1
|
Moghbeli M. MicroRNAs as the pivotal regulators of cisplatin resistance in osteosarcoma. Pathol Res Pract 2023; 249:154743. [PMID: 37549518 DOI: 10.1016/j.prp.2023.154743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
Osteosarcoma (OS) is an aggressive bone tumor that originates from mesenchymal cells. It is considered as the eighth most frequent childhood cancer that mainly affects the tibia and femur among the teenagers and young adults. OS can be usually diagnosed by a combination of MRI and surgical biopsy. The intra-arterial cisplatin (CDDP) and Adriamycin is one of the methods of choices for the OS treatment. CDDP induces tumor cell death by disturbing the DNA replication. Although, CDDP has a critical role in improving the clinical complication in OS patients, a high ratio of CDDP resistance is observed among these patients. Prolonged CDDP administrations have also serious side effects in normal tissues and organs. Therefore, the molecular mechanisms of CDDP resistance should be clarified to define the novel therapeutic modalities in OS. Multidrug resistance (MDR) can be caused by various cellular and molecular processes such as drug efflux, detoxification, and signaling pathways. MicroRNAs (miRNAs) are the key regulators of CDDP response by the post transcriptional regulation of target genes involved in MDR. In the present review we have discussed all of the miRNAs associated with CDDP response in OS cells. It was observed that the majority of reported miRNAs increased CDDP sensitivity in OS cells through the regulation of signaling pathways, apoptosis, transporters, and autophagy. This review highlights the miRNAs as reliable non-invasive markers for the prediction of CDDP response in OS patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Tian W, Niu X, Feng F, Wang X, Wang J, Yao W, Zhang P. The promising roles of exosomal microRNAs in osteosarcoma: A new insight into the clinical therapy. Biomed Pharmacother 2023; 163:114771. [PMID: 37119740 DOI: 10.1016/j.biopha.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
Osteosarcoma is the most common malignant bone sarcoma in children. Chemotherapy drugs resistance significantly hinders the overall survival of patients. Due to high biocompatibility and immunocompatibility, exosomes have been explored extensively. Multiple parent cells can actively secrete numerous exosomes, and the membrane structure of exosomes can protect miRNAs from degradation. Based on these characteristics, exosomal miRNAs play an important role in the occurrence, development, drug resistance. Therefore, in-depth exploration of exosome biogenesis and role of exosomal miRNAs will provide new strategies and targets for understanding the pathogenesis of osteosarcoma and overcoming chemotherapy drug resistance. Moreover, advancing evidences have showed that engineering modification could attribute stronger targeting to exosomes to deliver cargos to recipient cells more effectively. In this review, we focus on the mechanisms of exosomal miRNAs on the occurrence and development of osteosarcoma and the potential to function as tumor biomarkers for diagnosis and prognosis prediction. In addition, we also summarize recent advances in the clinical application values of engineering exosomes to provide novel ideas and directions for overcoming the chemotherapy resistance in osteosarcoma.
Collapse
Affiliation(s)
- Wen Tian
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaoying Niu
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Henan 450001, China
| | - Xin Wang
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jiaqiang Wang
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Weitao Yao
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Peng Zhang
- Department of Bone and Soft Tissue Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
3
|
LncRNA HCG18 Promotes Osteosarcoma Cells Proliferation, Migration, and Invasion in by Regulating miR-34a/RUNX2 Pathway. Biochem Genet 2022; 61:1035-1049. [DOI: 10.1007/s10528-022-10294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
|
4
|
Sato K, Osaka E, Fujiwara K, Fujii R, Takayama T, Tokuhashi Y, Nakanishi K. miRNA‑218 targets multiple oncogenes and is a therapeutic target for osteosarcoma. Oncol Rep 2022; 47:92. [PMID: 35293593 PMCID: PMC8968766 DOI: 10.3892/or.2022.8303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
Survivin is overexpressed in various cancers and is correlated with treatment resistance and prognosis. MicroRNAs (miRNAs) directly regulate several target genes and are potential therapeutic agents for various cancers. The present study evaluated multiple gene targets of miR-218, including survivin, in osteosarcoma and compared the anti-tumor effects of miR-218 with those of YM155, an anti-survivin agent. It assessed the expression levels of miR-218 and survivin in osteosarcoma and osteoblast cell lines, as well as the proliferative, migratory and invasive capacities of cells following treatment with miR-218 or YM155. The form of cell death was assessed using fluorescence-activated cell sorting analysis to examine the expression of invasion ability-related genes. Osteosarcoma cell lines were subcutaneously injected into immunodeficient mice; the mice were then treated with miR-218 or YM155 to assess the anti-tumor effects of these agents. The results showed that miR-218 was downregulated, whereas survivin was overexpressed in the osteosarcoma cell line compared with normal osteoblast cells. The expression of survivin was suppressed upon overexpression of miR-218 (miR-218 group) or administration of YM155 (YM155 group), leading to apoptosis and inhibition of osteosarcoma cell proliferation. Invasion and migration abilities were inhibited in the miR-218 group, but not in the YM155 group. In the animal model, both the miR-218 and YM155 groups showed a reduced tumor volume and decreased survivin expression. In osteosarcoma, miR-218 showed a wider range of therapeutic efficacy compared with YM155, suggesting that miR-218 should be evaluated as a treatment target.
Collapse
Affiliation(s)
- Kentaro Sato
- Department of Orthopedic Surgery, Nihon University Hospital, Chiyoda‑ku, Tokyo 101‑8309, Japan
| | - Eiji Osaka
- Department of Orthopedic Surgery, Nihon University School of Medicine, Itabashi‑ku, Tokyo 173‑8610, Japan
| | - Kyoko Fujiwara
- Department of Internal Medicine, Nihon University School of Medicine, Itabashi‑ku, Tokyo 173‑8610, Japan
| | - Ryota Fujii
- Department of Orthopedic Surgery, Nihon University School of Medicine, Itabashi‑ku, Tokyo 173‑8610, Japan
| | - Tadateru Takayama
- Department of Internal Medicine, Nihon University School of Medicine, Itabashi‑ku, Tokyo 173‑8610, Japan
| | - Yasuaki Tokuhashi
- Department of Orthopedic Surgery, Tachikawa Kinen Hospital, Kasama City, Ibaraki 309‑1736, Japan
| | - Kazuyoshi Nakanishi
- Department of Orthopedic Surgery, Nihon University School of Medicine, Itabashi‑ku, Tokyo 173‑8610, Japan
| |
Collapse
|
5
|
Ohishi T, Hayakawa S, Miyoshi N. Involvement of microRNA modifications in anticancer effects of major polyphenols from green tea, coffee, wine, and curry. Crit Rev Food Sci Nutr 2022; 63:7148-7179. [PMID: 35289676 DOI: 10.1080/10408398.2022.2038540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown that consumption of green tea, coffee, wine, and curry may contribute to a reduced risk of various cancers. However, there are some cancer site-specific differences in their effects; for example, the consumption of tea or wine may reduce bladder cancer risk, whereas coffee consumption may increase the risk. Animal and cell-based experiments have been used to elucidate the anticancer mechanisms of these compounds, with reactive oxygen species (ROS)-based mechanisms emerging as likely candidates. Chlorogenic acid (CGA), curcumin (CUR), epigallocatechin gallate (EGCG), and resveratrol (RSV) can act as antioxidants that activate AMP-activated protein kinase (AMPK) to downregulate ROS, and as prooxidants to generate ROS, leading to the downregulation of NF-κB. Polyphenols can modulate miRNA (miR) expression, with these dietary polyphenols shown to downregulate tumor-promoting miR-21. CUR, EGCG, and RSV can upregulate tumor-suppressing miR-16, 34a, 145, and 200c, but downregulate tumor-promoting miR-25a. CGA, EGCG, and RSV downregulate tumor-suppressing miR-20a, 93, and 106b. The effects of miRs may combine with ROS-mediated pathways, enhancing the anticancer effects of these polyphenols. More precise analysis is needed to determine how the different modulations of miRs by polyphenols relate to the cancer site-specific differences found in epidemiological studies related to the consumption of foods containing these polyphenols.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka, Japan
| | - Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
6
|
miR-34a-Mediated Survivin Inhibition Improves the Antitumor Activity of Selinexor in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:ph14060523. [PMID: 34072442 PMCID: PMC8227962 DOI: 10.3390/ph14060523] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease with limited therapeutic options. Here, we pursued a combinatorial therapeutic approach to enhance the activity of selinexor, the first-in-class XPO1 inhibitor, by miR-34a ectopic expression in human TNBC experimental models. Anti-proliferative activity induced by selinexor and miR-34a expression, singly and in combination, was evaluated by MTS assay and cell counting. The effect of treatments on survivin and apoptosis-related proteins was assessed by western blotting and ELISA. The antitumor and toxic effects of individual and combined treatments were evaluated on TNBC orthotopic xenografts in SCID mice. Selinexor consistently showed anti-proliferative activity, although to a variable extent, in the different TNBC cell lines and caused the impairment of survivin expression and intracellular distribution, accompanied by apoptosis induction. Consistent with in vitro data, the XPO1 inhibitor variably affected the growth of TNBC orthotopic xenografts. miR-34a cooperated with selinexor to reduce survivin expression and improved its anti-proliferative activity in TNBC cells. Most importantly, miR-34a expression markedly enhanced selinexor antitumor activity in the less sensitive TNBC xenograft model, in absence of toxicity. Our data form a solid foundation for promoting the use of a miR-34a-based approach to improve the therapeutic efficacy of selinexor in TNBC patients.
