1
|
Glewis S, Lingaratnam S, Krishnasamy M, H Martin J, Tie J, Alexander M, Michael M. Pharmacogenetics testing (DPYD and UGT1A1) for fluoropyrimidine and irinotecan in routine clinical care: Perspectives of medical oncologists and oncology pharmacists. J Oncol Pharm Pract 2024; 30:30-37. [PMID: 37021580 DOI: 10.1177/10781552231167554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
BACKGROUND Despite robust evidence and international guidelines, to support routine pharmacogenetic (PGx) testing, integration in practice has been limited. This study explored clinicians' views and experiences of pre-treatment DPYD and UGT1A1 gene testing and barriers to and enablers of routine clinical implementation. METHODS A study-specific 17-question survey was emailed (01 February-12 April 2022) to clinicians from the Medical Oncology Group of Australia (MOGA), the Clinical Oncology Society of Australia (COSA) and International Society of Oncology Pharmacy Practitioners (ISOPP). Data were analysed and reported using descriptive statistics. RESULTS Responses were collected from 156 clinicians (78% medical oncologists, 22% pharmacists). Median response rate of 8% (ranged from 6% to 24%) across all organisations. Only 21% routinely test for DPYD and 1% for UGT1A1. For patients undergoing curative/palliative intent treatments, clinicians reported intent to implement genotype-guided dosing by reducing FP dose for DPYD intermediate metabolisers (79%/94%), avoiding FP for DPYD poor metabolisers (68%/90%), and reducing irinotecan dose for UGT1A1 poor metabolisers (84%, palliative setting only). Barriers to implementation included: lack of financial reimbursements (82%) and perceived lengthy test turnaround time (76%). Most Clinicians identified a dedicated program coordinator, i.e., PGx pharmacist (74%) and availability of resources for education/training (74%) as enablers to implementation. CONCLUSION PGx testing is not routinely practised despite robust evidence for its impact on clinical decision making in curative and palliative settings. Research data, education and implementation studies may overcome clinicians' hesitancy to follow guidelines, especially for curative intent treatments, and may overcome other identified barriers to routine clinical implementation.
Collapse
Affiliation(s)
- Sarah Glewis
- Department of Pharmacy, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | | | - Mei Krishnasamy
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Academic Nursing Unit, Peter MacCallum Cancer Centre, Melbourne, Australia
- VCCC Alliance, Parkville, Australia
| | - Jennifer H Martin
- School of Medicine and Public Health, University of Newcastle, New South Wales, Australia
| | - Jeanne Tie
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Marliese Alexander
- Department of Pharmacy, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Michael Michael
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
2
|
Lv H, Nie C, He Y, Chen B, Liu Y, Zhang J, Chen X. Individual Irinotecan Therapy Under the Guidance of Pre-Treated UGT1A1* 6 Genotyping in Gastric Cancer. Technol Cancer Res Treat 2024; 23:15330338241236658. [PMID: 38497131 PMCID: PMC10946077 DOI: 10.1177/15330338241236658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Background: Severe delayed diarrhea and hematological toxicity limit the use of irinotecan. Uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) is a critical enzyme in irinotecan metabolism. The study aims to investigate the safety and efficacy of irinotecan under the guidance of the pre-treatment UGT1A1 genotype in the second-line treatment of gastric cancer. Methods: This study involved 110 patients. Irinotecan was injected intravenously every 3 weeks, and the dose of irinotecan was determined by polymorphism of the UGT1A1 gene, which was divided into three groups (125 mg/m2: GG type; 100 mg/m2: GA type; 75 mg/m2: AA type). The primary end point was overall survival (OS), the secondary end points were progression-free survival (PFS) and safety. Results: One hundred and seven patients received irinotecan treatment and three patients with AA type received paclitaxel treatment. Among 107 patients, there were no significant differences in PFS (4.8 m vs 4.9 m vs 4.4 m; p = 0.5249) and OS (9.3 m vs 9.3 m vs NA; p = 0.6821) among patients with GG/GA/AA subtypes after dose adjustment. For the patient with homozygosity mutation, treatment was switched to paclitaxel. There were no significant differences in PFS and OS among patients with different alleles or after dose adjustment (p > 0.05). There was a significant difference in the risk of delayed diarrhea (p = 0.000), leukopenia (p = 0.003) and neutropenia (p = 0.000) in patients with different UGT1A1*6 genotypes, while no difference in patients with different UGT1A1*28 genotypes. Additionally, grade 3/4 diarrhea, neutropenia, and leukopenia were significantly more common in AA genotype patients compared to GG (2%, 19%, 24%) or GA (23%, 31%, 31%) genotype patients. Conclusion: Individual irinotecan treatment shows encouraging survival and tolerability outcomes in patients with GG/GA subtype. Irinotecan may be not suitable for patients with AA subtype.
