina60040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Periprosthetic joint infections (PJIs) are one of the most worrying complications orthopedic surgeons could face; thus, methods to prevent them are evolving. Apart from systemic antibiotics, targeted strategies such as local antimicrobial coatings applied to prosthetics have been introduced. This narrative review aims to provide an overview of the main antimicrobial coatings available in arthroplasty orthopedic surgery practice. The search was performed on the PubMed, Web of Science, SCOPUS, and EMBASE databases, focusing on antimicrobial-coated devices used in clinical practice in the arthroplasty world. While silver technology has been widely adopted in the prosthetic oncological field with favorable outcomes, recently, silver associated with hydroxyapatite for cementless fixation, antibiotic-loaded hydrogel coatings, and iodine coatings have all been employed with promising protective results against PJIs. However, challenges persist, with each material having strengths and weaknesses under investigation. Therefore, this narrative review emphasizes that further clinical studies are needed to understand whether antimicrobial coatings can truly revolutionize the field of PJIs.
Collapse
Affiliation(s)
- Francesco Onorato
- Department of Orthopedics and Traumatology, University of Turin, Via Zuretti, 29, 10126 Turin, Italy; (F.O.); (V.M.); (L.G.)
| | - Virginia Masoni
- Department of Orthopedics and Traumatology, University of Turin, Via Zuretti, 29, 10126 Turin, Italy; (F.O.); (V.M.); (L.G.)
| | - Luca Gagliardi
- Department of Orthopedics and Traumatology, University of Turin, Via Zuretti, 29, 10126 Turin, Italy; (F.O.); (V.M.); (L.G.)
- Department of Orthopedics and Traumatology, Ospedale SS Annunziata, ASL CN1, Via Ospedali, 9, 12038 Savigliano, Italy;
| | - Luca Costanzo Comba
- Department of Orthopedics and Traumatology, Ospedale SS Annunziata, ASL CN1, Via Ospedali, 9, 12038 Savigliano, Italy;
| | - Fabrizio Rivera
- Department of Orthopedics and Traumatology, Ospedale SS Annunziata, ASL CN1, Via Ospedali, 9, 12038 Savigliano, Italy;
| |
Collapse
|
7
|
Ghaseminejad-Raeini A, Azarboo A, Pirahesh K, Sharafi A, Hoveidaei AH, Nwankwo BO, Annasamudram A, Conway JD. Antibiotic-Coated Intramedullary Nailing Managing Long Bone Infected Non-Unions: A Meta-Analysis of Comparative Studies. Antibiotics (Basel) 2024; 13:69. [PMID: 38247628 PMCID: PMC10812602 DOI: 10.3390/antibiotics13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Long bone infected non-unions are such an orthopedic challenge that antibiotic-coated intramedullary nailing (ACIN) has become a viable therapeutic option for their management. This study aims to provide a comprehensive assessment of the available data about the use of antibiotic-coated nailing in the treatment of long bone infected non-unions. Following the PRISMA guideline in this meta-analysis, a systematic literature search was conducted across major databases for studies evaluating ACIN in long bone infected non-unions. The primary outcome measures included union rates, infection control, complications and functional status. Five eligible studies encompassing 183 patients in total met the inclusion criteria. The meta-analysis revealed no difference in the union rate in the antibiotic-coated intramedullary nailing group compared to that of the control group (OR = 1.73 [0.75-4.02]). Antibiotic-coated intramedullary nailing demonstrated no association with higher infection eradication (OR = 2.10 [0.97-4.54]). Also, functional outcome measure was mostly not significantly different between ACIN and control interventions. According to this meta-analysis, compared to the management of controls, ACIN is neither linked to increased union rates nor decreased infection rates. The paucity of research on this topic emphasizes the continuous need for additional well-designed randomized controlled trials for the application of antibiotics-coated intramedullary nailing in long bone non-unions.
Collapse
Affiliation(s)
| | - Alireza Azarboo
- School of Medicine, Tehran University of Medical Sciences, 1461884513 Tehran, Iran (A.A.); (K.P.); (A.S.)
| | - Kasra Pirahesh
- School of Medicine, Tehran University of Medical Sciences, 1461884513 Tehran, Iran (A.A.); (K.P.); (A.S.)
| | - Amirmohammad Sharafi
- School of Medicine, Tehran University of Medical Sciences, 1461884513 Tehran, Iran (A.A.); (K.P.); (A.S.)
| | - Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Schoeneman Building, 2nd Floor, 2401 West Belvedere Avenue, Baltimore, MD 21215, USA; (A.H.H.); (B.O.N.); (A.A.)
| | - Basilia Onyinyechukwu Nwankwo
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Schoeneman Building, 2nd Floor, 2401 West Belvedere Avenue, Baltimore, MD 21215, USA; (A.H.H.); (B.O.N.); (A.A.)
| | - Abhijith Annasamudram
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Schoeneman Building, 2nd Floor, 2401 West Belvedere Avenue, Baltimore, MD 21215, USA; (A.H.H.); (B.O.N.); (A.A.)