Collapse
|
7
|
Bongiovanni L, Andriessen A, Wauben MHM, Hoen ENMN', de Bruin A. Extracellular Vesicles: Novel Opportunities to Understand and Detect Neoplastic Diseases. Vet Pathol 2021; 58:453-471. [PMID: 33813952 PMCID: PMC8064535 DOI: 10.1177/0300985821999328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and progression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on EVs in the veterinary field. This review provides an overview of the features and biology of EVs as well as recent developments in EV research including techniques for isolation and analysis, and will address the way in which the EVs released by diseased tissues can be studied and exploited in the field of veterinary pathology. Uniquely, this review emphasizes the important contribution that pathologists can make to the field of EV research: pathologists can help EV scientists in studying and confirming the role of EVs and their molecular cargo in diseased tissues and as biomarkers in liquid biopsies.
Collapse
Affiliation(s)
- Laura Bongiovanni
- 90051Utrecht University, Utrecht, the Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Present address: Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | | | | | | - Alain de Bruin
- 90051Utrecht University, Utrecht, the Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
8
|
Fan H, Hu Z, Wang S, Wu W, Liu X, Geng H. 5-aminolevulinic-acid-mediated sonodynamic therapy improves the prognosis of melanoma by inhibiting survivin expression. Cancer Biomark 2021; 28:301-308. [PMID: 32390599 DOI: 10.3233/cbm-190681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND This study aimed to evaluate the relationship between survivin expression and melanoma after 5-aminolevulinic acid (5-ALA)-mediated sonodynamic therapy. METHODS Immunohistochemistry was used to detect survivin protein expression in human melanoma clinical samples. Subsequently, the effects of 5-ALA-mediated sonodynamic therapy were determined by measuring the volume of melanoma xenografts and the bodyweights of melanoma-bearing nude mice. The MTT assay was used to detect the viability of melanoma B16-F10 cells under the action of 5-ALA-mediated sonodynamic therapy, and Western blotting and PCR were used to detect survivin expression in melanoma cells and in the melanoma-xenograft model. RESULTS Survivin expression was significantly upregulated in human melanoma tissues compared with that of non-melanoma tissues. In the in vivo case, 5-ALA-mediated sonodynamic therapy significantly delayed tumor growth, prolonged the survival of mice, and inhibited the expression of survivin. In the in vitro case, 5-ALA-mediated sonodynamic therapy inhibited B16-F10 cell proliferation and decreased survivin expression at both protein and mRNA levels. CONCLUSION Our results suggest that 5-ALA-mediated sonodynamic therapy inhibited B16-F10 cell proliferation and melanoma-xenograft growth and prolonged survival of melanoma-bearing nude mice, which might be through downregulation of survivin expression.
Collapse
Affiliation(s)
- Haixia Fan
- Department of Oral Medicine, Jining Medical College, Shandong, China.,Department of Oral Medicine, Jining Medical College, Shandong, China
| | - Zheng Hu
- Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin, Heilongjiang, China.,Department of Oral Medicine, Jining Medical College, Shandong, China
| | - Shan Wang
- Department of Oral Pathology, Hospital of Stomatology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wen Wu
- Department of Oral Medicine, Jining Medical College, Shandong, China
| | - Xue Liu
- Department of Oral Medicine, Jining Medical College, Shandong, China
| | - Haixia Geng
- Department of Oral Medicine, Jining Medical College, Shandong, China
| |
Collapse
|
9
|
Duan N, Zhang W, Li Z, Sun L, Song T, Yu Z, Chen X, Ma W. Overexpression of HIPK2 removes the transrepression of proapoptotic genes mediated by the CtBP1-p300-FOXO3a complex and increases the chemosensitivity in osteosarcoma cells. J Cancer 2021; 12:1826-1837. [PMID: 33613771 PMCID: PMC7890331 DOI: 10.7150/jca.52115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
Decreased expression of proapoptotic genes can lead to the chemoresistenance in cancer therapy. Carboxyl-terminal binding protein 1 (CtBP1), a transcriptional corepressor with multiple oncogenic effects, has been previously identified to suppress the expression of two proapoptotic genes [BAX (BCL2 associated X) and BIM (Bcl-2 interacting mediator of cell death)] by assembling a complex with the Forkhead box O3 (FOXO3a) transcription factor and the p300 histone acetyltransferase. However, the upstream regulatory signaling of the CtBP1-p300-FOXO3a complex is obscure, and the effects of changing this signaling on chemosensitivity in osteosarcoma are unknown. Herein, we discovered that the downregulation of HIPK2 (Homeodomain-interacting protein kinase 2) was essential for the function of the CtBP1-p300-FOXO3a complex. Downregulation of HIPK2 prevented the phosphorylation and subsequent degradation of CtBP1, thereby allowing the assembly of the CtBP1-p300-FOXO3a complex and suppression of the expression of proapoptotic genes, such as BAX, BIM, BIK (Bcl-2 interacting killer) and NOXA/PMAIP1 (Phorbol-12-myristate-13-acetate-induced protein 1). Overexpression of HIPK2 promoted the phosphorylation of CtBP1 and the degradation of CtBP1 by proteasomes, thereby preventing the formation of the CtBP1-p300-FOXO3a complex. The abolition of CtBP1 transrepression increased the expression of proapoptotic genes to induce apoptosis and increase chemosensitivity in osteosarcoma cells. Taken together, our in vitro and in vivo results revealed that overexpression of HIPK2 could remove the CtBP1-mediated transrepression of proapoptotic genes, indicating a new therapeutic option for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Ning Duan
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.,Department of Orthopedic Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Wentao Zhang
- Department of Orthopedic Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhong Li
- Department of Orthopedic Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Liang Sun
- Department of Orthopedic Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Tao Song
- Department of Orthopedic Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zirui Yu
- Department of Orthopedic Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Xun Chen
- Department of Orthopedic Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Wei Ma
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
10
|
Zhao N, Liu H, Zhang A, Wang M. Expression levels and clinical significance of miR-203 and miR-133b in laryngeal carcinoma. Oncol Lett 2020; 20:213. [PMID: 32963619 DOI: 10.3892/ol.2020.12076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the expression levels and clinical significance of microRNA (miR)-203 and miR-133b in laryngeal carcinoma. A total of 154 patients with laryngeal carcinoma (research group) along with 100 healthy individuals (control group) were enrolled in the study. The patients were admitted to Yidu Central Hospital of Weifang (Weifang, China) from February 2016 to October 2018. Fasting venous blood (5 ml) was extracted from all subjects to determine the expression levels of serum miR-203 and miR-133b by reverse transcription-quantitative polymerase chain reaction (PCR) and to compare them among patients with different pathological characteristics. Receiver operating characteristic (ROC) curves were plotted to analyze the diagnostic values of miR-203 and miR-133b for laryngeal carcinoma. The research group showed significantly lower expression levels of miR-203 and miR-133b than the control group (P<0.05). According to ROC curve analysis, when the cut-off value was 0.659, the sensitivity and specificity of miR-203 in diagnosing laryngeal carcinoma were 60.00 and 90.26%, respectively, whereas when the cut-off value was 1.398, the sensitivity and specificity of miR-133b were 55.00 and 87.66%, respectively. The sensitivity and specificity of the joint detection were 70.00 and 83.77%, respectively, when the cut-off value was 0.416. In the research group, miR-203 was expressed significantly different in patients with different pathological stages and tumor types (P<0.050). The expression of miR-133b varied significantly in patients with different pathological stages, differentiation degrees and lymph node metastasis (P<0.050). In conclusion, miR-203 and miR-133b were expressed at low levels in patients with laryngeal carcinoma. The expression of miR-203 was related to tumor-node-metastasis (TNM) stage and tumor type, whereas the expression of miR-133b was related to TNM stage, differentiation degree, as well as lymph node metastasis. Joint detection of miR-203 and miR-133b is expected to be an excellent marker for the diagnosis and treatment of laryngeal carcinoma.
Collapse
Affiliation(s)
- Na Zhao
- Department of Otolaryngology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Hongjun Liu
- Department of Otolaryngology, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Aifen Zhang
- Department of Return Visit Office, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Min Wang
- Department of Pathology, Jilin Cancer Hospital, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
11
|
Li G, Qi HW, Dong HG, Bai P, Sun M, Liu HY. Targeting deubiquitinating enzyme USP26 by microRNA-203 regulates Snail1's pro-metastatic functions in esophageal cancer. Cancer Cell Int 2020; 20:355. [PMID: 32760222 PMCID: PMC7393868 DOI: 10.1186/s12935-020-01441-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
Background Esophageal cancer is one of the most common cancers worldwide with poor prognosis and high mortality. The transcription factor SNAI1, encoding Snail1, is important for metastatic progression in esophageal cancer whereas the microRNA (miRNA)-203 has been shown to function as an inhibitor of metastasis in EC. The Snail1 protein is stabilized in EC partially by the deubiquitinating enzyme USP26; however, how USP26 is regulated is not completely known. Methods Expression of SNAI1 and USP26 messenger RNA (mRNA) and miR-203 was performed in datasets within The Cancer Genome Atlas and Gene Expression Omnibus, respectively. Expression of Snail1 and USP26 protein and miR-203 was determined in the normal esophageal cell line HET-1A and EC cell lines Kyse150 and TE-1 using western blot and quantitative polymerase chain reaction, respectively. TargetScan was used for in situ prediction of miR-203 targets and in vitro heterologous reporter assays using the wild-type and miR-203 seed mutant of the 3′ Untranslated region (UTR) of USP26 were used to investigate whether USP26 is a target of miR-203. Effects of increasing miR-203 using MIR203A/5P mimic on USP26 and Snail1 in the HET-1A, Kyse150 and TE-1 cell lines were performed using western blot and cycloheximide-based protein stability analysis. Effects of modulating miR-203 in Kyse150 and TE-1 cell lines on in vitro pro-metastatic effects were analyzed by invasion assay, scratch wound-healing assay, and chemosensitivity to 5-fluoruracil (5-FU). In vivo lung metastasis assay was used to study the effect of modulating miR-203 in Kyse150 cells. Results SNAI1 mRNA and HSA/MIR203 was higher and lower, respectively, in EC patients compared to tumor-adjacent normal tissues. No changes in expression of USP26 mRNA were observed in these datasets. MIR/203 expression was downregulated whereas protein expression of both Snail1 and USP26 were higher in EC cell lines Kyse150 and TE-1 compared to normal esophageal cell line HET-1A. USP26 was predicted as a potential target of miR-203 by TargetScan Release 2.0. Reporter assays confirmed USP26 as a target of miR-203 in the EC cell lines. Transfection of EC cell lines with MIR203 mimic decreased USP26 protein expression and Snail1 protein stability indicating the ability of miR-203 to regulate Snail1 protein levels via USP26. Exogenous increase in miR-203 in the EC cell lines significantly inhibited Snail-1 mediated in vitro pro-metastatic function of invasion, wound-healing, and increased chemosensitivity to 5-FU. Finally, overexpression of miR-203 inhibited in vivo lung metastasis of Kyse150 cells, which was reversed following overexpression of USP26, indicating a direct role of miR-203-mediated regulation of USP26 in metastatic progression of EC. Conclusions Cumulatively, these results establish an important mechanism by which decrease in miR-203 expression potentiates metastatic progression in EC via USP26-mediated stabilization of Snail1. Hence, miR-203 can serve as a biomarker of metastasis in EC and is a potential target for therapeutic intervention in EC.