Collapse
Affiliation(s)
- Huifang Lv
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Caiyun Nie
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yunduan He
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Beibei Chen
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yingjun Liu
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Junling Zhang
- The Medical Department, 3D Medicines, Inc. Shanghai, China
| | - Xiaobing Chen
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
3
|
Hulshof EC, de With M, Creemers GJ, Guchelaar HJ, Mathijssen RHJ, Gelderblom H, Deenen MJ. Response to letter entitled re: UGT1A1 genotype-guided dosing of irinotecan: A prospective safety and cost analysis in poor metaboliser patients. Eur J Cancer 2022; 172:231-233. [DOI: 10.1016/j.ejca.2022.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
|
4
|
Bignucolo A, Scarabel L, Toffoli G, Cecchin E, De Mattia E. Predicting drug response and toxicity in metastatic colorectal cancer: the role of germline markers. Expert Rev Clin Pharmacol 2022; 15:689-713. [PMID: 35829762 DOI: 10.1080/17512433.2022.2101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite the introduction of targeted agents leading to therapeutic advances, clinical management of patients with metastatic colorectal cancer (mCRC) is still challenged by significant interindividual variability in treatment outcomes, both in terms of toxicity and therapy efficacy. The study of germline genetic variants could help to personalize and optimize therapeutic approaches in mCRC. AREAS COVERED A systematic review of pharmacogenetic studies in mCRC patients published on PubMed between 2011 and 2021, evaluating the role of germline variants as predictive markers of toxicity and efficacy of drugs currently approved for treatment of mCRC, was perfomed. EXPERT OPINION Despite the large amount of pharmacogenetic data published to date, only a few genetic markers (i.e., DPYD and UGT1A1 variants) reached the clinical practice, mainly to prevent the toxic effects of chemotherapy. The large heterogeneity of available studies represents the major limitation in comparing results and identifying potential markers for clinical use, the role of which remains exploratory in most cases. However, the available published findings are an important starting point for future investigations. They highlighted new promising pharmacogenetic markers within the network of inflammatory and immune response signaling. In addition, the emerging role of previously overlooked rare variants has been pointed out.
Collapse
Affiliation(s)
- Alessia Bignucolo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Lucia Scarabel
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy
| |
Collapse
|
5
|
Kong X, Xu Y, Gao P, Liu Y, Wang X, Zhao M, Jiang Y, Yang H, Cao Y, Ma L. Rapid detection of the irinotecan-related UGT1A1*28 polymorphism by asymmetric PCR melting curve analysis using one fluorescent probe. J Clin Lab Anal 2022; 36:e24578. [PMID: 35766440 PMCID: PMC9396174 DOI: 10.1002/jcla.24578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Determination of UGT1A1 (TA)n polymorphism prior to irinotecan therapy is necessary to avoid severe adverse drug effects. Thus, accurate and reliable genotyping methods for (TA)n polymorphism are highly desired. Here, we present a new method for polymerase chain reaction (PCR) melting curve analysis using one fluorescent probe to discriminate the UGT1A1*1 [(TA)6 ] and *28 [(TA)7 ] genotypes. METHODS After protocol optimization, this technique was applied for genotyping of 64 patients (including 23 with UGT1A1*1/*1, 22 with *1/*28, and 19 with *28/*28) recruited between 2016 and 2021 in China-Japan Friendship Hospital. The accuracy of the method was evaluated by comparing the results with those of direct sequencing and fragment analysis. The intra- and inter-run precision of the melting temperatures (Tm s) were calculated to assess the reliability, and the limit of detection was examined to assess the sensitivity. RESULTS All genotypes were correctly identified with the new method, and its accuracy was higher than that of fragment analysis. The intra- and inter-run coefficients of variation for the Tm s were both ≤0.27%, with standard deviations ≤0.14°C. The limit of detection was 0.2 ng of input genomic DNA. CONCLUSION The developed PCR melting curve analysis using one fluorescent probe can provide accurate, reliable, rapid, simple, and low-cost detection of UGT1A1 (TA)n polymorphism, and its use can be easily generalized in clinical laboratories with a fluorescent PCR platform.
Collapse
Affiliation(s)
- Xiaomu Kong
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Ye Xu
- Engineering Research Centre of Molecular Diagnostics, Ministry of Education, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Peng Gao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yi Liu
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Xuran Wang
- Engineering Research Centre of Molecular Diagnostics, Ministry of Education, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Meimei Zhao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yongwei Jiang
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Hui Yang
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yongtong Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Liang Ma
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
6
|
Hulshof EC, de With M, de Man FM, Creemers GJ, Deiman BALM, Swen JJ, Houterman S, Koolen SLW, Bins S, Thijs AMJ, Laven MMJ, Hövels AM, Luelmo SAC, Houtsma D, Shulman K, McLeod HL, van Schaik RHN, Guchelaar HJ, Mathijssen RHJ, Gelderblom H, Deenen MJ. UGT1A1 genotype-guided dosing of irinotecan: A prospective safety and cost analysis in poor metaboliser patients. Eur J Cancer 2022; 162:148-157. [PMID: 34998046 DOI: 10.1016/j.ejca.2021.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/25/2021] [Accepted: 12/05/2021] [Indexed: 12/23/2022]
Abstract
AIM To determine the safety, feasibility, pharmacokinetics, and cost of UGT1A1 genotype-guided dosing of irinotecan. PATIENTS AND METHODS In this prospective, multicentre, non-randomised study, patients intended for treatment with irinotecan were pre-therapeutically genotyped for UGT1A1∗28 and UGT1A1∗93. Homozygous variant carriers (UGT1A1 poor metabolisers; PMs) received an initial 30% dose reduction. The primary endpoint was incidence of febrile neutropenia in the first two cycles of treatment. Toxicity in UGT1A1 PMs was compared to a historical cohort of UGT1A1 PMs treated with full dose therapy, and to UGT1A1 non-PMs treated with full dose therapy in the current study. Secondary endpoints were pharmacokinetics, feasibility, and costs. RESULTS Of the 350 evaluable patients, 31 (8.9%) patients were UGT1A1 PM and received a median 30% dose reduction. The incidence of febrile neutropenia in this group was 6.5% compared to 24% in historical UGT1A1 PMs (P = 0.04) and was comparable to the incidence in UGT1A1 non-PMs treated with full dose therapy. Systemic exposure of SN-38 of reduced dosing in UGT1A1 PMs was still slightly higher compared to a standard-dosed irinotecan patient cohort (difference: +32%). Cost analysis showed that genotype-guided dosing was cost-saving with a cost reduction of €183 per patient. CONCLUSION UGT1A1 genotype-guided dosing significantly reduces the incidence of febrile neutropenia in UGT1A1 PM patients treated with irinotecan, results in a therapeutically effective systemic drug exposure, and is cost-saving. Therefore, UGT1A1 genotype-guided dosing of irinotecan should be considered standard of care in order to improve individual patient safety.
