1
|
Xu YC, Su J, Zhou JJ, Yuan Q, Han JS. Roles of MT-ND1 in Cancer. Curr Med Sci 2023; 43:869-878. [PMID: 37642864 DOI: 10.1007/s11596-023-2771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/12/2023] [Indexed: 08/31/2023]
Abstract
The energy shift toward glycolysis is one of the hallmarks of cancer. Complex I is a vital enzyme complex necessary for oxidative phosphorylation. The mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 1 (MT-ND1) is the largest subunit coded by mitochondria of complex I. The present study summarizes the structure and biological function of MT-ND1. From databases and literature, the expressions and mutations of MT-ND1 in a variety of cancers have been reviewed. MT-ND1 may be a biomarker for cancer diagnosis and prognosis. It is also a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yi-Chun Xu
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, 200065, China.
- National Engineering Research Center for Biochip, Shanghai Biochip Limited Corporation, Shanghai, 201203, China.
| | - Jun Su
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, 200065, China
- National Engineering Research Center for Biochip, Shanghai Biochip Limited Corporation, Shanghai, 201203, China
| | - Jia-Jing Zhou
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, 200065, China
| | - Qing Yuan
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, 200065, China
| | - Jun-Song Han
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, 200065, China.
- National Engineering Research Center for Biochip, Shanghai Biochip Limited Corporation, Shanghai, 201203, China.
| |
Collapse
|
2
|
Paolini E, Longo M, Corsini A, Dongiovanni P. The Non-Invasive Assessment of Circulating D-Loop and mt-ccf Levels Opens an Intriguing Spyhole into Novel Approaches for the Tricky Diagnosis of NASH. Int J Mol Sci 2023; 24:ijms24032331. [PMID: 36768654 PMCID: PMC9916898 DOI: 10.3390/ijms24032331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest liver disease worldwide affecting both adults and children. Nowadays, no therapeutic strategies have been approved for NAFLD management, and hepatic biopsy remains the gold standard procedure for its diagnosis. NAFLD is a multifactorial disease whose pathogenesis is affected by environmental and genetic factors, and it covers a spectrum of conditions ranging from simple steatosis up to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Several studies underlined the urgent need to develop an NAFLD risk prediction model based on genetics, biochemical indicators, and metabolic disorders. The loss of mitochondrial dynamics represents a typical feature of progressive NAFLD. The imbalance of mitochondrial lifecycle together with the impairment of mitochondrial biomass and function trigger oxidative stress, which in turn damages mitochondrial DNA (mtDNA). We recently demonstrated that the main genetic predictors of NAFLD led to mitochondrial dysfunction. Moreover, emerging evidence shows that variations in the displacement loop (D-loop) region impair mtDNA replication, and they have been associated with advanced NAFLD. Finally, lower levels of mitophagy foster the overload of damaged mitochondria, resulting in the release of cell-free circulating mitochondrial DNA (mt-ccf) that exacerbates liver injury. Thus, in this review we summarized what is known about D-loop region alterations and mt-ccf content during NAFLD to propose them as novel non-invasive biomarkers.