Collapse
Affiliation(s)
- Gang Li
- Department of Surgical Oncology, Taian City Central Hospital, Taian, 271000 Shandong China
| | - Hong-Wei Qi
- Department of Medicine, Taian City Central Hospital, Taian, 271000 Shandong China
| | - He-Gui Dong
- Department of Outpatient, Taian City Central Hospital, Taian, 271000 Shandong China
| | - Ping Bai
- Department of Surgical Oncology, Taian City Central Hospital, Taian, 271000 Shandong China
| | - Ming Sun
- Department of Surgical Oncology, Taian City Central Hospital, Taian, 271000 Shandong China
| | - Hai-Yan Liu
- Department of Oncology, The Second Affiliate Hospital of Shandong First Medical University, No.706, Taishan Street, Taian, 271000 Shandong China
| |
Collapse
|
12
|
Li Z, Chen H. miR-34a inhibits proliferation, migration and invasion of paediatric neuroblastoma cells via targeting HNF4α. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3072-3078. [PMID: 31343368 DOI: 10.1080/21691401.2019.1637886] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective: To investigate the potential mechanism of microRNA-34a (miR-34a) on proliferation, migration and invasion of paediatric neuroblastoma cells. Methods: The expression of miR-34a and hepatocyte nuclear factor 4α (HNF4α) in paediatric neuroblastoma tissues were detected by RT-q PCR and Western blot, respectively. Cell proliferation, migration, invasion and the expression of matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 14 (MMP-14) after transfection of miR-34a mimics or HNF4α siRNA into SH-SY5Y cells were detected by MTT assay, Transwell assay and Western blot assay, respectively. The target relationship between miR-34a and HNF4α was verified by TargetScan online prediction and dual-luciferase assay. Cell proliferation, migration and invasion of SH-SY5Y cells after overexpression of miR-34a and HNF4α were detected. Results: The expression level of miR-34a was decreased (p < .05) while the expression level of HNF4α was increased (p < .05) in paediatric neuroblastoma tissues. Over- expression of Mi-34a or knockdown of HNF4α in SH-SY5Y cells could lead to a decreased of cell proliferation, migration, invasion and the expression of MMP-2 and MMP-14 (p < .05). The results of TargetScan online prediction and dual-luciferase assay indicted that HNF4α was a potential target gene for miR-34a. Overexpression of HNF4α could reverse the inhibition of miR-34a on proliferation, migration and invasion of SH-SY5Y cells. Conclusion: The expression of miR-34a was down-regulated in paediatric neuroblastoma tissues, and overexpression of miR-34a could inhibit proliferation, migration and invasion of SH-SY5Y cells by targeting HNF4α.
Collapse
Affiliation(s)
- Zhiping Li
- a Department of Pediatrics, Henan Xinxiang Central Hospital , Xinxiang , China
| | - Huijun Chen
- a Department of Pediatrics, Henan Xinxiang Central Hospital , Xinxiang , China
| |
Collapse
|
13
|
Giuliani A, Cirilli I, Prattichizzo F, Mensà E, Fulgenzi G, Sabbatinelli J, Graciotti L, Olivieri F, Procopio AD, Tiano L, Rippo MR. The mitomiR/Bcl-2 axis affects mitochondrial function and autophagic vacuole formation in senescent endothelial cells. Aging (Albany NY) 2019; 10:2855-2873. [PMID: 30348904 PMCID: PMC6224225 DOI: 10.18632/aging.101591] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/05/2018] [Indexed: 12/27/2022]
Abstract
During senescence, cells undergo distinctive biochemical and morphological changes and become dysfunctional. MiRNAs are involved in the senescence process and specific miRNAs can localize to mitochondria (mitomiRs). We hypothesized that part of the typical alterations of senescence may depends on mitomiRs deregulation. Therefore, we thoroughly explored the phenotype of human endothelial cells undergoing replicative senescence (sHUVECs) and observed elongated/branched mitochondria, accumulation of autophagic vacuoles (AVs), increased ROS and IL-1β production and reduced expression of Bcl-2 compared to younger cells (yHUVECs). Despite these pro-apoptotic features, sHUVECs are more resistant to serum deprivation, conceivably due to development of pro-survival strategies such as upregulation of Bcl-xL and Survivin. We demonstrate that mitomiR-181a, -34a, and -146a, are overexpressed and localize to mitochondria in sHUVECs compared with yHUVECs and that they: i) down-regulate Bcl-2, ii) induce permeability transition pore opening and activation of caspase-1 and 3, iii) affect sensitivity to apoptosis and iv) promote the conversion of LC3-I to LC3-II. Overall, we document for the first time that some mitomiRs can act as mediators of the multiple but functionally linked biochemical and morphological changes that characterize aging cells and that they can promote different cellular outcomes according to the senescence status of the cell.
Collapse
Affiliation(s)
- Angelica Giuliani
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Emanuela Mensà
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Gianluca Fulgenzi
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.,Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, Frederick, MD 21702, USA
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Laura Graciotti
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA National Institute, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA National Institute, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
14
|
Chen M, Zhou L, Liao Z, Ye X, Xuan X, Gu B, Lu F. Sevoflurane Inhibited Osteosarcoma Cell Proliferation And Invasion Via Targeting miR-203/WNT2B/Wnt/β-Catenin Axis. Cancer Manag Res 2019; 11:9505-9515. [PMID: 31814757 PMCID: PMC6858624 DOI: 10.2147/cmar.s225911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/15/2019] [Indexed: 12/24/2022] Open
Abstract
Background Osteosarcoma is one of the most common primary bone cancers with predominant occurrence in children and adolescents. This study aimed to determine the effects of sevoflurane treatment on the osteosarcoma progression and to explore the underlying molecular mechanisms. Materials and methods The mRNA and protein expression levels were determined by qPCR and Western blot, respectively. Osteosarcoma cell proliferation, apoptosis and invasion were determined by MTT, caspase-3 activity, colony formation and Transwell invasion assays, respectively. The interaction between miR-203 and WNT2B 3' untranslated region was confirmed by luciferase reporter assay. Results Sevoflurane treatment for 6 hrs concentration-dependently suppressed cell viability, increased caspase-3 activity and up-regulated miR-203 expression in both U2OS and MG63 cells. MiR-203 overexpression suppressed cell viability, increased caspase-3 activity and suppressed cell growth and invasion of osteosarcoma cells. In addition, miR-203 knockdown attenuated the tumor-suppressive effects of sevoflurane treatment on osteosarcoma cells. Mechanistic studies showed that miR-203 repressed the expression of WNT2B in U2OS cells, and inhibition of miR-203 attenuated the suppressive effects of sevoflurane on WNT2B expression. More importantly, WNT2B overexpression attenuated the effects of sevoflurane treatment on cell viability, caspase-3 activity, cell growth and invasion of U2OS cells. MiR-203 overexpression suppressed Wnt/β-catenin signalling. Similarly, sevoflurane suppressed the activity of Wnt/β-catenin signalling, which was partially reversed by miR-203 knockdown and WTN2B overexpression. Conclusion Our data showed the tumor-suppressive effects of sevoflurane on osteosarcoma cells, and mechanistic studies revealed that sevoflurane inhibited osteosarcoma cell proliferation and invasion partly via targeting the miR-203/WNT2B/Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Meixian Chen
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lisheng Zhou
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhaoxia Liao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xijiu Ye
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xujun Xuan
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Beibei Gu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Fuding Lu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
15
|
Hou Y, Feng H, Jiao J, Qian L, Sun B, Chen P, Li Q, Liang Z. Mechanism of miR-143-3p inhibiting proliferation, migration and invasion of osteosarcoma cells by targeting MAPK7. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2065-2071. [PMID: 31126193 DOI: 10.1080/21691401.2019.1620252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: To investigate the effects of miR-143-3p and MAPK7 on the proliferation, migration, and invasion of U2OS human osteosarcoma (OS) cells. Methods: The expression of miR-143-3p and MAPK7 in U2OS cells were detected by qRT-PCR, and the protein level of MAPK7 was measured by western blot assay. The targeting relationship between miR-143-3p and MAPK7 was predicted by TargetScan and verified by dual luciferase reporter assay. MTT and Transwell assays were used to detect cell viability, migrated cells and invaded cells of U2OS cells. Results: Compared with hFOB1.19 cells, the expression of miR-143-3p was down-regulated and MAPK7 was up-regulated in U2OS cells. Cell viability, migration and invasion ability significantly decreased induced by miR-143-3p overexpression or MAPK7 knockdown in U2OS cells. The results of dual luciferase reporter assay indicated that miR-143-3p interacted with MAPK7. Furthermore, overexpression of MAPK7 could reverse the inhibitory effects on cell proliferation, migration and invasion in U2OS cells induced by miR-143-3p mimics. Conclusion: miR-143-3p could inhibit proliferation, migration and invasion of U2OS cells by targeting MAPK7.