Collapse
Affiliation(s)
- Emma C Hulshof
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, the Netherlands; Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Mirjam de With
- Department of Medical Oncology, Erasmus University Medical Centre, Rotterdam, the Netherlands; Department of Clinical Chemistry, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Femke M de Man
- Department of Medical Oncology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Geert-Jan Creemers
- Department of Medical Oncology, Catharina Hospital, Eindhoven, the Netherlands
| | - Birgit A L M Deiman
- Department of Molecular Biology, Catharina Hospital, Eindhoven, the Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Saskia Houterman
- Department of Education and Research, Catharina Hospital, Eindhoven, the Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus University Medical Centre, Rotterdam, the Netherlands; Department of Hospital Pharmacy, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Sander Bins
- Department of Medical Oncology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Anna M J Thijs
- Department of Medical Oncology, Catharina Hospital, Eindhoven, the Netherlands
| | - Marjan M J Laven
- Department of Medical Oncology, Catharina Hospital, Eindhoven, the Netherlands
| | - Anke M Hövels
- Hovels Consultancy HTA and Health Economics, Bilthoven, the Netherlands
| | - Saskia A C Luelmo
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Danny Houtsma
- Department of Medical Oncology, Haga Hospital, The Hague, the Netherlands
| | - Katerina Shulman
- Department of Medical Oncology, Carmel Medical Centre and Clalit Haifa District Regional Oncology Clinics, Haifa, Israel
| | - Howard L McLeod
- University of South Florida Taneja College of Pharmacy, Tampa, FL, USA
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Maarten J Deenen
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, the Netherlands; Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
7
|
Nelson RS, Seligson ND, Bottiglieri S, Carballido E, Cueto AD, Imanirad I, Levine R, Parker AS, Swain SM, Tillman EM, Hicks JK. UGT1A1 Guided Cancer Therapy: Review of the Evidence and Considerations for Clinical Implementation. Cancers (Basel) 2021; 13:1566. [PMID: 33805415 PMCID: PMC8036652 DOI: 10.3390/cancers13071566] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Multi-gene assays often include UGT1A1 and, in certain instances, may report associated toxicity risks for irinotecan, belinostat, pazopanib, and nilotinib. However, guidance for incorporating UGT1A1 results into therapeutic decision-making is mostly lacking for these anticancer drugs. We summarized meta-analyses, genome-wide association studies, clinical trials, drug labels, and guidelines relating to the impact of UGT1A1 polymorphisms on irinotecan, belinostat, pazopanib, or nilotinib toxicities. For irinotecan, UGT1A1*28 was significantly associated with neutropenia and diarrhea, particularly with doses ≥ 180 mg/m2, supporting the use of UGT1A1 to guide irinotecan prescribing. The drug label for belinostat recommends a reduced starting dose of 750 mg/m2 for UGT1A1*28 homozygotes, though published studies supporting this recommendation are sparse. There was a correlation between UGT1A1 polymorphisms and pazopanib-induced hepatotoxicity, though further studies are needed to elucidate the role of UGT1A1-guided pazopanib dose adjustments. Limited studies have investigated the association between UGT1A1 polymorphisms and nilotinib-induced hepatotoxicity, with data currently insufficient for UGT1A1-guided nilotinib dose adjustments.
Collapse
Affiliation(s)
- Ryan S. Nelson
- Department of Consultative Services, ARUP Laboratories, Salt Lake City, UT 84108, USA;
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Nathan D. Seligson
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL 32610, USA;
- Department of Hematology and Oncology, Nemours Children’s Specialty Care, Jacksonville, FL 32207, USA
| | - Sal Bottiglieri
- Department of Pharmacy, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Estrella Carballido
- Department of Oncological Sciences, University of South Florida, Tampa, FL 33612, USA; (E.C.); (I.I.); (R.L.)
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Alex Del Cueto
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Iman Imanirad
- Department of Oncological Sciences, University of South Florida, Tampa, FL 33612, USA; (E.C.); (I.I.); (R.L.)
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Richard Levine
- Department of Oncological Sciences, University of South Florida, Tampa, FL 33612, USA; (E.C.); (I.I.); (R.L.)
- Department of Satellite and Community Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Sandra M. Swain
- Georgetown University Medical Center, MedStar Health, Washington, DC 20007, USA;
| | - Emma M. Tillman
- Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - J. Kevin Hicks
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL 33612, USA;
- Department of Oncological Sciences, University of South Florida, Tampa, FL 33612, USA; (E.C.); (I.I.); (R.L.)
| |
Collapse
|
8
|
Zhu X, Zhu J, Sun F, Zhen Z, Zhou D, Lu S, Huang J, Que Y, Zhang L, Cai R, Wang J, Zhang Y. Influence of UGT1A1 *6/*28 Polymorphisms on Irinotecan-Related Toxicity and Survival in Pediatric Patients with Relapsed/Refractory Solid Tumors Treated with the VIT Regimen. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:369-377. [PMID: 33790625 PMCID: PMC8001723 DOI: 10.2147/pgpm.s292556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 11/23/2022]
Abstract
Objective The association between UGT1A1*6/*28 polymorphisms and treatment outcomes of irinotecan in children remains unknown. This retrospective study investigated the influence of UGT1A1*6/*28 polymorphisms on irinotecan toxicity and survival of pediatric patients with relapsed/refractory solid tumors. Methods The present study enrolled a total of 44 patients aged younger than 18 years at Sun Yat-sen University Cancer Center between 2014 and 2017. Results There were 26 boys and 18 girls; the median age at first VIT course was six years (range: 1-18 years). The tumor types included neuroblastoma (n = 25), rhabdomyosarcoma (n = 11), Wilm's tumor (n = 4), medulloblastoma (n = 2), and desmoplastic small round cell tumor (n = 2). Overall, 203 courses of VIT regimens were prescribed. Neither UGT1A1*6 nor *28 polymorphisms were associated with the incidence rates of severe (grade III-IV) irinotecan-related toxicities, but tended to reduce the patient overall survival (UGT1A1*6, P = 0.146; UGT1A1*28, P = 0.195). Moreover, patients with mutant UGT1A1*6 genotypes were more likely to develop grade I-IV irinotecan-related diarrhea (P = 0.043) and anemia (P = 0.002). Overall, the UGT1A1*28 polymorphism may play a protective role against irinotecan-related diarrhea and abdominal pain. Conclusion In relapsed/refractory pediatric solid tumors, the UGT1A1*6 polymorphism was a risk factor of irinotecan-related diarrhea and anemia. The UGT1A1*28 polymorphism may serve a protective role in irinotecan-related abdominal pain and diarrhea. Both mutations had a tendency to be risk factors for survival. Nevertheless, prospective studies are required to verify such conclusions.