Collapse
Affiliation(s)
- Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- IRCCS Multimedica, 20099 Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-5503-3467; Fax: +39-02-5032-0296
| |
Collapse
|
3
|
Design, synthesis and anti-tumor activity of novel benzothiophenonaphthalimide derivatives targeting mitochondrial DNA (mtDNA) G-quadruplex. Biochem Pharmacol 2022; 201:115062. [DOI: 10.1016/j.bcp.2022.115062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/19/2022]
|
4
|
Ip EKK, Troup M, Xu C, Winlaw DS, Dunwoodie SL, Giannoulatou E. Benchmarking the Effectiveness and Accuracy of Multiple Mitochondrial DNA Variant Callers: Practical Implications for Clinical Application. Front Genet 2022; 13:692257. [PMID: 35350246 PMCID: PMC8957813 DOI: 10.3389/fgene.2022.692257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations contribute to human disease across a range of severity, from rare, highly penetrant mutations causal for monogenic disorders to mutations with milder contributions to phenotypes. mtDNA variation can exist in all copies of mtDNA or in a percentage of mtDNA copies and can be detected with levels as low as 1%. The large number of copies of mtDNA and the possibility of multiple alternative alleles at the same DNA nucleotide position make the task of identifying allelic variation in mtDNA very challenging. In recent years, specialized variant calling algorithms have been developed that are tailored to identify mtDNA variation from whole-genome sequencing (WGS) data. However, very few studies have systematically evaluated and compared these methods for the detection of both homoplasmy and heteroplasmy. A publicly available synthetic gold standard dataset was used to assess four mtDNA variant callers (Mutserve, mitoCaller, MitoSeek, and MToolBox), and the commonly used Genome Analysis Toolkit “best practices” pipeline, which is included in most current WGS pipelines. We also used WGS data from 126 trios and calculated the percentage of maternally inherited variants as a metric of calling accuracy, especially for homoplasmic variants. We additionally compared multiple pathogenicity prediction resources for mtDNA variants. Although the accuracy of homoplasmic variant detection was high for the majority of the callers with high concordance across callers, we found a very low concordance rate between mtDNA variant callers for heteroplasmic variants ranging from 2.8% to 3.6%, for heteroplasmy thresholds of 5% and 1%. Overall, Mutserve showed the best performance using the synthetic benchmark dataset. The analysis of mtDNA pathogenicity resources also showed low concordance in prediction results. We have shown that while homoplasmic variant calling is consistent between callers, there remains a significant discrepancy in heteroplasmic variant calling. We found that resources like population frequency databases and pathogenicity predictors are now available for variant annotation but still need refinement and improvement. With its peculiarities, the mitochondria require special considerations, and we advocate that caution needs to be taken when analyzing mtDNA data from WGS data.
Collapse
Affiliation(s)
- Eddie K K Ip
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Sydney, NSW, Australia
| | - Michael Troup
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Colin Xu
- School of Computer Science and Engineering, Sydney, NSW, Australia
| | - David S Winlaw
- Cardiothoracic Surgery, Cincinnati Children's Hospital Medical Centre, Heart Institute, Cincinnati, OH, United States
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Sydney, NSW, Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St. Vincent's Clinical School, Sydney, NSW, Australia
| |
Collapse
|
5
|
Pangeni RP, Olivaries I, Huen D, Buzatto VC, Dawson TP, Ashton KM, Davis C, Brodbelt AR, Jenkinson MD, Bièche I, Yang L, Latif F, Darling JL, Warr TJ, Morris MR. Genome-wide methylation analyses identifies Non-coding RNA genes dysregulated in breast tumours that metastasise to the brain. Sci Rep 2022; 12:1102. [PMID: 35058523 PMCID: PMC8776809 DOI: 10.1038/s41598-022-05050-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Brain metastases comprise 40% of all metastatic tumours and breast tumours are among the tumours that most commonly metastasise to the brain, the role that epigenetic gene dysregulation plays in this process is not well understood. We carried out 450 K methylation array analysis to investigate epigenetically dysregulated genes in breast to brain metastases (BBM) compared to normal breast tissues (BN) and primary breast tumours (BP). For this, we referenced 450 K methylation data for BBM tumours prepared in our laboratory with BN and BP from The Cancer Genome Atlas. Experimental validation on our initially identified genes, in an independent cohort of BP and in BBM and their originating primary breast tumours using Combined Bisulphite and Restriction Analysis (CoBRA) and Methylation Specific PCR identified three genes (RP11-713P17.4, MIR124-2, NUS1P3) that are hypermethylated and three genes (MIR3193, CTD-2023M8.1 and MTND6P4) that are hypomethylated in breast to brain metastases. In addition, methylation differences in candidate genes between BBM tumours and originating primary tumours shows dysregulation of DNA methylation occurs either at an early stage of tumour evolution (in the primary tumour) or at a later evolutionary stage (where the epigenetic change is only observed in the brain metastasis). Epigentic changes identified could also be found when analysing tumour free circulating DNA (tfcDNA) in patient’s serum taken during BBM biopsies. Epigenetic dysregulation of RP11-713P17.4, MIR3193, MTND6P4 are early events suggesting a potential use for these genes as prognostic markers.