Collapse
Affiliation(s)
- Yu Hou
- a Department of Orthopedics, Affiliated Hospital of Hebei University , Baoding , Hebei , China
| | - Helin Feng
- b Department of Orthopedics, Fourth Hospital of Hebei Medical University , Shijiazhuang , Hebei , China
| | - Jianbao Jiao
- a Department of Orthopedics, Affiliated Hospital of Hebei University , Baoding , Hebei , China
| | - Ligang Qian
- a Department of Orthopedics, Affiliated Hospital of Hebei University , Baoding , Hebei , China
| | - Bo Sun
- a Department of Orthopedics, Affiliated Hospital of Hebei University , Baoding , Hebei , China
| | - Pingtao Chen
- a Department of Orthopedics, Affiliated Hospital of Hebei University , Baoding , Hebei , China
| | - Qinggui Li
- a Department of Orthopedics, Affiliated Hospital of Hebei University , Baoding , Hebei , China
| | - Zhixing Liang
- a Department of Orthopedics, Affiliated Hospital of Hebei University , Baoding , Hebei , China
| |
Collapse
|
16
|
Wang H, Liu L, Fang S. MicroRNA‑330‑5p inhibits osteosarcoma cell growth and invasion by targeting the proto‑oncogene survivin. Mol Med Rep 2019; 20:2236-2244. [PMID: 31322187 PMCID: PMC6691255 DOI: 10.3892/mmr.2019.10447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 12/10/2018] [Indexed: 11/21/2022] Open
Abstract
Increasing evidence has suggested the crucial role of the dysregulation of microRNAs (miRNAs) in osteosarcoma (OS) progression. MicroRNA (miR)-330-5p has been reported to exert tumor suppressive effects in various types of human cancer. However, the role of miR-330-5p in the development of OS and the underlying mechanism remain to be clarified. In the present study, miR-330-5p expression was found to be significantly decreased in OS tissues and cell lines. In addition, low miR-330-5p expression was highly correlated with the overall survival and clinical stage of OS. Overexpression of miR-330-5p inhibited the viability, migration and invasion, and promoted the apoptosis of OS cells, as well as induced cell cycle arrest at the G2/M phase. Subsequently, the proto-oncogene survivin was identified as a functional target of miR-330-5p, and this was validated using a luciferase reporter assay. It was also demonstrated that survivin expression was markedly increased in OS tissues, and that it was negatively correlated with the expression of miR-330-5p. Furthermore, overexpression of survivin significantly abrogated the tumor-suppressive effect induced by miR-330-5p on OS cells. In conclusion, these results revealed that the miR-330-5p/survivin axis has a significant tumor-suppressive effect on OS, and may serve as a diagnostic and therapeutic target for the treatment of OS.
Collapse
Affiliation(s)
- Hao Wang
- Department of Traumatic Orthopaedics, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Lei Liu
- Department of Traumatic Orthopaedics, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Hefei, Anhui 230000, P.R. China
| | - Shiyuan Fang
- Department of Traumatic Orthopaedics, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230000, P.R. China
| |
Collapse
|
17
|
Wu L, Zhang Y, Huang Z, Gu H, Zhou K, Yin X, Xu J. MiR-409-3p Inhibits Cell Proliferation and Invasion of Osteosarcoma by Targeting Zinc-Finger E-Box-Binding Homeobox-1. Front Pharmacol 2019; 10:137. [PMID: 30846940 PMCID: PMC6393378 DOI: 10.3389/fphar.2019.00137] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Osteosarcoma (OS) is the most common bone cancer worldwide. There is evidence that microRNA-409 (miR-409-3p) is involved in tumorigenesis and cancer progression, however, its possible role in OS requires clarification. In the present study, we evaluated the expression level, clinical significance, and mode of action of miR-409-3p in OS. The miR-409-3p levels were diminished in the OS cells and tissues compared with associated adjacent non-tumor tissues and a non-cancer osteoplastic cell line. Low miR-409-3p expression levels were associated with clinical stage and distant metastasis in patients with OS. Resumption of miR-409-3p expression attenuated OS cell proliferation and invasion. Additionally, based on informatics analyses, we predicted that zinc-finger E-box-binding homeobox-1 (ZEB1) is a possible target of miR-409-3p. This hypothesis was confirmed using luciferase reporter assays, reverse transcription-quantitative real-time polymerase chain reaction, and Western blot analyses. The findings of the current study indicated that ZEB1 was up-regulated in the OS tissues and cell lines, and that this up-regulation was inversely proportional to miR-409-3p expression levels. Furthermore, down-regulation of ZEB1 decreased OS cell invasion and proliferation, illustrating that the tumor suppressive role of miR-409-3p in OS cells may be exerted via negative regulation of ZEB1. Taken together, our observations highlight the potential role of miR-409-3p as a tumor suppressor in OS partially through down-regulation of ZEB1 and suggest that miR-409-3p has potential applications in OS treatment.
Collapse
Affiliation(s)
- Liang Wu
- Minhang Hosptial, Fudan University, Shanghai, China
| | - Yiming Zhang
- Minhang Hosptial, Fudan University, Shanghai, China
| | | | - Huijie Gu
- Minhang Hosptial, Fudan University, Shanghai, China
| | - Kaifeng Zhou
- Minhang Hosptial, Fudan University, Shanghai, China
| | - Xiaofan Yin
- Minhang Hosptial, Fudan University, Shanghai, China
| | - Jun Xu
- Minhang Hosptial, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Izadpanah S, Shabani P, Aghebati-Maleki A, Baghbani E, Baghbanzadeh A, Fotouhi A, Bakhshinejad B, Aghebati-Maleki L, Baradaran B. Insights into the roles of miRNAs; miR-193 as one of small molecular silencer in osteosarcoma therapy. Biomed Pharmacother 2019; 111:873-881. [PMID: 30841466 DOI: 10.1016/j.biopha.2018.12.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/09/2018] [Accepted: 12/23/2018] [Indexed: 12/13/2022] Open
Abstract
Today, cancer is one of the most common causes of death. Osteosarcoma (OS) is a tumor in long bones and its prevalence is high in teenagers and young people. Among the methods that used to treat cancer, one can name chemotherapy, surgery, and radiotherapy. Since these methods have some disadvantages and they are not absolutely successful, the use of microRNAs (miRNAs) is very useful in diagnosis and treatment of OS. MiRNAs are small non-coding RNA molecules, containing 18-25 nucleotides, which are involved in the regulation of gene expression via binding to messenger RNA (mRNA). These RNAs are divided into two classes of suppressors and oncogenes. During OS, there is aberrant expression of several miRNAs. Among these miRNAs are downregulation of miR-193 that has been associated with cancer occurrence. The aim of the current manuscript is to have overview on the treatment approaches of OS with special focus on miR-193.
Collapse
Affiliation(s)
- Sama Izadpanah
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parastoo Shabani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Bakhshinejad
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Alegre F, Ormonde AR, Snider KM, Woolard K, Yu AM, Wittenburg LA. A genetically engineered microRNA-34a prodrug demonstrates anti-tumor activity in a canine model of osteosarcoma. PLoS One 2018; 13:e0209941. [PMID: 30596759 PMCID: PMC6312226 DOI: 10.1371/journal.pone.0209941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/13/2018] [Indexed: 12/25/2022] Open
Abstract
Osteosarcoma (OSA) represents the most common primary bone tumor in humans and pet dogs. Little progress has been made with regard to viable treatment options in the past three decades and patients presenting with metastatic disease continue to have a poor prognosis. Recent mouse studies have suggested that microRNA-34a (miR-34a) may have anti-tumor activities in human OSA models. Due to the conservation of microRNA across species, we hypothesized that a bioengineered miR-34a prodrug (tRNA/miR-34a) would have similar effects in canine OSA, providing a valuable preclinical model for development of this therapeutic modality. Using a panel of canine OSA cell lines, we found that tRNA/miR-34a reduced viability, clonogenic growth, and migration and invasion while increasing tumor cell apoptosis. Furthermore, canine OSA cells successfully process the tRNA/miR-34a into mature miR-34a which reduces expression of target proteins such as platelet derived growth factor receptor alpha (PDGFRα), Notch1 and vascular endothelial growth factor (VEGF). Additionally, our subcutaneous OSA xenograft model demonstrated in vivo tumor growth delay, increased necrosis and apoptosis by tRNA/miR-34a, and decreased cellular proliferation ability. Taken together, these data support that this novel microRNA-based therapy may possess clinical utility in a spontaneously-occurring large animal model of OSA, which can then serve to inform the clinical development of this therapy for human OSA patients.