Collapse
Affiliation(s)
- Xiaoqin Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Feifei Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Zijun Zhen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Dalei Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Suying Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Junting Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yi Que
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Lian Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ruiqing Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Juan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yizhuo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Vivaldi C, Crucitta S, Catanese S, Cucchiara F, Arrigoni E, Pecora I, Rofi E, Fornaro L, Salani F, Massa V, Vasile E, Morganti R, Danesi R, Del Re M. Comprehensive pharmacogenetic analysis of DPYD, UGT, CDA, and ABCB1 polymorphisms in pancreatic cancer patients receiving mFOLFIRINOX or gemcitabine plus nab-paclitaxel. THE PHARMACOGENOMICS JOURNAL 2021; 21:233-242. [PMID: 33462346 DOI: 10.1038/s41397-020-00203-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/09/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022]
Abstract
Modified FOLFIRINOX (mFOLFIRINOX) and gemcitabine + nab-paclitaxel (GemNab) regimens represent a standard treatment in advanced pancreatic cancer (aPC). DPYD and UGT1A1 variants are relevant predictors of fluoropyrimidine and irinotecan-associated adverse events (AEs). Furthermore, data about the associations between polymorphisms in ABCB and CDA genes and GemNab-related toxicities are still controversial. The present study analyzes the association between DPYD, UGT, ABCB1, CDA variants, and AEs in aPC patients (pts) treated with mFOLFIRINOX or GemNab. Blood samples collected from 104 aPC pts treated with mFOLFIRINOX and 63 with GemNab were tested for DPYD c.1679T>G, IVS14+1G>A, c.2194G>A, c.2846A>T, UGT1A1*28, CDA c.79A>C, and ABCB1 c.1236C>T, c.2677G>T/A, c.3435C>T by real-time PCR and automatic sequencing. In mFOLFIRINOX cohort, DPYD IVS14+1GA genotype was associated with G4 hematological AEs, while the UGT1A1*28 significantly correlated with the risk of thrombocytopenia (p = 0.006). In the GemNab cohort, a significant association between CDA c.79CC and high-grade nausea was observed (p = 0.002). Moreover, the presence of at least a mutant allele in ABCB1 increased the risk of overall hematological AEs (p = 0.01), both further strengthened by the presence of CDA c.79CC (p = 0.0002). DPYD IVS14+1A allele is confirmed to be associated with fluoropyrimidine life-threatening toxicities, and UGT1A1*28 is related with a higher risk of hematologic AEs following irinotecan treatment. CDA c.79C and ABCB1 c.1236T, c.2677T/A, and c.3435T mutant alleles are predictive biomarkers of GemNab-related AEs. All these variants should be considered in aPC pts candidate to mFOLFIRINOX or GemNab treatments.
Collapse
Affiliation(s)
- Caterina Vivaldi
- Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Silvia Catanese
- Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Arrigoni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Irene Pecora
- Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Eleonora Rofi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Fornaro
- Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Francesca Salani
- Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Valentina Massa
- Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Enrico Vasile
- Medical Oncology Unit 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Riccardo Morganti
- Departmental Section of Statistical Support for Clinical Trials, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Aboul-Soud MAM, Alzahrani AJ, Mahmoud A. Decoding variants in drug-metabolizing enzymes and transporters in solid tumor patients by whole-exome sequencing. Saudi J Biol Sci 2021; 28:628-634. [PMID: 33424349 PMCID: PMC7783809 DOI: 10.1016/j.sjbs.2020.10.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 11/25/2022] Open
Abstract
Background Pharmacogenetics is involved in customizing therapy according to the genetic makeup of an individual, and is applicable for chemotherapy, radiotherapy as well as targeted therapy. Drug metabolizing enzymes (DMEs) involving both phase I, and phase II reactions are widely studied. Our study was involved in whole exome sequencing (WES) of cancer patients, followed by analysis for identifying key variations in DMEs, and associated transporters that have a potential impact on treatment outcome. Methodology A total of 181 solid tumor patients at stage >/= III were subjected to WES by the SureSelectXT Human All Exon V6 + UTR library preparation kit, and sequencing in the Illumina NextSeq 550 system. Bioinformatics analysis involved use of GATK pipeline, and the variants were further assessed for population frequency, functional impact with annovar insilico algorithms. Further variant information from significant DMEs, and transporters were extracted and analyzed with PharmGKB to assess level of evidence and infer their impact on the pathways involved in drug response. Results The total study cohort of 181 solid tumor patients included 60 males, and 121 females respectively. Among DMEs, deleterious mutation in dihydropyrimidine dehydrogenase (DPYD; rs67376798), solute carrier organic anion transporter family member 1B1 (SLCO1B1*5), and cytochrome P450 2D6 (CYP2D6*10) associated with metabolism of anticancer drugs was detected to be in high frequency of 26%, 21% and 25% respectively. Conclusion Our analysis detected variations in both phase I and phase II DMEs, as well as associated transporter genes which has been documented to reduce drug efficacy, as well as cause grade 3 and 4 toxicity. Our study reiterates the significance of pharmacogenomics in stratifying patients for appropriate therapy regimen focused at better treatment outcome and quality of life.