| | - Janet D. Conway
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Schoeneman Building, 2nd Floor, 2401 West Belvedere Avenue, Baltimore, MD 21215, USA; (A.H.H.); (B.O.N.); (A.A.)
| |
Collapse
|
8
|
Guo XF, Jin ZC, Deng XX, Huang ZH, Xue MY, Bu FY. [Clinical efficacy of antibiotic bone cement combined with vacuum sealing drainage in treating diabetes mellitus complicated with necrotizing fasciitis]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:1158-1162. [PMID: 38129302 DOI: 10.3760/cma.j.cn501225-20231030-00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Objective: To explore the clinical efficacy of antibiotic bone cement combined with vacuum sealing drainage (VSD) in treating diabetes mellitus complicated with necrotizing fasciitis. Methods: The retrospective observational study approach was used. From January 2020 to March 2022, 12 patients with type 2 diabetes complicated with necrotizing fasciitis who met the inclusion criteria were admitted to Wuxi Ninth People's Hospital, including 7 males and 5 females, aged 27 to 76 years. The initial diagnosis of lesions was in the lower limbs. After admission, bedside incision and drainage were performed timely, and a sample of wound exudate was collected for microbial cultivation. At the same time, the comprehensive supportive treatment was performed. At stage Ⅰ, debridement was performed, and the skin and soft tissue defect area was 40 cm×15 cm to 80 cm×25 cm after debridement. The dead space was filled with bone cement containing gentamicin and vancomycin and VSD was performed. After there was no obvious infection on the wound, the antibiotic bone cement was removed and wound repair surgery was performed at stage Ⅱ. The times of debridement, amputation, infection control, wound treatment method and wound healing at stage Ⅱ, total hospitalization day, and recurrence of necrotizing fasciitis during follow-up after the stage Ⅱ surgery. At the last follow-up, the walking function of patients was evaluated according to the scoring standards of American Orthopedic Foot and Ankle Association (AOFAS). Results: Eleven patients had wound infection control with one debridement surgery and did not undergo amputation surgery; one patient had significant foot gangrene, and the infection was controlled after one debridement and amputation of the gangrenous limb. Blood routine and infection indicators gradually returned to normal within 7 days after surgery. At stage Ⅱ, the wounds in 4 patients were sutured directly, the wounds in 6 patients were repaired with full-thickness inguinal skin graft, while the wounds in 2 patients were repaired with pedicled or tongue-shaped flaps at the wound edge. The wounds healed well after surgery, with no ulceration. The total hospitalization day of patients was 20 to 45 days. Follow-up for 3 to 24 months after stage Ⅱ surgery showed no recurrence of necrotizing fasciitis in any patient. At the last follow-up, the walking function was evaluated as excellent in 10 cases and good in 2 cases according to the AOFAS scoring standard. Conclusions: Antibiotic bone cement combined with VSD used in treating type 2 diabetes complicated with necrotizing fasciitis can effectively control infection and reduce the times of debridement, with good wound healing and walking function after surgery.
Collapse
|
9
|
Kotsarinis G, Wakefield SM, Kanakaris NK, Giannoudis PV. Stabilization of Tibial Fractures at Risk of Complications With the Bactiguard Intramedullary Nail: Early to Medium Results With a Novel Metal-Coated Device. J Orthop Trauma 2023; 37:S12-S17. [PMID: 37828696 DOI: 10.1097/bot.0000000000002688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVES The purpose of this study was to investigate the safety and early clinical results from the use of a novel, noble metal-coated titanium tibial nail for the definite stabilization of tibial shaft fractures at risk of developing complications. DESIGN This is a retrospective case series with prospectively collected data. SETTING Level I Trauma Centre in the United Kingdom. PATIENTS AND INTERVENTION Thirty-one patients who were managed with the Bactiguard-coated Natural Nail and achieved a minimum of a 12-month follow-up. MAIN OUTCOME MEASUREMENTS The main outcomes of this study were the incidence of adverse events (related to implant safety), complications (particularly infection), and reinterventions. RESULTS Thirty-one patients with a mean age of 41.6 years were included in this study. Active heavy smokers or intravenous drug users were 25.8% and 9.7% of them were diabetic. Five fractures were open while 13 had concomitant soft-tissue involvement (Tscherne grade 1 or 2). Twenty-seven patients healed with no further intervention in a mean time of 3.3 months. Three patients developed nonunion and required further intervention. The overall union rate was 96.7%. One patient developed deep infection after union (infection incidence 3.2%). Six patients (6/31; [19.3%]) required reinterventions [2 for the treatment of nonunion, 3 for removal of screws soft-tissue irritation, and 1 for the management of infection). CONCLUSIONS The management of tibial shaft fractures with a noble metal-coated titanium tibial nail demonstrates encouraging outcomes. Further studies are desirable to gather more evidence in the performance of this innovative implant. LEVEL OF EVIDENCE Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Georgios Kotsarinis