Collapse
Affiliation(s)
- Fernando Alegre
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Amanda R Ormonde
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Kellie M Snider
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Kevin Woolard
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, California, United States of America
| | - Luke A Wittenburg
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
20
|
Tuerxun H, Cui J. The dual effect of morphine on tumor development. Clin Transl Oncol 2018; 21:695-701. [PMID: 30470993 DOI: 10.1007/s12094-018-1974-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
Morphine is a classic opioid drug used for reducing pain and is commonly prescribed as an effective drug to control cancer pain. Morphine has a direct role in the central nervous system to relieve pain, but because of its peripheral functions, morphine also has some side effects, such as nausea, constipation, and addiction (Gupta et al. in Sci World J 2015:10, 2015). In addition to its analgesic effect, the role of morphine in tumor development is an important question that has been investigated for many years with conflicting results. Numerous studies suggest that morphine has a role in both promoting and inhibiting tumor growth. In this extensive review, we attempt to comprehensively understand the effects of morphine and summarize both its positive and negative influences on various aspects of tumors, including tumor growth, angiogenesis, metastasis, inflammation, and immunomodulation.
Collapse
Affiliation(s)
- H Tuerxun
- The First Hospital of Jilin University, Jilin City, China
| | - J Cui
- The First Hospital of Jilin University, Jilin City, China.
| |
Collapse
|
21
|
Kashyap D, Tuli HS, Garg VK, Goel N, Bishayee A. Oncogenic and Tumor-Suppressive Roles of MicroRNAs with Special Reference to Apoptosis: Molecular Mechanisms and Therapeutic Potential. Mol Diagn Ther 2018; 22:179-201. [PMID: 29388067 DOI: 10.1007/s40291-018-0316-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are the non-coding class of minute RNA molecules that negatively control post-transcriptional regulation of various functional genes. These miRNAs are transcribed from the loci present in the introns of functional or protein-coding genes, exons of non-coding genes, or even in the 3'-untranslated region (3'-UTR). They have potential to modulate the stability or translational efficiency of a variety of target RNA [messenger RNA (mRNA)]. The regulatory function of miRNAs has been elucidated in several pathological conditions, including neurological (Alzheimer's disease and Parkinson's disease) and cardiovascular conditions, along with cancer. Importantly, miRNA identification in cancer progression and invasion has evolved as an incipient era in cancer treatment. Several studies have shown the influence of miRNAs on various cancer processes, including apoptosis, invasion, metastasis and angiogenesis. In particular, apoptosis induction in tumor cells through miRNA has been extensively studied. The biphasic mode (up- and down-regulation) of miRNA expression in apoptosis and other cancer processes has already been determined. The findings of these studies could be utilized to develop potential therapeutic strategies for the management of various cancers. The present review critically describes the oncogenic and tumor suppressor role of miRNAs in apoptosis and other cancer processes, therapy resistance, and use of their presence in the body fluids as biomarkers.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, 133207, Haryana, India.
| | - Vivek Kumar Garg
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, 160030, Punjab, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, Punjab, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| |
Collapse
|
22
|
Zhang C, Wang B, Zhao X, Li X, Lou Z, Chen X, Zhang F. Iron deficiency accelerates intervertebral disc degeneration through affecting the stability of DNA polymerase epsilon complex. Am J Transl Res 2018; 10:3430-3442. [PMID: 30662597 PMCID: PMC6291718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/05/2018] [Indexed: 06/09/2023]
Abstract
Iron serves as an important cofactor of iron-containing proteins that play critical roles in the maintenance of DNA stability and cell cycle progression. The disturbed iron homeostasis results in the pathogenesis of many diseases such as cancer and anemia. In this study, we found a clear correlation between iron deficiency and intervertebral disc degeneration (IDD). Through microarray experiments, we found that a large number of genes were differentially expressed in tissues with different degrees of degeneration. Among them, an iron-containing gene, PolE, the catalytic subunit of DNA polymerase epsilon (Polε), and the other two Polε subunits, including PolE2 and PolE3, were markedly downregulated, while some proteins involved in apoptosis such as Caspase-3 and -8 were significantly upregulated. By supplementation with an iron chelator deferoxamine (DFO) or knocking down either iron divalentmetal transporter 1 (DMT1) or transferrin receptor 1 (TfR1) in the nucleus pulposus (NP) cells, we found that the protein levels of PolE complex members were dramatically reduced, whereas the intrinsic apoptotic pathway was activated. Interestingly, overexpression of PolE in NP cells knocked down with either DMT1 or TfR could not reverse the stability of PolE complex and apoptosis status. In summary, our study suggests that iron deficiency is an important factor in the aggravation of IDD. Proper iron supplementation may be an effective strategy to alleviate the symptoms of patients with IDD.
Collapse
Affiliation(s)
- Chunqiang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical UniversityKunming 650032, Yunnan, China
| | - Bing Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical UniversityKunming 650032, Yunnan, China
| | - Xueling Zhao
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical UniversityKunming 650032, Yunnan, China
| | - Xingguo Li
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical UniversityKunming 650032, Yunnan, China
| | - Zhenkai Lou
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical UniversityKunming 650032, Yunnan, China
| | - Xun Chen
- Department of Orthopedics, Hong-Hui Hospital, Xi’an Jiaotong UniversityXi’an 710054, Shaanxi, China
| | - Fan Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical UniversityKunming 650032, Yunnan, China
| |
Collapse
|
23
|
Peng KY, Chang HM, Lin YF, Chan CK, Chang CH, Chueh SCJ, Yang SY, Huang KH, Lin YH, Wu VC, Wu KD. miRNA-203 Modulates Aldosterone Levels and Cell Proliferation by Targeting Wnt5a in Aldosterone-Producing Adenomas. J Clin Endocrinol Metab 2018; 103:3737-3747. [PMID: 30085132 DOI: 10.1210/jc.2018-00746] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/27/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT The aberrant expression or alternation of miRNA in the pathogenesis of aldosterone-producing adenomas (APAs) is still largely unknown. OBJECTIVE We investigated the role of miRNA-203 (screened from miRNA microarrays) and elucidated its effects on the Wnt/β-catenin pathway regarding aldosterone production and cell proliferation in APAs. METHODS miR-203 expression was upregulated or downregulated by transfecting miR-203 mimics or inhibitors into primary APA cells, the human adrenocortical cell line HAC15, and C57BL/6 mice. In vitro and biochemical data were correlated with the respective clinical parameters of APAs to evaluate their clinical importance. RESULTS The expression of miR-203 in human APA samples was significantly lower than that of peritumor adrenal samples. Tumoral miR-203 abundance correlated negatively with both plasma aldosterone level and tumor size in patients with APAs. miR-203 inhibitors increased aldosterone production and cell proliferation in HAC15 cells, and restoration of expression via miR-203 mimics showed decreased cell proliferation and aldosterone hypersecretion in APA cell cultures. In vivo selective inhibition of miR-203 via intra-adrenal injection of miR-203 inhibitors in mice led to a substantial increase in systolic blood pressure and plasma aldosterone levels. Additionally, the dual-luciferase reporter assay demonstrated that WNT5A is a direct target of miR-203. Furthermore, plasma Wnt5a levels in adrenal vein sampling were helpful in differentiating tumor localization, and preoperative plasma Wnt5a levels predicted the cure of hypertension after adrenalectomy. CONCLUSION We have demonstrated that attenuated miR-203 expression in APAs increases aldosterone production and the tumorigenesis of adrenal cells by activating the Wnt5a/β-catenin pathway.
Collapse
Affiliation(s)
- Kang-Yung Peng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Huang-Ming Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Feng Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chieh-Kai Chan
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin Chu, Taiwan
| | - Chia-Hui Chang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Tzu Chi Hospital, The Buddhist Medical Foundation, Hualien, Taiwan
| | - Shih-Chieh Jeff Chueh
- Cleveland Clinic Lerner College of Medicine and Glickman Urological and Kidney Institute, Cleveland Clinic, Ohio
| | - Shao-Yu Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hung Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- TAIPAI (Taiwan Primary Aldosteronism Investigation), Taipei, Taiwan
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- TAIPAI (Taiwan Primary Aldosteronism Investigation), Taipei, Taiwan
| | - Kwan-Dun Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- TAIPAI (Taiwan Primary Aldosteronism Investigation), Taipei, Taiwan
| |
Collapse
|
24
|
Li QC, Xu H, Wang X, Wang T, Wu J. miR-34a increases cisplatin sensitivity of osteosarcoma cells in vitro through up-regulation of c-Myc and Bim signal. Cancer Biomark 2018; 21:135-144. [PMID: 29060932 DOI: 10.3233/cbm-170452] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Osteosarcoma is the most common primary malignancy in bone. Patients who respond poorly to induction chemotherapy are at higher risk of adverse prognosis. The molecular basis for such poor prognosis remains unclear. Recently, increasing evidence has suggested decreased expression of miR-34a is observed in a number of cancer types, including human osteosarcoma, and decreased miR-34a is involved in drug resistance. However, the underlying molecular mechanisms of decreased miR-34a on cisplatin chemoresistance in osteosarcoma has not been reported. METHODS Osteosarcoma U2OS cells were transfected with miR-34a mimics for 48 h, then the cells were treated with 3.0 μm cisplatin for 24 h. Using siRNA targeting c-Myc and Bim to examine the relation between miR-34a, c-Myc and Bim expression exposure to cisplatin on cisplatin-induced apoptosis. RESULTS Treatment of U2OS cells with cisplatin induced cell apoptosis by upregulation of c-Myc -dependent Bim expression; Osteosarcoma U2OS cells transfected with miR-34a mimics (miR-34a/U2OS) induced cell apoptosis and inhibited cell survival, and increased the sensitivity of U2OS cells to cisplatin. U2OS cells transfected with miR-34a mimics upregulated the protein expression of c-Myc and Bim. Targeting c-Myc downregulated the expression of Bim in the miR-34a/U2OS cells. In addition, Targeting Bim reversed the chemeresistance of miR-34a/U2OS cells to cisplatin. CONCLUSIONS Our data indicated that miR-34a enhanced the sensitivity to cisplatin by upregulation of c-Myc and Bim pathway.