Collapse
Affiliation(s)
- Mourad A M Aboul-Soud
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Alhussain J Alzahrani
- Department of Microbiology, College of Applied Medical Sciences, University of Hafre Al Batin, Hafre Al Batin, Saudi Arabia
| | - Amer Mahmoud
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, P.O. Box 2925 (28), Riyadh 11461, Saudi Arabia
| |
Collapse
|
11
|
Varughese LA, Lau-Min KS, Cambareri C, Damjanov N, Massa R, Reddy N, Oyer R, Teitelbaum U, Tuteja S. DPYD and UGT1A1 Pharmacogenetic Testing in Patients with Gastrointestinal Malignancies: An Overview of the Evidence and Considerations for Clinical Implementation. Pharmacotherapy 2020; 40:1108-1129. [PMID: 32985005 PMCID: PMC8796462 DOI: 10.1002/phar.2463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gastrointestinal (GI) malignancies are among the most commonly diagnosed cancers worldwide. Despite the introduction of targeted and immunotherapy agents in the treatment landscape, cytotoxic agents, such as fluoropyrimidines and irinotecan, remain as the cornerstone of chemotherapy for many of these tumors. Pharmacogenetics (PGx) is a rapidly evolving field that accounts for interpatient variability in drug metabolism to predict therapeutic response and toxicity. Given the significant incidence of severe treatment-related adverse events associated with cytotoxic agents, utilizing PGx can allow clinicians to better anticipate drug tolerability while minimizing treatment interruptions or delays. In this review, the PGx profiles of drug-gene pairs with potential impact in GI malignancy therapy - DPYD-5-fluorouracil/capecitabine and UGT1A1-irinotecan - and the available clinical evidence of their roles in reducing severe adverse events are discussed. Considerations for clinical implementation, such as optimal laboratory workflows, electronic health record integration, and stakeholder engagement, as well as provider education, are addressed. Last, exploratory PGx markers in GI malignancy treatment are described. As the PGx knowledge base rapidly evolves, pharmacists will be vital in leveraging their pharmacology knowledge and clinical skills to implement PGx testing in the clinic.
Collapse
Affiliation(s)
- Lisa A. Varughese
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelsey S. Lau-Min
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christine Cambareri
- Department of Pharmacy, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nevena Damjanov
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ryan Massa
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nandi Reddy
- Ann B. Barshinger Cancer Institute, Penn Medicine at Lancaster General Health, Lancaster, Pennsylvania
| | - Randall Oyer
- Ann B. Barshinger Cancer Institute, Penn Medicine at Lancaster General Health, Lancaster, Pennsylvania
| | - Ursina Teitelbaum
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sony Tuteja
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
CHÁVEZ-PEÑA TERESA, MARTÍNEZ-CAMBEROS ALEJANDRA, COSSIO-GURROLA GLADYS, ARÁMBULA-MERAZ ELIAKYM, HERRERA-RODRÍGUEZ INDIRA, ROMO-MARTÍNEZ ENRIQUE, GARCÍA-MAGALLANES NOEMI. Prevalence of UGT1A1 (TA)n promoter polymorphism in Panamanians neonates with G6PD deficiency. J Genet 2020. [DOI: 10.1007/s12041-020-01223-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Deng C, Lou Y, Gao Y, Deng B, Su F, Jia L. Efficacy and safety of Shengjiang Xiexin decoction in prophylaxis of chemotherapy-related diarrhea in small cell lung cancer patients: study protocol for a multicenter randomized controlled trial. Trials 2020; 21:370. [PMID: 32357899 PMCID: PMC7193543 DOI: 10.1186/s13063-020-04275-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/24/2020] [Indexed: 12/27/2022] Open
Abstract
Background Diarrhea is a common adverse reaction in patients with cancer receiving chemotherapy, for which there is currently no effective method of treatment. Shengjiang Xiexin decoction (SXD), a classic traditional Chinese medicine (TCM) formula, has shown efficacy in alleviating irinotecan-induced diarrhea in preliminary clinical studies. The current study is designed to assess the efficacy and safety of SXD for prophylaxis against irinotecan-induced diarrhea. Additionally, we employ a new approach to analyze and evaluate the data based on the patients’ uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) genotype, which predicts the risk of diarrhea. Methods and design A prospective, double-blind, randomized, placebo-controlled trial will be conducted in patients with small cell lung cancer (SCLC) from five hospitals in China. For this study, 100 irinotecan-naïve patients will be randomly allocated to either the SXD or placebo arms in a 1:1 ratio. Stratified randomization will be used to divide subjects by UGT1A1 genotype into groups with differing risk of diarrhea. The trial will consist of two cycles of chemotherapy with 14 days of oral administration of SXD or placebo administered beginning between 3 days before and up to 11 days after initiation of each chemotherapy cycle. The primary study outcome is the incidence of diarrhea. Secondary outcomes include the degree of diarrhea, the degree of neutropenia, the rate of alterations in chemotherapy regimens, the amount of antidiarrheal drug taken, the rate of hospitalization, and evaluation of chemotherapy efficacy. Discussion This study is the first to use the UGT1A1 genotype to stratify patients into groups based on their risk of diarrhea, and to provide a complete assessment of chemotherapy-related diarrhea (CRD), including records of diarrhea duration, grading the severity of diarrhea, and evaluating concomitant symptoms. Study results will provide high-level clinical evidence on the use of SXD as prophylaxis for CRD. Trial registration Chinese Clinical Trial Register: ChiCTR1800018490. Registered on 20 September 2018. Retrospectively registered. http://www.chictr.org.cn/edit.aspx?pid=25250&htm=4c
Collapse
Affiliation(s)
- Chao Deng
- Department of medical oncology, integrated traditional Chinese and Western Medicine, China-Japan Friendship Hospital, No.2, East Street, Ying Hua Yuan, Chao Yang District, Beijing, 100029, China
| | - Yanni Lou
- Department of medical oncology, integrated traditional Chinese and Western Medicine, China-Japan Friendship Hospital, No.2, East Street, Ying Hua Yuan, Chao Yang District, Beijing, 100029, China
| | - Yu Gao
- Department of medical oncology, integrated traditional Chinese and Western Medicine, China-Japan Friendship Hospital, No.2, East Street, Ying Hua Yuan, Chao Yang District, Beijing, 100029, China.,Beijing University of Chinese Medicine, No.11, East Road, North Third Ring Road, Chao Yang District, Beijing, 100029, China
| | - Bo Deng
- Department of medical oncology, integrated traditional Chinese and Western Medicine, China-Japan Friendship Hospital, No.2, East Street, Ying Hua Yuan, Chao Yang District, Beijing, 100029, China
| | - Fei Su
- Department of medical oncology, integrated traditional Chinese and Western Medicine, China-Japan Friendship Hospital, No.2, East Street, Ying Hua Yuan, Chao Yang District, Beijing, 100029, China
| | - Liqun Jia
- Department of medical oncology, integrated traditional Chinese and Western Medicine, China-Japan Friendship Hospital, No.2, East Street, Ying Hua Yuan, Chao Yang District, Beijing, 100029, China.
