1
|
Zhang J. Non-coding RNAs and angiogenesis in cardiovascular diseases: a comprehensive review. Mol Cell Biochem 2024; 479:2921-2953. [PMID: 38306012 DOI: 10.1007/s11010-023-04919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Non-coding RNAs (ncRNAs) have key roles in the etiology of many illnesses, including heart failure, myocardial infarction, stroke, and in physiological processes like angiogenesis. In transcriptional regulatory circuits that control heart growth, signaling, and stress response, as well as remodeling in cardiac disease, ncRNAs have become important players. Studies on ncRNAs and cardiovascular disease have made great progress recently. Here, we go through the functions of non-coding RNAs (ncRNAs) like circular RNAs (circRNAs), and microRNAs (miRNAs) as well as long non-coding RNAs (lncRNAs) in modulating cardiovascular disorders.
Collapse
Affiliation(s)
- Jie Zhang
- Medical School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Shi Y, Men X, Wang F, Li X, Zhang B. Role of long non-coding RNAs (lncRNAs) in gastric cancer metastasis: A comprehensive review. Pathol Res Pract 2024; 262:155484. [PMID: 39180802 DOI: 10.1016/j.prp.2024.155484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
One of the greatest frequent types of malignancy is gastric cancer (GC). Metastasis, an essential feature of stomach cancer, results in a high rate of mortality and a poor prognosis. However, metastasis biological procedures are not well recognized. Long non-coding RNAs (lncRNAs) have a role in numerous gene regulation pathways via epigenetic modification as well as transcriptional and post-transcriptional control. LncRNAs have a role in a variety of disorders, such as cardiovascular disease, Alzheimer's, and cancer. LncRNAs are substantially related to GC incidence, progression, metastasis and drug resistance. Several research released information on the molecular processes of lncRNAs in GC pathogenesis. By interacting with a gene's promoter or enhancer region to influence gene expression, lncRNAs can operate as an oncogene or a tumor suppressor. This review includes the lncRNAs associated with metastasis of GC, which may give insights into the processes as well as potential clues for GC predicting and tracking.
Collapse
Affiliation(s)
- Yue Shi
- Department of Microbiology and Immunology, Changchun University of Chinese Medicine, Jilin 130117, PR China.
| | - Xiaoping Men
- Department of Clinical Laboratory, The First Affiliated Hospital to Changchun University of Chinese Medicine, Jilin 130021, PR China.
| | - Fang Wang
- Department of Microbiology and Immunology, Changchun University of Chinese Medicine, Jilin 130117, PR China.
| | - Xueting Li
- Experimental Center, Changchun University of Chinese Medicine, Jilin 130021, PR China.
| | - Biao Zhang
- School of Health Management, Changchun University of Chinese Medicine, Jilin 130117, PR China.
| |
Collapse
|
3
|
Lemma RB, Fuglerud BM, Frampton J, Gabrielsen OS. MYB: A Key Transcription Factor in the Hematopoietic System Subject to Many Levels of Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:3-29. [PMID: 39017837 DOI: 10.1007/978-3-031-62731-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
MYB is a master regulator and pioneer factor highly expressed in hematopoietic progenitor cells (HPCs) where it contributes to the reprogramming processes operating during hematopoietic development. MYB plays a complex role being involved in several lineages of the hematopoietic system. At the molecular level, the MYB gene is subject to intricate regulation at many levels through several enhancer and promoter elements, through transcriptional elongation control, as well as post-transcriptional regulation. The protein is modulated by post-translational modifications (PTMs) such as SUMOylation restricting the expression of its downstream targets. Together with a range of interaction partners, cooperating transcription factors (TFs) and epigenetic regulators, MYB orchestrates a fine-tuned symphony of genes expressed during various stages of haematopoiesis. At the same time, the complex MYB system is vulnerable, being a target for unbalanced control and cancer development.