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, United Kingdom; and
| | - Sophia M Wakefield
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, United Kingdom; and
| | - Nikolaos K Kanakaris
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, United Kingdom; and
| | - Peter V Giannoudis
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, United Kingdom; and
- NIHR Leeds Biomedical Research Center, Chapel Allerton Hospital, Leeds, United Kingdom
| |
Collapse
|
10
|
Watanabe R, Matsugaki A, Gokcekaya O, Ozasa R, Matsumoto T, Takahashi H, Yasui H, Nakano T. Host bone microstructure for enhanced resistance to bacterial infections. BIOMATERIALS ADVANCES 2023; 154:213633. [PMID: 37775399 DOI: 10.1016/j.bioadv.2023.213633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Postoperative bacterial infection is a serious complication of orthopedic surgery. Not only infections that develop in the first few weeks after surgery but also late infections that develop years after surgery are serious problems. However, the relationship between host bone and infection activation has not yet been explored. Here, we report a novel association between host bone collagen/apatite microstructure and bacterial infection. The bone-mimetic-oriented micro-organized matrix structure was obtained by prolonged controlled cell alignment using a grooved-structured biomedical titanium alloy. Surprisingly, we have discovered that highly aligned osteoblasts have a potent inhibitory effect on Escherichia coli adhesion. Additionally, the oriented collagen/apatite micro-organization of the bone matrix showed excellent antibacterial resistance against Escherichia coli. The proposed mechanism for realizing the antimicrobial activity of the micro-organized bone matrix is by the controlled secretion of the antimicrobial peptides, including β-defensin 2 and β-defensin 3, from the highly aligned osteoblasts. Our findings contribute to the development of anti-infective strategies for orthopedic surgeries. The recovery of the intrinsically ordered bone matrix organization provides superior antibacterial resistance after surgery.
Collapse
Affiliation(s)
- Ryota Watanabe
- Teijin Nakashima Medical Co. Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan; Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Ozkan Gokcekaya
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Ryosuke Ozasa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hiroyuki Takahashi
- Teijin Nakashima Medical Co. Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan.
| | - Hidekazu Yasui
- Teijin Nakashima Medical Co. Ltd., 688-1 Joto-Kitagata, Higashi-ku, Okayama 709-0625, Japan.
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
11
|
Savvidou OD, Kaspiris A, Goumenos S, Trikoupis I, Melissaridou D, Kalogeropoulos A, Serenidis D, Georgoulis JD, Lianou I, Koulouvaris P, Papagelopoulos PJ. Knee Arthrodesis with a Modular Silver-Coated Endoprosthesis for Infected Total Knee Arthroplasty with Extensive Bone Loss: A Retrospective Case-Series Study. J Clin Med 2023; 12:jcm12103600. [PMID: 37240706 DOI: 10.3390/jcm12103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION Knee arthrodesis is a limb salvage intervention for persistent periprosthetic joint infection (PJI) when revision total knee arthroplasty fails. Conventional arthrodesis techniques are associated with the increased rate of complications, especially in patients with extensive bone loss and extensor tendon deficiency. METHODS Eight patients with a modular silver-coated arthrodesis implant after failed exchange arthroplasty for infection, were retrospectively reviewed. All patients had significant bone loss, while 5 displayed extensor tendon deficiency. Survivorship, complications, leg length discrepancy, median Visual Analogue Scale (VAS) and Oxford Knee score (OKS) were evaluated. RESULTS The median follow up was 32 months (range 24-59 months). The survivorship rate of the prosthesis was 86% during the minimum time of follow up of 24 months. In one patient recurrence of the infection was observed and above-knee amputation was performed. The median postoperative leg length discrepancy was 2.07 ± 0.67 cm. Patients were able to ambulate with mild or no pain. The median VAS and OKS was 2.14 ± 0.9 and 34.7 ± 9.3, respectively. CONCLUSIONS The results of our study demonstrated that knee arthrodesis with a silver coated arthrodesis implant, performed for persistent PJI in patients with significant bone loss and extensor tendon deficit, provided a stable construct, allowed eradication of infection and was associated with good functional outcome.