Collapse
|
6
|
Mitochondrial Inheritance in Phytopathogenic Fungi-Everything Is Known, or Is It? Int J Mol Sci 2020; 21:ijms21113883. [PMID: 32485941 PMCID: PMC7312866 DOI: 10.3390/ijms21113883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are important organelles in eukaryotes that provide energy for cellular processes. Their function is highly conserved and depends on the expression of nuclear encoded genes and genes encoded in the organellar genome. Mitochondrial DNA replication is independent of the replication control of nuclear DNA and as such, mitochondria may behave as selfish elements, so they need to be controlled, maintained and reliably inherited to progeny. Phytopathogenic fungi meet with special environmental challenges within the plant host that might depend on and influence mitochondrial functions and services. We find that this topic is basically unexplored in the literature, so this review largely depends on work published in other systems. In trying to answer elemental questions on mitochondrial functioning, we aim to introduce the aspect of mitochondrial functions and services to the study of plant-microbe-interactions and stimulate phytopathologists to consider research on this important organelle in their future projects.
Collapse
|
7
|
The Length and Distribution of Plasma Cell-Free DNA Fragments in Stroke Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9054196. [PMID: 32090114 PMCID: PMC7017581 DOI: 10.1155/2020/9054196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/05/2019] [Indexed: 01/21/2023]
Abstract
A number of studies have shown that plasma cell-free DNA is closely related to the risk of stroke, but the fragmentation status of plasma cell-free DNA and its clinical application value in ischemic stroke are still unclear. In this study, 48 patients with new ischemic stroke and 20 healthy subjects were enrolled. The second-generation high-throughput sequencing technique was used to study the plasma cell-free fragment length and regional distribution of the subjects. As noted in our results, the ratio of plasma cell-free DNA fragments in the disease group was significantly greater than that of the healthy group in the 300–400 bp range; conversely for fragments at the 75–250 bp range, the ratio of plasma cell-free DNA fragments in the patient group was apparently lower than that of the healthy group. In-depth analysis of the proportion of fragments distributed on each component of the genome was carried out. Our results recorded that the plasma cell-free DNA fragments in the disease group were inclined to the EXON, CpG islands, and ALU regions in contrast to that of the healthy group. In particular, fragments within the 300–400 bp range of the disease group were enrichment in the regions of EXON, INTRON, INTERGENIC, LINE, Fragile, ALU, and CpG islands. In summary, our findings suggested that the intracellular DNA degradation profiles could be applied to distinguish the stroke group and the healthy group, which provided a theoretical basis for the clinical diagnosis and prognosis of stroke by profiling the characteristic of plasma cell-free DNA fragments.
Collapse
|
8
|
Whole mitochondrial genome sequencing highlights mitochondrial impact in gastric cancer. Sci Rep 2019; 9:15716. [PMID: 31673122 PMCID: PMC6823544 DOI: 10.1038/s41598-019-51951-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are organelles that perform major roles in cellular operation. Thus, alterations in mitochondrial genome (mtGenome) may lead to mitochondrial dysfunction and cellular deregulation, influencing carcinogenesis. Gastric cancer (GC) is one of the most incident and mortal types of cancer in Brazil, particularly in the Amazon region. Here, we sequenced and compared the whole mtGenome extracted from FFPE tissue samples of GC patients (tumor and internal control – IC) and cancer-free individuals (external control – EC) from this region. We found 3-fold more variants and up to 9-fold more heteroplasmic regions in tumor when compared to paired IC samples. Moreover, tumor presented more heteroplasmic variants when compared to EC, while IC and EC showed no significant difference when compared to each other. Tumor also presented substantially more variants in the following regions: MT-RNR1, MT-ND5, MT-ND4, MT-ND2, MT-DLOOP1 and MT-CO1. In addition, our haplogroup results indicate an association of Native American ancestry (particularly haplogroup C) to gastric cancer development. To the best of our knowledge, this is the first study to sequence the whole mtGenome from FFPE samples and to apply mtGenome analysis in association to GC in Brazil.
Collapse
|