Collapse
Affiliation(s)
- Qi-Cai Li
- Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haiyan Xu
- Department of Hemopurification Center, Yantaiyuhuangding Hospital, Yantai, Shandong, China.,Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaohui Wang
- Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Department of Traumatology, The Central Hospital of Linyi, Linyi, Shandong, China
| | - Ting Wang
- Department of Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jiang Wu
- Department of Hemopurification Center, Yantaiyuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
25
|
Lan M, Zhu XP, Cao ZY, Liu JM, Lin Q, Liu ZL. Extracellular vesicles-mediated signaling in the osteosarcoma microenvironment: Roles and potential therapeutic targets. J Bone Oncol 2018; 12:101-104. [PMID: 30155405 PMCID: PMC6111053 DOI: 10.1016/j.jbo.2018.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is the most common non-hematologic malignant tumor of bone in children. It is usually characterized by a high risk of developing lung metastasis and poor prognosis. Extracellular vesicles (EVs) are cell-derived nanoparticles with a small size of 50–200 nm in diameter. As a communicator, the contents of the EVs secreted via either fusing with lysosomes for degradation and recycling or fusing with the cell plasma membrane into the extracellular environment, which play an important role in regulating the tumor microenvironment of OS and mediating the Wnt/β-catenin and TGF-β signalings. Increasing evidences suggest that EVs have significant role in OS growth, progression, metastasis and drug resistance. In this study, the roles of EVs in the physiology and pathogenesis of OS and the potential attractive therapeutic target for the treatment of OS were reviewed.
Collapse
Affiliation(s)
- Min Lan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Xiao-Ping Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Zhi-Yuan Cao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Jia-Ming Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhi-Li Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| |
Collapse
|
26
|
The Potential Contribution of microRNAs in Anti-cancer Effects of Aurora Kinase Inhibitor (AZD1152-HQPA). J Mol Neurosci 2018; 65:444-455. [DOI: 10.1007/s12031-018-1118-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022]
|
27
|
Liu HN, Qie P, Yang G, Song YB. miR-181b inhibits chemoresistance in cisplatin-resistant H446 small cell lung cancer cells by targeting Bcl-2. Arch Med Sci 2018; 14:745-751. [PMID: 30002690 PMCID: PMC6040135 DOI: 10.5114/aoms.2018.73131] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/22/2017] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are a group of small non-coding RNAs that affect multiple aspects of tumor biology including chemo resistance. miR-181b has been reported to modulate multidrug resistance in non-small cell lung cancer cells. This study was undertaken to determine the role of miR-181b in chemo resistance of small cell lung cancer cells. MATERIAL AND METHODS This study was undertaken to determine the role of miR-181b in chemoresistance of small cell lung cancer cells with use of qRt-PCR, WB, bioinformatics analysis, and double luciferase reporter system. RESULTS Our data showed that miR-181b was significantly downregulated in cisplatin-resistant H446 small cell lung cancer cells, compared to parental cells, compared to parental cells. Ectopic expression of miR-181b inhibited cell proliferation and invasion in cisplatin-resistant H446 cells (p = 0.023). Moreover, overexpression of miR-181b increased the susceptibility of cisplatin-resistant H446 cells to cisplatin. Mechanistic investigations demonstrated that miR-181b inhibited B-cell lymphoma-2 (Bcl-2) expression by binding to the 3'-untranslated region. Overexpression of Bcl-2 reversed miR-181b-mediated chemo sensitization, which is accompanied by a reduced apoptotic response. CONCLUSIONS Taken together, this work demonstrated that miR-181b might have the ability to overcome chemo resistance of small cell lung cancer cells, and restoration of this miRNA may represent a potential therapeutic strategy for improving chemo sensitivity in small cell lung cancer.
Collapse
Affiliation(s)
- Hui-Ning Liu
- Department of Thoracic Surgery, Hebei General Hospital, Shijia Zhuang, China
| | - Peng Qie
- Department of Thoracic Surgery, Hebei General Hospital, Shijia Zhuang, China
| | - Guang Yang
- Department of Thoracic Surgery, Hebei General Hospital, Shijia Zhuang, China
| | - Yong-Bin Song
- Department of Thoracic Surgery, Hebei General Hospital, Shijia Zhuang, China
| |
Collapse
|
28
|
Zhang C, Chen B, Jiang K, Lao L, Shen H, Chen Z. Activation of TNF-α/NF-κB axis enhances CRL4B DCAF11 E3 ligase activity and regulates cell cycle progression in human osteosarcoma cells. Mol Oncol 2018; 12:476-494. [PMID: 29377600 PMCID: PMC5891038 DOI: 10.1002/1878-0261.12176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/30/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022] Open
Abstract
Cullin 4B, a member of the Cullins, which serve as scaffolds to facilitate the assembly of E3 ligase complexes, is aberrantly expressed in many cancers, including osteosarcoma. Recently, we observed that CUL4B forms the CRL4BDCAF11 E3 ligase, which specifically ubiquitinates and degrades the cyclin‐dependent kinase (CDK) inhibitor p21Cip1 in human osteosarcoma cells. However, the underlying mechanisms regarding the aberrant expression of CUL4B and the upstream members of this signaling pathway are mostly unknown. In this study, we demonstrate that nuclear factor kappaB (NF‐κB) is a direct modulator of CUL4B expression. The CUL4B promoter is responsive to several NF‐κB subunits, including RelA, RelB, and c‐Rel, but not to p50 or p52. Additional studies reveal that the tumor necrosis factor alpha (TNF‐α)/NF‐κB axis pathway is activated in human osteosarcoma cells. This activation causes both CUL4B and NF‐κB subunits to become abundant in the nucleus of human osteosarcoma cells. The down‐regulation of individual genes, including TNFR1, RelA, RelB, c‐Rel, and CUL4B, or pairs of them, including TNFR1 + RelA,TNFR1 + RelB,TNFR1 + c‐Rel, and RelA+CUL4B, has similar effects on cell growth inhibition, colony formation, cell invasion, and in vivo tumor formation, whereas the overexpression of CUL4B in these knockdown cells significantly reverses their phenotypes. The inhibition of the TNF‐α/NF‐κB pathway greatly attenuates CRL4BDCAF11 E3 ligase activity and causes the accumulation of p21Cip1, thereby leading to cell cycle arrest at the S phase. Taken together, our results support a model in which the activation of the TNF‐α/NF‐κB axis contributes to an increase in CRL4BDCAF11 activity and a decrease in p21Cip1 protein levels, thereby controlling cell cycle progression in human osteosarcoma cells.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China.,Department of Dermatology, University of Colorado, Aurora, CO, USA
| | - Bin Chen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Kaibiao Jiang
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Lifeng Lao
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Zhi Chen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
29
|
MicroRNA-300 Regulates the Ubiquitination of PTEN through the CRL4B DCAF13 E3 Ligase in Osteosarcoma Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:254-268. [PMID: 29499938 PMCID: PMC5768150 DOI: 10.1016/j.omtn.2017.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 12/24/2022]
Abstract
Cullins, critical members of the cullin-RING ubiquitin ligases (CRLs), are often aberrantly expressed in different cancers. However, the underlying mechanisms regarding aberrant expression of these cullins and the specific substrates of CRLs in different cancers are mostly unknown. Here, we demonstrate that overexpressed CUL4B in human osteosarcoma cells forms an E3 complex with DNA damage binding protein 1 (DDB1) and DDB1- and CUL4-associated factor 13 (DCAF13). In vitro and in vivo analyses indicated that the CRL4BDCAF13 E3 ligase specifically recognized the tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10) for degradation, and disruption of this E3 ligase resulted in PTEN accumulation. Further analyses indicated that miR-300 directly targeted the 3' UTR of CUL4B, and DNA hypermethylation of a CpG island in the miR-300 promoter region contributed to the downregulation of miR-300. Interestingly, ectopic expression of miR-300 or treatment with 5-AZA-2'-deoxycytidine, a DNA methylation inhibitor, decreased the stability of CRL4BDCAF13 E3 ligase and reduced PTEN ubiquitination. By applying in vitro screening to identify small molecules that specifically inhibit CUL4B-DDB1 interaction, we found that TSC01131 could greatly inhibit osteosarcoma cell growth and could disrupt the stability of the CRL4BDCAF13 E3 ligase. Collectively, our findings shed new light on the molecular mechanism of CUL4B function and might also provide a new avenue for osteosarcoma therapy.