Collapse
Affiliation(s)
- Roza Berhanu Lemma
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | | | - Jon Frampton
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
| | | |
Collapse
|
4
|
Al-khayyat W, Pirkkanen J, Dougherty J, Laframboise T, Dickinson N, Khaper N, Lees SJ, Mendonca MS, Boreham DR, Tai TC, Thome C, Tharmalingam S. Overexpression of FRA1 ( FOSL1) Leads to Global Transcriptional Perturbations, Reduced Cellular Adhesion and Altered Cell Cycle Progression. Cells 2023; 12:2344. [PMID: 37830558 PMCID: PMC10571788 DOI: 10.3390/cells12192344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
FRA1 (FOSL1) is a transcription factor and a member of the activator protein-1 superfamily. FRA1 is expressed in most tissues at low levels, and its expression is robustly induced in response to extracellular signals, leading to downstream cellular processes. However, abnormal FRA1 overexpression has been reported in various pathological states, including tumor progression and inflammation. To date, the molecular effects of FRA1 overexpression are still not understood. Therefore, the aim of this study was to investigate the transcriptional and functional effects of FRA1 overexpression using the CGL1 human hybrid cell line. FRA1-overexpressing CGL1 cells were generated using stably integrated CRISPR-mediated transcriptional activation, resulting in a 2-3 fold increase in FRA1 mRNA and protein levels. RNA-sequencing identified 298 differentially expressed genes with FRA1 overexpression. Gene ontology analysis showed numerous molecular networks enriched with FRA1 overexpression, including transcription-factor binding, regulation of the extracellular matrix and adhesion, and a variety of signaling processes, including protein kinase activity and chemokine signaling. In addition, cell functional assays demonstrated reduced cell adherence to fibronectin and collagen with FRA1 overexpression and altered cell cycle progression. Taken together, this study unravels the transcriptional response mediated by FRA1 overexpression and establishes the role of FRA1 in adhesion and cell cycle progression.
Collapse
Affiliation(s)
- Wuroud Al-khayyat
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Jake Pirkkanen
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Jessica Dougherty
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Taylor Laframboise
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Noah Dickinson
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
| | - Neelam Khaper
- Medical Sciences Division, NOSM University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada; (N.K.); (S.J.L.)
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Simon J. Lees
- Medical Sciences Division, NOSM University, 955 Oliver Rd., Thunder Bay, ON P7B 5E1, Canada; (N.K.); (S.J.L.)
- Department of Biology, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Marc S. Mendonca
- Department of Radiation Oncology, Radiation and Cancer Biology Laboratories, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Douglas R. Boreham
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
| | - Tze Chun Tai
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Christopher Thome
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Sujeenthar Tharmalingam
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (W.A.-k.); (N.D.); (D.R.B.); (T.C.T.); (C.T.)
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (J.P.); (J.D.); (T.L.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| |
Collapse
|
5
|
Forooghi Pordanjani T, Dabirmanesh B, Choopanian P, Mirzaie M, Mohebbi S, Khajeh K. Extracting Potential New Targets for Treatment of Adenoid Cystic Carcinoma using Bioinformatic Methods. IRANIAN BIOMEDICAL JOURNAL 2023; 27:294-306. [PMID: 37873683 PMCID: PMC10707816 DOI: 10.61186/ibj.27.5.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 03/25/2023] [Indexed: 12/17/2023]
Abstract
Background Adenoid cystic carcinoma is a slow-growing malignancy that most often occurs in the salivary glands. Currently, no FDA-approved therapeutic target or diagnostic biomarker has been identified for this cancer. The aim of this study was to find new therapeutic and diagnostic targets using bioinformatics methods. Methods We extracted the gene expression information from two GEO datasets (including GSE59701 and GSE88804). Different expression genes between adenoid cystic carcinoma (ACC) and normal samples were extracted using R software. The biochemical pathways involved in ACC were obtained by using the Enrichr database. PPI network was drawn by STRING, and important genes were extracted by Cytoscape. Real-time PCR and immunohistochemistry were used for biomarker verification. Results After analyzing the PPI network, 20 hub genes were introduced to have potential as diagnostic and therapeutic targets. Among these genes, PLCG1 was presented as new biomarker in ACC. Furthermore, by studying the function of the hub genes in the enriched biochemical pathways, we found that insulin-like growth factor type 1 receptor and PPARG pathways most likely play a critical role in tumorigenesis and drug resistance in ACC and have a high potential for selection as therapeutic targets in future studies. Conclusion In this study, we achieved the recognition of the pathways involving in ACC pathogenesis and also found potential targets for treatment and diagnosis of ACC. Further experimental studies are required to confirm the results of this study.
Collapse
Affiliation(s)
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Peyman Choopanian
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Mirzaie
- Department of Applied Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saleh Mohebbi
- ENT and Head & Neck Research Center, the Five Senses Health Institute, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Harada T, Perez MW, Kalfon J, Braes FD, Batley R, Eagle K, Nabet B, Leifer B, Kruell J, Paralkar VR, Stegmaier K, Koehler AN, Orkin SH, Pimkin M. Rapid-kinetics degron benchmarking reveals off-target activities and mixed agonism-antagonism of MYB inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536032. [PMID: 37066194 PMCID: PMC10104119 DOI: 10.1101/2023.04.07.536032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Attenuating aberrant transcriptional circuits holds great promise for the treatment of numerous diseases, including cancer. However, development of transcriptional inhibitors is hampered by the lack of a generally accepted functional cellular readout to characterize their target specificity and on-target activity. We benchmarked the direct gene-regulatory signatures of six agents reported as inhibitors of the oncogenic transcription factor MYB against targeted MYB degradation in a nascent transcriptomics assay. The inhibitors demonstrated partial specificity for MYB target genes but displayed significant off-target activity. Unexpectedly, the inhibitors displayed bimodal on-target effects, acting as mixed agonists-antagonists. Our data uncover unforeseen agonist effects of small molecules originally developed as TF inhibitors and argue that rapid-kinetics benchmarking against degron models should be used for functional characterization of transcriptional modulators.