| |
Collapse
|
14
|
Gao XH, Li J, Gong HF, Yu GY, Liu P, Hao LQ, Liu LJ, Bai CG, Zhang W. Comparison of Fresh Frozen Tissue With Formalin-Fixed Paraffin-Embedded Tissue for Mutation Analysis Using a Multi-Gene Panel in Patients With Colorectal Cancer. Front Oncol 2020; 10:310. [PMID: 32232001 PMCID: PMC7083147 DOI: 10.3389/fonc.2020.00310] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/21/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Next generation sequencing (NGS)-based multi-gene panel tests have been performed to predict the treatment response and prognosis in patients with colorectal cancer (CRC). Whether the multi-gene mutation results of formalin-fixed paraffin-embedded (FFPE) tissues are identical to those of fresh frozen tissues remains unknown. Methods: A 22-gene panel with 103 hotspots was used to detect mutations in paired fresh frozen tissue and FFPE tissue from 118 patients with CRC. Results: In our study, 117 patients (99.2%) had one or more variants, with 226 variants in FFPE tissue and 221 in fresh frozen tissue. Of the 129 variants identified in this study, 96 variants were present in both FFPE and fresh frozen tissues; 27 variants were found in FFPE tissues only; 6 variants were found only in fresh frozen tissues. The mutation results demonstrated >94.0% concordance in all variants, with Kappa coefficient >0.500 in 64.3% (83/129) of variants. At the gene level, concordance ranged from 73.8 to 100.0%, with Kappa coefficient >0.500 in 81.3% (13/16) of genes. Conclusions: The results of mutation analysis performed with a multi-gene panel and FFPE and fresh frozen tissue were highly concordant in patients with CRC, at both the variant and gene levels. There were, however, some important differences in mutation results between the two tissue types. Therefore, fresh frozen tissue should not routinely be replaced with FFPE tissue for mutation analysis with a multi-gene panel. Rather, FFPE tissue is a reasonable alternative for fresh frozen tissue when the latter is unavailable.
Collapse
Affiliation(s)
- Xian Hua Gao
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Juan Li
- Department of Nephrology, Changhai Hospital, Shanghai, China
| | - Hai Feng Gong
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Guan Yu Yu
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Peng Liu
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Li Qiang Hao
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Lian Jie Liu
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| | - Chen Guang Bai
- Department of Pathology, Changhai Hospital, Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Changhai Hospital, Shanghai, China
| |
Collapse
|
15
|
Comparison of Eight Technologies to Determine Genotype at the UGT1A1 (TA) n Repeat Polymorphism: Potential Clinical Consequences of Genotyping Errors? Int J Mol Sci 2020; 21:ijms21030896. [PMID: 32019188 PMCID: PMC7037496 DOI: 10.3390/ijms21030896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
To ensure accuracy of UGT1A1 (TA)n (rs3064744) genotyping for use in pharmacogenomics-based irinotecan dosing, we tested the concordance of several commonly used genotyping technologies. Heuristic genotype groupings and principal component analysis demonstrated concordance for Illumina sequencing, fragment analysis, and fluorescent PCR. However, Illumina sequencing and fragment analysis returned a range of fragment sizes, likely arising due to PCR "slippage". Direct sequencing was accurate, but this method led to ambiguous electrophoregrams, hampering interpretation of heterozygotes. Gel sizing, pyrosequencing, and array-based technologies were less concordant. Pharmacoscan genotyping was concordant, but it does not ascertain (TA)8 genotypes that are common in African populations. Method-based genotyping differences were also observed in the publication record (p < 0.0046), although fragment analysis and direct sequencing were concordant (p = 0.11). Genotyping errors can have significant consequences in a clinical setting. At the present time, we recommend that all genotyping for this allele be conducted with fluorescent PCR (fPCR).