Collapse
Affiliation(s)
- Olga D Savvidou
- Medical School, First Department of Orthopedics, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Angelos Kaspiris
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Stavros Goumenos
- Medical School, First Department of Orthopedics, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ioannis Trikoupis
- Medical School, First Department of Orthopedics, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dimitra Melissaridou
- Medical School, First Department of Orthopedics, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | | | - Dimitris Serenidis
- Medical School, First Department of Orthopedics, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Jim-Dimitris Georgoulis
- Medical School, First Department of Orthopedics, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Ioanna Lianou
- Department of Orthopaedics, Rion University Hospital University of Patras, 26504 Patras, Greece
| | - Panagiotis Koulouvaris
- Medical School, First Department of Orthopedics, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Panayiotis J Papagelopoulos
- Medical School, First Department of Orthopedics, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
12
|
Guo XF, Deng XX, Huang ZH, Xue MY, Bu FY. [Effects of pedicled flap combined with membrane induction technique in repairing foot and ankle wounds in diabetic patients]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2023; 39:325-329. [PMID: 37805734 DOI: 10.3760/cma.j.cn501225-20221212-00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
Objective: To explore the effects of pedicled flap combined with membrane induction technique in repairing foot and ankle wounds in diabetic patients. Methods: A retrospective observational study was conducted. From March 2019 to July 2021, 12 patients with diabetic foot and ankle wounds who met the inclusion criteria were admitted to Wuxi Ninth People's Hospital, including 7 males and 5 females, aged 20 to 92 years. The wound area before debridement was 4.0 cm×2.5 cm to 16.0 cm×12.5 cm. The patients underwent debridement+antibiotic cement tamponade in stage Ⅰ; according to the wound site, peroneal artery perforator flap or posterior tibial artery perforator flap was chosen to repair the wound in stage Ⅱ, with the area of the resected flap ranging from 4.5 cm×3.0 cm to 18.5 cm×14.0 cm. The donor site was directly closed in 4 patients or covered by full-thickness inguinal skin graft in 8 patients. After the operation of stage Ⅱ, the survival of flap and skin graft, the scar in donor and recipient sites of flap, the appearance of flap, and the function of ankle joint of affected extremity were followed up. The recovery of foot and ankle function was evaluated and rated by the American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scoring System at the last follow-up. Results: During the follow-up of 4 to 15 months after the operation of stage Ⅱ, both the flap and skin graft survived, without obvious infection recurrence. Linear scars were left in donor and recipient sites of flap, with good appearance in flap. The function of ankle joint in the affected extremity was nearly normal. At the last follow-up, the AOFAS scores of patients were 79 to 93, with excellent in 8 cases and good in 4 cases. Conclusions: The pedicled flap combined with membrane induction technique for repairing foot and ankle wounds in diabetic patients has the advantage of simple operation, preserved ankle joint function, and less postoperative infection recurrence, which is worth popularizing in clinical practice.
Collapse
Affiliation(s)
- X F Guo
- Department of Wound Repair, Wuxi Ninth People's Hospital, Wuxi 214000, China
| | - X X Deng
- Department of Wound Repair, Wuxi Ninth People's Hospital, Wuxi 214000, China
| | - Z H Huang
- Department of Wound Repair, Wuxi Ninth People's Hospital, Wuxi 214000, China
| | - M Y Xue
- Department of Wound Repair, Wuxi Ninth People's Hospital, Wuxi 214000, China
| | - F Y Bu
- Department of Wound Repair, Wuxi Ninth People's Hospital, Wuxi 214000, China
| |
Collapse
|
13
|
Li H, Wang D, Zhang W, Xu G, Xu C, Liu W, Li J. Potential side effects of antibacterial coatings in orthopaedic implants: A systematic review of clinical studies. Front Bioeng Biotechnol 2023; 11:1111386. [PMID: 36845182 PMCID: PMC9947536 DOI: 10.3389/fbioe.2023.1111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Objective: The systematic review aimed to determine the potential side effects of antibacterial coatings in orthopaedic implants. Methods: Publications were searched in the databases of Embase, PubMed, Web of Science and Cochrane Library using predetermined keywords up to 31 October 2022. Clinical studies reporting side effects of the surface or coating materials were included. Results: A total of 23 studies (20 cohort studies and three case reports) reporting the concerns about the side effects of antibacterial coatings were identified. Three types of coating materials, silver, iodine and gentamicin were included. All of studies raised the concerns regarding safety of antibacterial coatings, and the occurrence of adverse events was observed in seven studies. The main side effect of silver coatings was the development of argyria. For iodine coatings, only one anaphylactic case was reported as an adverse event. No systemic or other general side effects were reported for gentamicin. Conclusion: Clinical studies on the side effects of antibacterial coatings were limited. Based on the available outcomes, the most reported side effects of antibacterial coatings in clinical use were argyria with silver coatings. However, researchers should always pay attention to the potential side effects of antibacterial materials, such as systematic or local toxicity and allergy.