Collapse
Affiliation(s)
- Taku Harada
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Monika W. Perez
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Jérémie Kalfon
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| | - Flora Dievenich Braes
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Rashad Batley
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Kenneth Eagle
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Ken Eagle Consulting, Houston, TX, 77494, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Becky Leifer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jasmin Kruell
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Vikram R. Paralkar
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kimberly Stegmaier
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| | - Angela N. Koehler
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stuart H. Orkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Howard Hughes Medical Institute, Boston, MA, 02215, USA
| | - Maxim Pimkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02142, USA
| |
Collapse
|
7
|
Tang YF, An PG, Gu BX, Yi S, Hu X, Wu WJ, Zhang J. Transcriptomic insights into adenoid cystic carcinoma via RNA sequencing. Front Genet 2023; 14:1144945. [PMID: 37152992 PMCID: PMC10160386 DOI: 10.3389/fgene.2023.1144945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Background: The aim of this study was to investigate the underlying mechanisms of adenoid cystic carcinoma (ACC) at the transcriptome level. Materials and methods: We obtained paired tumor and normal salivary gland tissues from 15 ACC patients, which were prepared for RNA sequencing. Results: Gene enrichment analysis revealed that the upregulated pathways were mainly involved in axonogenesis, and the downregulated pathways were mainly related to leukocyte migration, the adaptive immune response, lymphocyte-mediated immunity, and the humoral immune response. T-cells, B-cells and NK cells showed low infiltration in ACC tissues. In addition to the gene fusions MYB-NFIB and MYBL1-NFIB, a new gene fusion, TVP23C-CDRT4, was also detected in 3 ACC tissues. PRAME was significantly upregulated in ACC tissues, while antigen-presenting human leukocyte antigen (HLA) genes were downregulated. Conclusion: We found a new gene fusion, TVP23C-CDRT4, that was highly expressed in ACC. PRAME may be an attractive target for ACC immunotherapy.
Collapse
Affiliation(s)
- Yu-Fang Tang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology and National Clinical Research Center for Oral Diseases, Beijing, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Stomatology, Xinqiao Hospital (the Second Affiliated Hospital), Army Medical University, Chongqing, China
| | - Pu-Gen An
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology and National Clinical Research Center for Oral Diseases, Beijing, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Bao-Xin Gu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology and National Clinical Research Center for Oral Diseases, Beijing, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shu Yi
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology and National Clinical Research Center for Oral Diseases, Beijing, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiao Hu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology and National Clinical Research Center for Oral Diseases, Beijing, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wen-Jie Wu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology and National Clinical Research Center for Oral Diseases, Beijing, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Wen-Jie Wu, ; Jie Zhang,
| | - Jie Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology and National Clinical Research Center for Oral Diseases, Beijing, China
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Wen-Jie Wu, ; Jie Zhang,
| |
Collapse
|
8
|
Vasileva AN, Aleshina OA, Biderman BV, Sudarikov AB. Molecular genetic abnormalities in patients with T-cell acute lymphoblastic leukemia: a literature review. ONCOHEMATOLOGY 2022. [DOI: 10.17650/1818-8346-2022-17-4-166-176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) is an aggressive hematological disease. Modern polychemotherapy protocols allow achieving a 5-year overall survival of 60–90 % in different age groups, however, relapses and refractory forms of T-ALL remain incurable. Over the past decades, the pathogenesis of this variant of leukemia has been studied in many trials, and it has been found that various signaling pathways are involved in the multi-step process of leukemogenesis. This opens the way for targeted therapy.In this review, we provide an update on the pathogenesis of T-ALL, opportunities for introducing targeted therapies, and issues that remain to be addressed.