Collapse
|
30
|
Chen J, Yang L, Wang X. Reduced circulating microRNA-203 predicts poor prognosis for glioblastoma. Cancer Biomark 2017; 20:521-526. [PMID: 28946553 DOI: 10.3233/cbm-170335] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jian Chen
- Department of Neurosurgery, Institute of Neurology, Yichang Central People’s Hospital and The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443003, China
| | - Li Yang
- Yichang Blood Center, Yichang, Hubei 443003, China
| | - Xiongwei Wang
- Department of Neurosurgery, Institute of Neurology, Yichang Central People’s Hospital and The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443003, China
| |
Collapse
|
31
|
Cheng D, Qiu X, Zhuang M, Zhu C, Zou H, Zhang A. Development and validation of nomogram based on miR-203 and clinicopathological characteristics predicting survival after neoadjuvant chemotherapy and surgery for patients with non-metastatic osteosarcoma. Oncotarget 2017; 8:96935-96944. [PMID: 29228583 PMCID: PMC5722535 DOI: 10.18632/oncotarget.18534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/04/2017] [Indexed: 12/26/2022] Open
Abstract
Background Recently, nomograms have been used as models for risk prediction in malignant tumor because they can predict the outcome of interest for a certain individual based on many variables. This study aimed to establish an effective prognostic nomogram for osteosarcoma based on the clinicopathological factors and microRNA-203. Results The results showed that miR-203 expression was significantly lower in osteosarcoma tissues compared with the corresponding adjacent tissues (P < 0.001). Patients with low miR-203 expression had poor overall survival (OS) in osteosarcoma. The histological type, tumor size, AJCC stage and miR-203 expression were integrated in the nomogram. The nomogram showed significantly better prediction of OS than for patients with non-metastatic osteosarcoma. The ROC curve also showed higher specificity and sensitivity for predicting 3- and 5-year osteosarcoma patients’ survival compared with AJCC stage. The decision curve analysis also indicated more potential of clinical application of the nomogram compared with AJCC staging system. Moreover, our findings were supported by the validation cohort. Materials and Methods We retrospectively investigated 301 patients with non-metastatic osteosarcoma. Data from primary cohort (n = 198) were used to develop multivariate nomograms. This nomogram was internally validated for discrimination and calibration with bootstrap samples and was externally validated with an independent patient cohort (n = 103). Conclusions Our proposed nomogram showed more accurate prognostic prediction for patients with non-metastatic osteosarcoma.
Collapse
Affiliation(s)
- Dong Cheng
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Xubin Qiu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Ming Zhuang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Chenlei Zhu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Hongjun Zou
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Ailiang Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| |
Collapse
|
32
|
Zhang XY, Liang YX, Yan Y, Dai Z, Chu HC. Morphine: double-faced roles in the regulation of tumor development. Clin Transl Oncol 2017; 20:808-814. [DOI: 10.1007/s12094-017-1796-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/05/2017] [Indexed: 12/31/2022]
|
33
|
Li Q, Li H, Zhao X, Wang B, Zhang L, Zhang C, Zhang F. DNA Methylation Mediated Downregulation of miR-449c Controls Osteosarcoma Cell Cycle Progression by Directly Targeting Oncogene c-Myc. Int J Biol Sci 2017; 13:1038-1050. [PMID: 28924385 PMCID: PMC5599909 DOI: 10.7150/ijbs.19476] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/01/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are critical regulators of gene expression, and they have broad roles in the pathogenesis of different diseases including cancer. Limited studies and expression profiles of miRNAs are available in human osteosarcoma cells. By applying a miRNA microarray analysis, we observed a number of miRNAs with abnormal expression in cancerous tissues from osteosarcoma patients. Of particular interest in this study was miR-449c, which was significantly downregulated in osteosarcoma cells and patients, and its expression was negatively correlated with tumor size and tumor MSTS stages. Ectopic expression of miR-449c significantly inhibited osteosarcoma cell proliferation and colony formation ability, and caused cell cycle arrest at the G1 phase. Further analysis identified that miR-449c was able to directly target the oncogene c-Myc and negatively regulated its expression. Overexpression of c-Myc partially reversed miR-449c-mimic-inhibited cell proliferation and colony formation. Moreover, DNA hypermethylation was observed in two CpG islands adjacent to the genomic locus of miR-449c in osteosarcoma cells. Conversely, treatment with the DNA methylation inhibitor AZA caused induction of miR-449c. In conclusion, our results support a model that DNA methylation mediates downregulation of miR-449c, diminishing miR-449c mediated inhibition of c-Myc and thus leading to the activation of downstream targets, eventually contributing to osteosarcoma tumorigenesis.
Collapse
Affiliation(s)
- Qing Li
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Hua Li
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xueling Zhao
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Bing Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Lin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Caiguo Zhang
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fan Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| |
Collapse
|
34
|
Wen J, Zhao YK, Liu Y, Zhao JF. MicroRNA-34a inhibits tumor invasion and metastasis in osteosarcoma partly by effecting C-IAP2 and Bcl-2. Tumour Biol 2017. [PMID: 28635396 DOI: 10.1177/1010428317705761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma is a common primary malignant bone tumor that occurs mainly in children and adolescents. Recent evidence has demonstrated that miR-34a is involved in the invasion and metastasis of osteosarcoma. This study aims to explore the effect of biological behavior of miR-34a on osteosarcoma. First, we collect osteosarcoma and adjacent specimens, and the relative expression of miR-34a and C-IAP2 messenger RNA was quantitated by real-time polymerase chain reaction. Furthermore, miR-34a stimulant is synthesized and transfected onto osteosarcoma MG-63 cells. The effect of overexpression of miR-34a on osteosarcoma was detected by colony-forming assay, Annexin V-fluorescein isothiocyanate Apoptosis Detection Kit I, Transwell assay, and animal experiment in vivo. Finally, the relative levels of C-IAP2 and Bcl-2 protein were checked by western blot, and the activity of caspase-3 and caspase-9 was tested by spectrophotometry assay. In conclusion, miR-34a was downregulated in osteosarcoma cells. And the expression of C-IAP2 and Bcl-2 protein was drastically inhibited, and the activities of caspase-3 and caspase-9 were significantly increased after transfecting miR-34a onto osteosarcoma MG-63 cells. And the overexpression of miR-34a can inhibit cell invasion and metastasis, promote cell apoptosis, and arrest cells in G0/G1 period. And the animal experiment in vivo demonstrated that the overexpression of miR-34a could significantly inhibit the growth of osteosarcoma in animal skin. Taken together, we indicated that miR-34a can inhibit tumor invasion and metastasis in osteosarcoma, and its mechanism may be partly related to downregulating the expression of C-IAP2 and Bcl-2 protein directly or indirectly.
Collapse
Affiliation(s)
- Jie Wen
- 1 Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- 2 Department of Orthopedics, Inner mongolia Baogang Hospital, The Third Affiliated Hospital of Inner Mongolia Medical College, Baotou, China
| | - Yan-Kun Zhao
- 3 Department of Orthopedics, Jiu-yuan District Hospital, Baotou, China
| | - Yan Liu
- 2 Department of Orthopedics, Inner mongolia Baogang Hospital, The Third Affiliated Hospital of Inner Mongolia Medical College, Baotou, China
| | - Jin-Feng Zhao
- 1 Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Jiang K, Zhang C, Yu B, Chen B, Liu Z, Hou C, Wang F, Shen H, Chen Z. Autophagic degradation of FOXO3a represses the expression of PUMA to block cell apoptosis in cisplatin-resistant osteosarcoma cells. Am J Cancer Res 2017; 7:1407-1422. [PMID: 28744393 PMCID: PMC5523024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023] Open
Abstract
Autophagy and apoptosis are the two major modes of cell death, and autophagy usually inhibits apoptosis. The current understanding has shown that there is a complex crosstalk between the components of these two pathways. Here, we describe a transcriptional mechanism that links autophagy to apoptosis. We show that the cisplatin-resistant MG63-R12 and U2OS-R5 osteosarcoma sublines, in comparison to their parental MG63 and U2OS cells, respectively, exhibit increased autophagy but decreased apoptosis levels after treatment with cisplatin. We then used a microarray assay to examine the gene expression changes in these two cisplatin-resistant sublines and found that the expression of the transcription factor FOXO3a was dramatically decreased. Pharmacological treatment with either 3-methyladenine to inhibit autophagy or with rapamycin to activate autophagy in these two cisplatin-resistant sublines resulted in the accumulation or degradation of FOXO3a, respectively. Ectopic expression of FOXO3a in MG63-R12 and U2OS-R5 cells significantly enhanced cell sensitivity to cisplatin through a mechanism in which FOXO3a directly binds to the PUMA promoter and activates its expression, as well as its downstream event, the intrinsic apoptosis pathway. Importantly, this overexpression resulted in tumor growth inhibition in vivo. In conclusion, our results provide new insights into the molecular link between autophagy and apoptosis that involves a FOXO3a-mediated transcriptional mechanism. Importantly, our results may facilitate the development of therapeutic strategies for osteosarcoma patients who have become resistant to cisplatin therapy.