Collapse
Affiliation(s)
- Hua Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Daofeng Wang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Wupeng Zhang
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China,School of Medicine, Nankai University, Tianjin, China
| | - Gaoxiang Xu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Cheng Xu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China,*Correspondence: Cheng Xu, ; Wanheng Liu, ; Jiantao Li,
| | - Wanheng Liu
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China,*Correspondence: Cheng Xu, ; Wanheng Liu, ; Jiantao Li,
| | - Jiantao Li
- Senior Department of Orthopedics, The Fourth Medical Center of Chinese PLA General Hospital, Beijing, China,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China,*Correspondence: Cheng Xu, ; Wanheng Liu, ; Jiantao Li,
| |
Collapse
|
14
|
Florea DA, Grumezescu V, Bîrcă AC, Vasile BȘ, Iosif A, Chircov C, Stan MS, Grumezescu AM, Andronescu E, Chifiriuc MC. Bioactive Hydroxyapatite-Magnesium Phosphate Coatings Deposited by MAPLE for Preventing Infection and Promoting Orthopedic Implants Osteointegration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7337. [PMID: 36295401 PMCID: PMC9609740 DOI: 10.3390/ma15207337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
In this study, we used the matrix-assisted pulsed laser evaporation (MAPLE) technique to obtain hydroxyapatite (Ca10(PO4)6(OH)2) and magnesium phosphate (Mg3(PO4)2) thin coatings containing bone morphogenetic protein (BMP4) for promoting implants osteointegration and further nebulized with the antibiotic ceftriaxone (CXF) to prevent peri-implant infections. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), infrared microscopy (IRM) and Fourier-transform infrared spectroscopy (FT-IR). Furthermore, the antimicrobial properties were evaluated on Staphylococcus aureus biofilms and the cytocompatibility on the MC3T3-E1 cell line. The obtained results proved the potential of the obtained coatings for bone implant applications, providing a significant antimicrobial and antibiofilm effect, especially in the first 48 h, and cytocompatibility in relation to murine osteoblast cells.
Collapse
Affiliation(s)
- Denisa Alexandra Florea
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Valentina Grumezescu
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Andrei Iosif
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Miruna S. Stan
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- The Romanian Academy, Calea Victoriei 25, District 1, 010071 Bucharest, Romania
| |
Collapse
|
15
|
Krüger JT, Hoyer KP, Huang J, Filor V, Mateus-Vargas RH, Oltmanns H, Meißner J, Grundmeier G, Schaper M. FeMn with Phases of a Degradable Ag Alloy for Residue-Free and Adapted Bioresorbability. J Funct Biomater 2022; 13:jfb13040185. [PMID: 36278654 PMCID: PMC9590034 DOI: 10.3390/jfb13040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 10/05/2022] [Indexed: 12/01/2022] Open
Abstract
The development of bioresorbable materials for temporary implantation enables progress in medical technology. Iron (Fe)-based degradable materials are biocompatible and exhibit good mechanical properties, but their degradation rate is low. Aside from alloying with Manganese (Mn), the creation of phases with high electrochemical potential such as silver (Ag) phases to cause the anodic dissolution of FeMn is promising. However, to enable residue-free dissolution, the Ag needs to be modified. This concern is addressed, as FeMn modified with a degradable Ag-Calcium-Lanthanum (AgCaLa) alloy is investigated. The electrochemical properties and the degradation behavior are determined via a static immersion test. The local differences in electrochemical potential increase the degradation rate (low pH values), and the formation of gaps around the Ag phases (neutral pH values) demonstrates the benefit of the strategy. Nevertheless, the formation of corrosion-inhibiting layers avoids an increased degradation rate under a neutral pH value. The complete bioresorption of the material is possible since the phases of the degradable AgCaLa alloy dissolve after the FeMn matrix. Cell viability tests reveal biocompatibility, and the antibacterial activity of the degradation supernatant is observed. Thus, FeMn modified with degradable AgCaLa phases is promising as a bioresorbable material if corrosion-inhibiting layers can be diminished.
Collapse
Affiliation(s)
- Jan Tobias Krüger
- Materials Science, Paderborn University, Mersinweg 7, 33100 Paderborn, Germany
- DMRC-Direct Manufacturing Research Center, Paderborn University, Mersinweg 3, 33100 Paderborn, Germany
- Correspondence:
| | - Kay-Peter Hoyer
- Materials Science, Paderborn University, Mersinweg 7, 33100 Paderborn, Germany
- DMRC-Direct Manufacturing Research Center, Paderborn University, Mersinweg 3, 33100 Paderborn, Germany
| | - Jingyuan Huang
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Viviane Filor
- Department of Veterinary Medicine, Institute of Pharmacology and Toxicology, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany
| | - Rafael Hernan Mateus-Vargas
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - Hilke Oltmanns
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - Jessica Meißner
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Mirko Schaper
- Materials Science, Paderborn University, Mersinweg 7, 33100 Paderborn, Germany
- DMRC-Direct Manufacturing Research Center, Paderborn University, Mersinweg 3, 33100 Paderborn, Germany
| |
Collapse
|
16
|
Vukomanovic M, Gazvoda L, Anicic N, Rubert M, Suvorov D, Müller R, Hofmann S. Multi-doped apatite: Strontium, magnesium, gallium and zinc ions synergistically affect osteogenic stimulation in human mesenchymal cells important for bone tissue engineering. BIOMATERIALS ADVANCES 2022; 140:213051. [PMID: 35914326 DOI: 10.1016/j.bioadv.2022.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/24/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023]
Abstract
Functional calcium phosphate biomaterials can be designed as carriers of a balanced mixture of biologically relevant ions able to target critical processes in bone regeneration. They hold the potential to use mechanisms very similar to growth factors naturally produced during fracture healing, while circumventing some of their drawbacks. Here we present a novel phase of carbonated-apatite containing Mg2+, Sr2+, Zn2+ and Ga3+ ions (HApMgSrZnGa). While all dopants decrease the crystallinity, Ga3+ limits crystal growth and enables the formation of a nanosized apatite phase with enhanced specific surface area. Coexistence of the ions enhances degradability and controls solubility of low crystalline, distorted, multi-doped apatite structure, controlled by Ga3+ ions accumulated at the surface. Consequently, HApMgSrZnGa supports the viability of human mesenchymal stromal cells (MSCs) and induces their stimulation along the osteogenic lineage. In addition, the co-released ions has a synergistic antimicrobial effect, particularly within the HApMgSrZnGa-Au(arg) composite with Au(arg) as contact-based antimicrobial. The activity is stable up to two months in vitro. Osteogenic nature and antimicrobial activity, combined in a single biomaterial, are suggesting a well-balanced, multi-doped apatite design applicable as future option in bone regeneration and tissue engineering.