Collapse
|
16
|
Li H, Zhang P. UGT1A1*28 gene polymorphism was not associated with the risk of neonatal hyperbilirubinemia: a meta-analysis. J Matern Fetal Neonatal Med 2019; 34:4064-4071. [PMID: 31818155 DOI: 10.1080/14767058.2019.1702962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: This study aimed to evaluate the relationship between UGT1A1*28 gene polymorphism and the risk of neonatal hyperbilirubinemia (NHBI).Methods: The studies meet certain selection condition which was obtained from databases such as PubMed, Embase, and Cochrane Library. Newcastle-Ottawa Scale (NOS) was used to evaluate the quality of included studies. Meta-analysis was performed according to criteria such as country. Hardy-Weinberg's equilibrium (HWE) tests were performed on the control group using chi-square test, while the evaluation index was represented by odds ratio (OR) and 95% confidence interval (CI). Egger's test and sensitivity analysis were used to evaluate the publication bias and reliability, repetitively.Results: Totally, four studies with high overall quality were enrolled in this study. No association was observed between UGT1A1*28 gene polymorphisms and NHBI in allele model (TA7 versus TA6, OR (95% CI) = 2.13 (0.81-5.62), p = .13), codominance models (TA7/6 versus TA6/6, OR (95% CI) = 2.94 (0.90-9.57), p = .07; TA7/7 versus TA6/6, OR (95% CI) = 2.08 (0.37-11.52), p = .40), recessive model (TA7/7 versus TA6/6 + TA7/6, OR (95% CI) = 1.44 (0.41-5.14), p = .57), and dominant model (TA7/7 + TA7/6 versus TA6/6, OR (95% CI) = 2.92 (0.84-10.12), p = .09). Furthermore, there was no publication bias found in current meta-analysis.Conclusions: Gene polymorphism of UGT1A1*28 might not be associated with the risk of NHBI.
Collapse
Affiliation(s)
- Hongjuan Li
- Department of Neonatology, Linyi People's Hospital, Linyi, China
| | - Piqiang Zhang
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| |
Collapse
|
17
|
Comparison of effects of UGT1A1*6 and UGT1A1*28 on irinotecan-induced adverse reactions in the Japanese population: analysis of the Biobank Japan Project. J Hum Genet 2019; 64:1195-1202. [DOI: 10.1038/s10038-019-0677-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022]
|
18
|
Chen W, Ding H, Cheng Y, Li Q, Dai R, Yang X, Zhang C. Genetic polymorphisms analysis of pharmacogenomic VIP variants in Bai ethnic group from China. Mol Genet Genomic Med 2019; 7:e884. [PMID: 31361092 PMCID: PMC6732286 DOI: 10.1002/mgg3.884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/27/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022] Open
Abstract
Background The pharmacogenomics study has been widely used for the study of very important pharmacogenetic (VIP) variants among different ethnic groups. However, there is little known about the pharmacogenomics information regarding Bai family. Our study aimed to screen the polymorphism of the VIP gene in Bai nationality. Methods We genotyped 81 VIP variants (selected from the PharmGKB database) in the Bai population and then compared them to the other 11 major HapMap populations by chi‐square test, structure and F‐statistics (Fst) analysis. Results Our results indicated that rs20417 (PTGS2), rs4148323 (UGT1A), and rs1131596 (SLC19A1) were most different in Bai compared with most of the 11 populations from the HapMap data set. Furthermore, population structure and F‐statistics (Fst) analysis also demonstrated that the Bai population has the closest genetic relationship with Han Chinese in Beijing, China (CHB), followed by Japanese in Tokyo, Japan (JPT), and the farthest population from the Yoruba in Ibadan, Nigeria (YRI). Conclusions Our study not only presented the genotype frequency difference between the selected population of the Bai population and the other 11 populations, but also showed that the Bai population is most similar to the CHB populations, followed by JPT. These findings would contribute to the development of individualized medicine for the Bai population.
Collapse
Affiliation(s)
- Wanlu Chen
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Heng Ding
- Honghe Center Blood Station, Mengzi, Yunnan Province, China
| | - Yujing Cheng
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Qi Li
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Run Dai
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Xin Yang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Chan Zhang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| |
Collapse
|
19
|
Lam YWF. Principles of Pharmacogenomics. Pharmacogenomics 2019. [DOI: 10.1016/b978-0-12-812626-4.00001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
20
|
Cecchin E, De Mattia E, Ecca F, Toffoli G. Host genetic profiling to increase drug safety in colorectal cancer from discovery to implementation. Drug Resist Updat 2018; 39:18-40. [PMID: 30075835 DOI: 10.1016/j.drup.2018.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
Adverse events affect the pharmacological treatment of approximately 90% of colorectal cancer (CRC) patients at any stage of the disease. Chemotherapy including fluoropyrimidines, irinotecan, and oxaliplatin is the cornerstone of the pharmacological treatment of CRC. The introduction of novel targeted agents, as anti-EGFR (i.e. cetuximab, panitumumab) and antiangiogenic (i.e. bevacizumab, ziv-aflibercept, regorafenib, and ramucirumab) molecules, into the oncologist's toolbox has led to significant improvements in the life expectancy of advanced CRC patients, but with a substantial increase in toxicity burden. In this respect, pharmacogenomics has largely been applied to the personalization of CRC chemotherapy, focusing mainly on the study of inhered polymorphisms in genes encoding phase I and II enzymes, ATP-binding cassette (ABC)/solute carrier (SLC) membrane transporters, proteins involved in DNA repair, folate pathway and immune response. These research efforts have led to the identification of some validated genetic markers of chemotherapy toxicity, for fluoropyrimidines and irinotecan. No validated genetic determinants of oxaliplatin-specific toxicity, as peripheral neuropathy, has thus far been established. The contribution of host genetic markers in predicting the toxicity associated with novel targeted agents' administration is still controversial due to the heterogeneity of published data. Pharmacogenomics guidelines have been published by some international scientific consortia such as the Clinical Pharmacogenomics Implementation Consortium (CPIC) and the Dutch Pharmacogenetics Working Group (DPWG) strongly suggesting a pre-treatment dose adjustment of irinotecan based on UGT1A1*28 genotype and of fluoropyrimidines based on some DPYD genetic variants, to increase treatment safety. However, these recommendations are still poorly applied at the patient's bedside. Several ongoing projects in the U.S. and Europe are currently evaluating how pharmacogenomics can be implemented successfully in daily clinical practice. The majority of drug-related adverse events are still unexplained, and a great deal of ongoing research is aimed at improving knowledge of the role of pharmacogenomics in increasing treatment safety. In this review, the issue of pre-treatment identification of CRC patients at risk of toxicity via the analysis of patients' genetic profiles is addressed. Available pharmacogenomics guidelines with ongoing efforts to implement them in clinical practice and new exploratory markers for clinical validation are described.