Collapse
Affiliation(s)
- Kaibiao Jiang
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Caiguo Zhang
- Department of Dermatology, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Bo Yu
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Bin Chen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Zude Liu
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Canglong Hou
- Department of Orthopadeics, Chang Hai Hospital, Second Military Medical UniversityShanghai, China
| | - Fei Wang
- Department of Orthopadeics, Chang Hai Hospital, Second Military Medical UniversityShanghai, China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| | - Zhi Chen
- Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
36
|
Ye K, Wang S, Zhang H, Han H, Ma B, Nan W. Long Noncoding RNA GAS5 Suppresses Cell Growth and Epithelial-Mesenchymal Transition in Osteosarcoma by Regulating the miR-221/ARHI Pathway. J Cell Biochem 2017; 118:4772-4781. [PMID: 28519068 DOI: 10.1002/jcb.26145] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/17/2017] [Indexed: 12/31/2022]
Abstract
Dysregulated long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) play key roles in the development of human cancers. The lncRNA growth arrest-specific 5 (GAS5) is reported to be a tumor suppressor in multiple cancers. However, the roles of GAS5 and its related miRNAs in osteosarcoma are poorly understood. This study explored the potential functions and mechanisms of GAS5 in the tumorigenesis of osteosarcoma. Here, the expression of GAS5, miR-221 and aplasia Ras homologue member I (ARHI) was determined in osteosarcoma tissues and cells by Real-time PCR (RT-qPCR). The underlying mechanism of GAS5 in osteosarcoma growth was analyzed via MTT, Transwell, RT-qPCR, Western blot, dual-luciferase reporter assay, RNA immunoprecipitation, and xenograft models after GAS5 overexpression. GAS5 and ARHI levels were significantly reduced, while miR-221 increased, both in osteosarcoma tissues and cells. Overexpression of GAS5 suppressed the proliferation, migration, and epithelial-mesenchymal transition (EMT) of osteosarcoma cells. GAS5 could directly bind to miR-221 to decrease miR-221 expression and enhance ARHI expression. The effect of GAS5 overexpression on the proliferation, migration and EMT was reversed by miR-221 mimics or ARHI siRNA in osteosarcoma cells. Additionally, GAS5 suppressed tumor volume, Ki-67 and PCNA staining, and EMT process in the development of osteosarcoma in vivo. Taken together, lncRNA GAS5 functions as a competing endogenous RNA for miR-221 to suppress cell growth and EMT in osteosarcoma by regulating the miR-221/ARHI pathway. J. Cell. Biochem. 118: 4772-4781, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kaishan Ye
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Shuanke Wang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Haihong Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Hua Han
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Bing Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Wei Nan
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, 730030, China
| |
Collapse
|
37
|
Lin W, Zhu X, Yang S, Chen X, Wang L, Huang Z, Ding Y, Huang L, Lv C. MicroRNA-203 inhibits proliferation and invasion, and promotes apoptosis of osteosarcoma cells by targeting Runt-related transcription factor 2. Biomed Pharmacother 2017; 91:1075-1084. [PMID: 28525948 DOI: 10.1016/j.biopha.2017.05.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 04/29/2017] [Accepted: 05/06/2017] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence indicates that microRNA-203 (miR-203) is abnormally expressed in many human tumor tissues and significantly associated with the occurrence, development and clinical outcomes of human tumors. The aim of this study was to determine the target genes and functional significance of miR-203 in osteosarcoma cells. We found reduced expression of miR-203 in osteosarcoma tissues and cells (MG63 and U2-OS) compared with the adjacent normal tissues and normal osteoblastic cells (hFOB1.19), respectively. In vitro studies further demonstrated that exogenous miR-203 overexpression inhibited osteosarcoma cell proliferation and invasion, and promoted apoptosis. At the molecular level, our results confirmed that apoptosis, cell cycle and invasion-related proteins were regulated by miR-203. Our findings also revealed that Runt-related transcription factor 2 (RUNX2) was directly negatively regulated by miR-203. These results suggested that miR-203 may function as a tumor suppressor and may therefore have therapeutic potential in the treatment of human osteosarcoma.
Collapse
Affiliation(s)
- Wenjun Lin
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiongbai Zhu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shengwu Yang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xin Chen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lu Wang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhengxiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yewei Ding
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lintuo Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Chen Lv
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
38
|
Zhang W, Duan N, Zhang Q, Song T, Li Z, Zhang C, Chen X, Wang K. DNA Methylation Mediated Down-Regulation of miR-370 Regulates Cell Growth through Activation of the Wnt/β-Catenin Signaling Pathway in Human Osteosarcoma Cells. Int J Biol Sci 2017; 13:561-573. [PMID: 28539830 PMCID: PMC5441174 DOI: 10.7150/ijbs.19032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/20/2017] [Indexed: 12/28/2022] Open
Abstract
MicroRNA-370 (miR-370) has been observed to act as a tumor suppressor through the targeting of different proteins in a variety of tumors. Our previous study indicated that miR-370 was able to target forkhead box protein M1 (FOXM1) to inhibit cell growth and metastasis in human osteosarcoma cells. In this study, we reported that FOXM1 interacted with β-catenin in vitro and in vivo. Similar to FOXM1, critical components of the Wnt signaling pathway, including β-catenin, c-Myc, and Cyclin D1, were also highly expressed in different human osteosarcoma cells lines. Pharmacological inhibition of FOXM1 or β-catenin but not of c-Myc was associated with the increased expression of miR-370. Ectopic expression of miR-370 inhibited the downstream signaling of β-catenin. Moreover, osteosarcoma cells treated with 5-AZA-2'-deoxycytidine (AZA), a DNA methylation inhibitor, exhibited increased levels of miR-370 and decreased levels of β-catenin downstream targets, which resulted in inhibition of cell proliferation and colony formation ability. In conclusion, our results supported a model in which the DNA methylation-mediated down-regulation of miR-370 reduced its inhibitory effect on FOXM1, thereby promoting FOXM1-β-catenin interaction and activating the Wnt/β-Catenin signaling pathway in human osteosarcoma cells.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710005, Shaanxi, China.,Department of Orthopaedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an 710054, Shaanxi, China
| | - Ning Duan
- Department of Orthopaedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an 710054, Shaanxi, China
| | - Qian Zhang
- The second department of surgery room, Shaanxi Provincial Tumor Hospital, Xi'an 710061, Shaanxi, China
| | - Tao Song
- Department of Orthopaedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an 710054, Shaanxi, China
| | - Zhong Li
- Department of Orthopaedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an 710054, Shaanxi, China
| | - Caiguo Zhang
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Xun Chen
- Department of Orthopaedics, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine Xi'an 710054, Shaanxi, China
| | - Kunzheng Wang
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710005, Shaanxi, China
| |
Collapse
|
39
|
Palmini G, Marini F, Brandi ML. What Is New in the miRNA World Regarding Osteosarcoma and Chondrosarcoma? Molecules 2017; 22:E417. [PMID: 28272374 PMCID: PMC6155266 DOI: 10.3390/molecules22030417] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/03/2017] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of multimodal and aggressive therapies, currently patients with skeletal sarcomas, including osteosarcoma and chondrosarcoma, often have a poor prognosis. In recent decades, advances in sequencing technology have revealed the presence of RNAs without coding potential known as non-coding RNAs (ncRNAs), which provides evidence that protein-coding genes account for only a small percentage of the entire genome. This has suggested the influence of ncRNAs during development, apoptosis and cell proliferation. The discovery of microRNAs (miRNAs) in 1993 underscored the importance of these molecules in pathological diseases such as cancer. Increasing interest in this field has allowed researchers to study the role of miRNAs in cancer progression. Regarding skeletal sarcomas, the research surrounding which miRNAs are involved in the tumourigenesis of osteosarcoma and chondrosarcoma has rapidly gained traction, including the identification of which miRNAs act as tumour suppressors and which act as oncogenes. In this review, we will summarize what is new regarding the roles of miRNAs in chondrosarcoma as well as the latest discoveries of identified miRNAs in osteosarcoma.
Collapse
Affiliation(s)
- Gaia Palmini
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy.
| | - Francesca Marini
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy.
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Florence 50134, Italy.
| |
Collapse
|
40
|
Andersson KM, Turkkila M, Erlandsson MC, Bossios A, Silfverswärd ST, Hu D, Ekerljung L, Malmhäll C, Weiner HL, Lundbäck B, Bokarewa MI. Survivin controls biogenesis of microRNA in smokers: A link to pathogenesis of rheumatoid arthritis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:663-673. [DOI: 10.1016/j.bbadis.2016.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 12/14/2022]
|
41
|
Ma Y, Ren Z, Ma S, Yan W, He M, Wang D, Ding P. Morphine enhances renal cell carcinoma aggressiveness through promotes survivin level. Ren Fail 2016; 39:258-264. [PMID: 27866460 PMCID: PMC6014364 DOI: 10.1080/0886022x.2016.1256322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: Morphine is an opioid analgesic drug often used for pain relief in cancer patients. However, there is growing evidence that morphine may modulate tumor growth, progression and metastasis. Unfortunately, the results obtained by these studies are still contradictory. Methods: In this study, we investigated the effect of morphine in human clear cell renal cell carcinoma 786-O, RLC-310 cells and whether morphine affects on tumor growth in human clear cell renal cell carcinoma 786-O, RLC-310 cells. The cell proliferation was determined by MTT assay, cell proliferation, migration and invasion assays. Immunofluorescence staining and Q-PCR was used to determine the Survivin expression. Results: It was shown that morphine enhances proliferation of 786-O, RLC-310 cells, whereas morphine promoted the growth and aggressive phenotype of 786-O and RLC-310 cells in vitro though Survivin-dependent signaling. Conclusions: Our data showed that morphine promotes RCC growth and increases RCC progression via over-expression of Survivin.
Collapse
Affiliation(s)
- Yabing Ma
- a Department of Anesthesia , Gansu provincial People's Hospital , Lanzhou , Gansu Province , PR China
| | - Zhongzhong Ren
- b Departments of Medical Record , Shaanxi Provincial People's Hospital , Xian, Shaanxi Province , China
| | - Shuyong Ma
- c Department of Anesthesia , Jiuquan City People's Hospital of Gansu Provincial, Jiuquan , Gansu Province , PR China
| | - Wenjun Yan
- a Department of Anesthesia , Gansu provincial People's Hospital , Lanzhou , Gansu Province , PR China
| | - Man He
- a Department of Anesthesia , Gansu provincial People's Hospital , Lanzhou , Gansu Province , PR China
| | - Dong Wang
- a Department of Anesthesia , Gansu provincial People's Hospital , Lanzhou , Gansu Province , PR China
| | - Peiyan Ding
- a Department of Anesthesia , Gansu provincial People's Hospital , Lanzhou , Gansu Province , PR China
| |
Collapse
|