Collapse
Affiliation(s)
- Marija Vukomanovic
- Advanced Materials Department, Jozef Stefan Institute, Ljubljana, Slovenia.
| | - Lea Gazvoda
- Advanced Materials Department, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Nemanja Anicic
- Advanced Materials Department, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Marina Rubert
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Danilo Suvorov
- Advanced Materials Department, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Sandra Hofmann
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; Orthopaedic Biomechanics, Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
17
|
Development of Silver-Containing Hydroxyapatite-Coated Antimicrobial Implants for Orthopaedic and Spinal Surgery. Medicina (B Aires) 2022; 58:medicina58040519. [PMID: 35454358 PMCID: PMC9029955 DOI: 10.3390/medicina58040519] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
The prevention of surgical site infections is directly related to the minimization of surgical invasiveness, and is in line with the concept of minimally invasive spine therapy (MIST). In recent years, the incidence of postoperative infections has been increasing due to the increased use of spinal implant surgery in patients at high risk of infection, including the elderly and easily infected hosts, the limitations of poor bone marrow transfer of antibiotics, and the potential for contamination of surgical gloves and instruments. Thus, the development of antimicrobial implants in orthopedic and spinal surgery is becoming more and more popular, and implants with proven antimicrobial, safety, and osteoconductive properties (i.e., silver, iodine, antibiotics) in vitro, in vivo, and in clinical trials have become available for clinical use. We have developed silver-containing hydroxyapatite (Ag-HA)-coated implants to prevent post-operative infection, and increase bone fusion capacity, and have successfully commercialized antibacterial implants for hip prostheses and spinal interbody cages. This narrative review overviews the present status of available surface coating technologies and materials; describes how the antimicrobial, safety, and biocompatibility (osteoconductivity) of Ag-HA-coated implants have been demonstrated for commercialization; and reviews the clinical use of antimicrobial implants in orthopedic and spinal surgery, including Ag-HA-coated implants that we have developed.
Collapse
|
18
|
Lex JR, Koucheki R, Stavropoulos NA, Michele JD, Toor JS, Tsoi K, Ferguson PC, Turcotte RE, Papagelopoulos PJ. Megaprosthesis anti-bacterial coatings: A comprehensive translational review. Acta Biomater 2022; 140:136-148. [PMID: 34879295 DOI: 10.1016/j.actbio.2021.11.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Periprosthetic joint infections (PJI) are catastrophic complications for patients with implanted megaprostheses and pose significant challenges in the management of orthopaedic oncology patients. Despite various preventative strategies, with the increasing rate of implanted orthopaedic prostheses, the number of PJIs may be increasing. PJIs are associated with a high rate of amputation. Therefore, novel strategies to combat bacterial colonization and biofilm formation are required. A promising strategy is the utilization of anti-bacterial coatings on megaprosthetic implants. In this translational review, a brief overview of the mechanism of bacterial colonization of implants and biofilm formation will be provided, followed by a discussion and classification of major anti-bacterial coatings currently in use and development. In addition, current in vitro outcomes, clinical significance, economic importance, evolutionary perspectives, and future directions of anti-bacterial coatings will also be discussed. Megaprosthetic anti-bacterial coating strategies will help reduce infection rates following the implantation of megaprostheses and would positively impact sarcoma care. STATEMENT OF SIGNIFICANCE: This review highlights the clinical challenges and a multitude of potential solutions to combating peri-prosthetic join infections in megaprotheses using anti-bacterial coatings. Reducing infection rates following the implantation of megaprostheses would have a major impact on sarcoma care and major trauma surgeries that require reconstruction of large skeletal defects.