Collapse
Affiliation(s)
- Erika Cecchin
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico - National Cancer Institute, 33081 Aviano, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico - National Cancer Institute, 33081 Aviano, Italy
| | - Fabrizio Ecca
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico - National Cancer Institute, 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico - National Cancer Institute, 33081 Aviano, Italy.
| |
Collapse
|
21
|
Yu Q, Zhang T, Xie C, Qiu H, Liu B, Huang L, Peng P, Feng J, Chen J, Zang A, Yuan X. UGT1A polymorphisms associated with worse outcome in colorectal cancer patients treated with irinotecan-based chemotherapy. Cancer Chemother Pharmacol 2018; 82:87-98. [PMID: 29728798 DOI: 10.1007/s00280-018-3595-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate the association between UDP-glucuronosyltransferase (UGT)1A polymorphisms and irinotecan-treatment efficacy in a Chinese population with metastatic colorectal cancer (mCRC). METHODS The present study was based on a prospective multicenter trial of Chinese mCRC patients treated with irinotecan-based chemotherapy (NCT01282658, registered at http://www.clinicaltrials.gov ). Fifteen single-nucleotide polymorphisms (SNPs) in four UGT1A genes were selected for genotyping in 164 patients. Kaplan-Meier and Cox regression analyses were used to assess the association between potential signatures and survival outcome. RESULTS We found that UGT1A1*28 variant genotype was significantly associated with decreased progression-free survival (PFS) [adjusted hazard ratio (HR), 1.803; 95% confidence interval (CI), 1.217-2.671] and overall survival (OS) (adjusted HR 1.979; 95% CI 1.267-3.091) compared with wild-type genotype. Patients carrying (TA)7 allele showed a median PFS of 7.5 (95% CI 5.5-9.6) months compared with 9.8 (95% CI 8.6-10.9) months for patients with wild-type genotype. Median OSs were 13.3 (95% CI 10.3-16.2), and 20.8 (95% CI 18.7-23.0) months for (TA)6/7 or (TA)7/7, and (TA)6/6 patients, respectively. Similarly but more significantly, the copy number of haplotype III (composed by rs3755321-T, rs3821242-C, rs4124874-G and rs3755319-C) constructed among the selected SNPs also correlated with survival outcome. CONCLUSIONS UGT1A polymorphisms are predictive of survival outcome of irinotecan-treated Chinese mCRC patients. After validation, UGT1A polymorphisms might be helpful in facilitating stratification of mCRC patients for individualized treatment options.
Collapse
Affiliation(s)
- Qianqian Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, People's Republic of China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430077, Hubei, People's Republic of China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Ping Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Jueping Feng
- Department of Oncology, PuAi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, Hubei, People's Republic of China
| | - Jigui Chen
- Department of Surgery, Wuhan 8th Hospital, Wuhan, 430010, Hubei, People's Republic of China
| | - Aihua Zang
- Hubei Cancer Hospital, Wuhan, 430079, Hubei, People's Republic of China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
22
|
Bai Y, Wu HW, Ma X, Liu Y, Zhang YH. Relationship between UGT1A1*6/*28 gene polymorphisms and the efficacy and toxicity of irinotecan-based chemotherapy. Onco Targets Ther 2017; 10:3071-3081. [PMID: 28790841 PMCID: PMC5488790 DOI: 10.2147/ott.s137644] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Purpose A retrospective study was performed to analyze the relationship between uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) *6/*28 gene polymorphisms and adverse reactions associated with irinotecan (CPT-11)-based chemotherapy. The correlation between UGT1A1 polymorphisms and the clinical efficacy of CPT-11 was also analyzed, along with the influence of age and tumor type. Patients and methods Patients administered a CPT-11-based regimen in the Beijing Cancer Hospital from April 2015 to September 2016 were included in our study (n=81). Blood samples for detecting UGT1A1 were collected from each patient after various administration regimens. Results Colorectal cancer patients with the UGT1A1*6 mutant genotype had a significantly higher risk of severe delayed diarrhea than that of wild-type individuals when administered a CPT-11 dose ≥130 mg/m2 (P=0.042); the same phenomenon was observed when the UGT1A1*6 and UGT1A1*28 mutant genotypes were considered together (P=0.028). However, in lung cancer patients administered a low dose of CPT-11, UGT1A1*6/*28 variants were not significantly associated with severe neutropenia or delayed diarrhea. Furthermore, adult patients with the UGT1A1*6 mutation were more likely to develop severe delayed diarrhea than did wild-type adults (P=0.013); however, the difference was not significant in elderly patients. No significant differences in tumor response were found among the different genotypes (P>0.05). Conclusion Thus, age and tumor type influence our ability to predict adverse reactions based on UGT1A1 gene polymorphisms in cancer patients. Further, UGT1A1 gene polymorphisms are not correlated with the efficacy of CPT-11-based regimens.
Collapse
Affiliation(s)
- Yu Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pharmacy, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Hai-Wei Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pharmacy, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Xu Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pharmacy, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Ying Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pharmacy, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| | - Yan-Hua Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pharmacy, Peking University Cancer Hospital and Institute, Beijing, People's Republic of China
| |
Collapse
|