Collapse
Affiliation(s)
- Johnathan R Lex
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Robert Koucheki
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | | | - Joseph Di Michele
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Jay S Toor
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Kim Tsoi
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Canada
| | - Peter C Ferguson
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Canada; University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Canada
| | - Robert E Turcotte
- Division of Orthopedic Surgery, McGill University Health Centre, Montreal, Canada
| | - Panayiotis J Papagelopoulos
- 1st Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
19
|
Wong Wei Kang N, Tan WPJ, Phua YMC, Min ATG, Naidu K, Umapathysivam K, Smitham PJ. Intramedullary nail: the past, present and the future - a review exploring where the future may lead us. Orthop Rev (Pavia) 2021; 13:25546. [PMID: 34745479 PMCID: PMC8567815 DOI: 10.52965/001c.25546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/02/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Intramedullary nails (IMNs) are the current gold standard treatment for long bone diaphyseal and selected metaphyseal fractures. The design of IMNs has undergone many revisions since its invention in the 16th century, with a dramatic increase in novel designs in recent years aiming to further improve intramedullary fixation techniques. AIMS To map the evolution of IMNs in orthopedic surgery, discuss the limitations and complications of current IMNs and identify novel IMNs that may influence future design innovations. METHODS We undertook a scoping review on the status of orthopedic IMNs by reviewing Google Scholar with the following keywords. Publications and patents selected for retrieval were initially assessed on the title and abstract by five independent reviewers. 52 papers were retrieved for complete text examination, and secondary references were checked from these papers. The results were discussed within the research group and consensus was obtained describing novel IMNs. RESULTS Novel IMN designs include growth factor and/or antimicrobial coatings targeting fracture healing and perioperative infection risk, respectively; minimally invasive expandable IMNs to avoid the need for interlocking screws; and novel materials such as carbon fiber for their theoretically superior biomechanical properties and avoidance of artifact on CT and MRI imaging. CONCLUSION The novel IMNs proposed in recent years collectively aim to improve intramedullary fixation techniques by reducing operative time and radiation exposure, improving fracture healing or monitoring bone cancer progression. However, more research and development are necessary to solve these complex problems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peter Jonathan Smitham
- Adelaide Medical School; Department of Orthopedics and Trauma, Royal Adelaide Hospital & Discipline of Orthopedics & Trauma, The University of Adelaide
| |
Collapse
|
20
|
Zn-Doped CaP-Based Coatings on Ti–6Al–4V and Ti–6Al–7Nb Alloys Prepared by Magnetron Sputtering: Controllable Biodegradation, Bacteriostatic, and Osteogenic Activities. COATINGS 2021. [DOI: 10.3390/coatings11070809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
New TiNb-based alloys, such as Ti–6Al–7Nb, are currently being studied around the world as an alternative to other Ti alloys, e.g., instead of Ti–6Al–4V. We conducted a pilot study where thin (approximately 1.2 micron) CaP coatings containing low doses of Zn2+ (0.4–0.8 wt.%) were prepared by the radio frequency magnetron sputtering (RFMS) of Zn-hydroxyapatite (HA) target on Ti–6Al–4V and Ti–6Al–7Nb substrates and investigated their physicochemical properties, in vitro solubility, cytotoxicity, and antibacterial and osteogenic activities. The thickness of the obtained coatings was approximately 1.2–1.3 microns. Zn substitution did not result in roughness or structural or surface changes in the amorphous CaP coatings. The distributions of Ca, P, and Zn were homogeneous across the film thickness as shown by the EDX mapping of these elements. Zn doping of CaP coatings on both types of Ti-based alloys statistically influenced the results of the scratch-test. However, obtained values are satisfactory to use Zn-CaP coatings on biomedical implants. Increased Zn2+ release vs. tapered output of Ca and phosphate ions occurred during 5 weeks of an in vitro immersion test in 0.9% NaCl solution. Ti–6Al–7Nb alloy, unlike Ti–6Al–4V, promoted more linear biodegradation of CaP coatings in vitro. As a result, CaP-based surfaces on Ti–6Al–7Nb, compared with on Ti–6Al–4V alloy, augmented the total areas of Alizarin red staining in a 21-day culture of human adipose-derived mesenchymal stem cells in a statistically significant manner. Moreover, Zn–CaP coatings statistically reduced leukemic Jurkat T cell survival within 48 h of in vitro culture. Along with the higher solubility of the Zn–CaP surface, a greater reduction (4- to 5.5-fold) in Staphylococcus aureus growth was observed in vitro when 7-day extracts of the coatings were added into the microbial culture. Hence, Zn–CaP-coated Ti–6Al–7Nb alloy with controllable biodegradation as prepared by RFMS is a prospective material suitable for bone applications in cases where there is a risk of bacterial contamination with severe consequences, for example, in leukemic patients. Further research is needed to closely investigate the mechanical features and pathways of their solubility and antimicrobial, antitumor, and osteogenic activities.
Collapse
|
21
|
Wall V, Nguyen TH, Nguyen N, Tran PA. Controlling Antibiotic Release from Polymethylmethacrylate Bone Cement. Biomedicines 2021; 9:26. [PMID: 33401484 PMCID: PMC7824110 DOI: 10.3390/biomedicines9010026] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Bone cement is used as a mortar for securing bone implants, as bone void fillers or as spacers in orthopaedic surgery. Antibiotic-loaded bone cements (ALBCs) have been used to prevent and treat prosthetic joint infections by providing a high antibiotic concentration around the implanted prosthesis. High antibiotic concentrations are, on the other hand, often associated with tissue toxicity. Controlling antibiotic release from ALBCS is key to achieving effective infection control and promoting prosthesis integration with the surrounding bone tissue. However, current ALBCs still need significant improvement in regulating antibiotic release. In this review, we first provide a brief introduction to prosthetic joint infections, and the background concepts of therapeutic efficacy and toxicity in antibiotics. We then review the current state of ALBCs and their release characteristics before focusing on the research and development in controlling the antibiotic release and osteo-conductivity/inductivity. We then conclude by a discussion on the need for better in vitro experiment designs such that the release results can be extrapolated to predict better the local antibiotic concentrations in vivo.
Collapse
Affiliation(s)
- Victoria Wall
- Faculty of Medicine (Princess Alexandra Hospital), St Lucia Campus, The University of Queensland, Brisbane, QLD 4072, Australia;
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Thi-Hiep Nguyen
- Tissue Engineering and Regenerative Medicine Department, School of Biomedical Engineering, International University, Ho Chi Minh City 70000, Vietnam; (T.-H.N.); (N.N.)
- Vietnam National University, Ho Chi Minh City 70000, Vietnam
| | - Nghi Nguyen
- Tissue Engineering and Regenerative Medicine Department, School of Biomedical Engineering, International University, Ho Chi Minh City 70000, Vietnam; (T.-H.N.); (N.N.)
- Vietnam National University, Ho Chi Minh City 70000, Vietnam
| | - Phong A. Tran
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
22
|
Shevtsov M, Gavrilov D, Yudintceva N, Zemtsova E, Arbenin A, Smirnov V, Voronkina I, Adamova P, Blinova M, Mikhailova N, Galibin O, Akkaoui M, Pitkin M. Protecting the skin-implant interface with transcutaneous silver-coated skin-and-bone-integrated pylon in pig and rabbit dorsum models. J Biomed Mater Res B Appl Biomater 2020; 109:584-595. [PMID: 32935912 DOI: 10.1002/jbm.b.34725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Implant-associated soft tissue infections at the skin-implant interface represent the most frequent complications in reconstructive surgery and lead to implant failures and revisions. Titanium implants with deep porosity, called skin-and-bone-integrated-pylons (SBIP), allow for skin ingrowth in the morphologically natural direction, thus restoring a reliable dermal barrier and reducing the risk of infection. Silver coating of the SBIP implant surface using physical vapor deposition technique offers the possibility of preventing biofilm formation and exerting a direct antimicrobial effect during the wound healing phase. In vivo studies employing pig and rabbit dorsum models for assessment of skin ingrowth into the pores of the pylon demonstrated the safety of transcutaneous implantation of the SBIP system. No postoperative complications were reported at the end of the follow-up period of 6 months. Histological analysis proved skin ingrowth in the minipig model without signs of silver toxicity. Analysis of silver release (using energy dispersive X-ray spectroscopy) in the model of intramedullary-inserted silver-coated SBIP in New Zealand rabbits demonstrated trace amounts of silver after 3 months of in-bone implantation. In conclusion, selected temporary silver coating of the SBIP implant surface is powerful at preventing the periprosthetic infections without imparing skin ingrowth and can be considered for clinical application.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Department of Radiation Immuno-Oncology, Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum Rechts der Isar, Munich, Germany.,Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.,Department of Biotechnology, First Pavlov State Medical University of St.Petersburg, St. Petersburg, Russia.,Department of Pediatric Neurosurgery, Almazov National Medical Research Centre, Russian Polenov Neurosurgical Institute, St. Petersburg, Russia.,Laboratory of Biomedical Cell Technologies, Far Eastern Federal University, Vladivostok, Russia
| | - Dmitriy Gavrilov
- Federal State Budgetary Institution "Federal Scientific Center of Rehabilitation of the Disabled named after G.A. Albrecht" of the Ministry of Labour and Social Protection of the Russian Federation, St. Petersburg, Russia
| | - Natalia Yudintceva
- Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Elena Zemtsova
- Department of Solid State Chemistry, Saint Petersburg State University, St. Petersburg, Russia
| | - Andrei Arbenin
- Department of Solid State Chemistry, Saint Petersburg State University, St. Petersburg, Russia
| | - Vladimir Smirnov
- Department of Solid State Chemistry, Saint Petersburg State University, St. Petersburg, Russia
| | | | - Polina Adamova
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - Miralda Blinova
- Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Nataliya Mikhailova
- Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Oleg Galibin
- Department of Biotechnology, First Pavlov State Medical University of St.Petersburg, St. Petersburg, Russia
| | | | - Mark Pitkin
- Tufts University, Boston, Massachusetts, USA.,Poly-Orth International, Sharon, Massachusetts, USA
| |
Collapse
|