Collapse
Affiliation(s)
- A. N. Vasileva
- National Research Center for Hematology, Ministry of Health of Russia
| | - O. A. Aleshina
- National Research Center for Hematology, Ministry of Health of Russia
| | - B. V. Biderman
- National Research Center for Hematology, Ministry of Health of Russia
| | - A. B. Sudarikov
- National Research Center for Hematology, Ministry of Health of Russia
| |
Collapse
|
9
|
Parriott G, Kee BL. E Protein Transcription Factors as Suppressors of T Lymphocyte Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:885144. [PMID: 35514954 PMCID: PMC9065262 DOI: 10.3389/fimmu.2022.885144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
T Lymphocyte Acute Lymphoblastic Leukemia (ALL) is an aggressive disease arising from transformation of T lymphocytes during their development. The mutation spectrum of T-ALL has revealed critical regulators of the growth and differentiation of normal and leukemic T lymphocytes. Approximately, 60% of T-ALLs show aberrant expression of the hematopoietic stem cell-associated helix-loop-helix transcription factors TAL1 and LYL1. TAL1 and LYL1 function in multiprotein complexes that regulate gene expression in T-ALL but they also antagonize the function of the E protein homodimers that are critical regulators of T cell development. Mice lacking E2A, or ectopically expressing TAL1, LYL1, or other inhibitors of E protein function in T cell progenitors, also succumb to an aggressive T-ALL-like disease highlighting that E proteins promote T cell development and suppress leukemogenesis. In this review, we discuss the role of E2A in T cell development and how alterations in E protein function underlie leukemogenesis. We focus on the role of TAL1 and LYL1 and the genes that are dysregulated in E2a-/- T cell progenitors that contribute to human T-ALL. These studies reveal novel mechanisms of transformation and provide insights into potential therapeutic targets for intervention in this disease.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Committee on Immunology, University of Chicago, Chicago, IL, United States
| | - Barbara L Kee
- Committee on Immunology, University of Chicago, Chicago, IL, United States.,Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.,Department of Pathology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
10
|
Lin CY, Tseng WT, Chang YY, Tsai MH, Chuang EY, Lu TP, Lai LC. Lidocaine and Bupivacaine Downregulate MYB and DANCR lncRNA by Upregulating miR-187-5p in MCF-7 Cells. Front Med (Lausanne) 2022; 8:732817. [PMID: 35096852 PMCID: PMC8792760 DOI: 10.3389/fmed.2021.732817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/20/2021] [Indexed: 01/14/2023] Open
Abstract
Background: Breast cancer is the most common malignancy and a leading cause of death among women. The majority of patients require surgery, and retrospective studies have revealed an association between anaesthetic techniques during surgery and clinical outcomes. Local anaesthetics (LAs) influence carcinogenesis by interacting with non-coding RNAs (ncRNAs). However, the detailed mechanisms underlying the association between LAs and ncRNAs remain unclear. Methods: In this study, the effects of two commonly used LAs, lidocaine and bupivacaine, on the malignancy of MCF-7 breast cancer cells were investigated. The expression profiles of the microRNAs (miRNAs) that responded to treatment with LAs were determined through next-generation sequencing. Results: Data from the functional assay revealed that the LAs suppressed the proliferation of MCF-7 cells. The result of next-generation sequencing revealed that 131 miRNAs were upregulated, following treatment with the LAs. Validation using polymerase chain reaction (PCR) identified miR-187-5p as a potential biomarker, and it was selected for further analyses. Prediction with bioinformatics tools and luciferase reporter assays revealed that MYB is a direct target gene of miR-187-5p. Based on the hypothesis that lncRNAs acts as miRNA sponges, the target lncRNA, DANCR, of miR-187-5p was predicted using DIANA-LncBase v2 and validated using luciferase reporter assays. In addition, the reciprocal suppressive effect between DANCR and miR-187-5p was determined. Conclusions: This study suggests that one of the anti-tumour mechanisms of lidocaine and bupivacaine is mediated through the DANCR-miR-187-5p-MYB axis. This may provide a novel molecular mechanism of tumour suppression in breast cancer.
Collapse
Affiliation(s)
- Chiao-Yi Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Anesthesiology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Wen-Ting Tseng
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yao-Yin Chang
- Department of Electrical Engineering, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Graduate Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Eric Y Chuang
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science, National Taiwan University, Taipei, Taiwan.,College of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Tzu-Pin Lu
- Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Zahran F, Refaey Y, Shaker O, Abdelwahab A, Abdelmoneim IM. Diagnostic accuracy of human transcriptional activator (Myb) expression by ELISA technique versus immunohistochemistry in detecting salivary gland carcinomas. J Int Oral Health 2022. [DOI: 10.4103/jioh.jioh_139_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Xie Y, Rong L, He M, Jiang Y, Li H, Mai L, Song F. LncRNA SNHG3 promotes gastric cancer cell proliferation and metastasis by regulating the miR-139-5p/MYB axis. Aging (Albany NY) 2021; 13:25138-25152. [PMID: 34898477 PMCID: PMC8714158 DOI: 10.18632/aging.203732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022]
Abstract
The long non-coding RNA (lncRNA) SNHG3 has been shown to play oncogenic roles in several cancer types, but the mechanisms underlying its activity are poorly understood. In this study, we aimed to explore the clinical relevance and mechanistic role of SNHG3 in gastric cancer (GC). We found that SNHG3 expression in GC cell lines and tissues was significantly increased, and the upregulation of this lncRNA was correlated with tumor clinical stage and decreased patient survival. Knocking down SNHG3 in GC cells impaired the proliferative, migratory, and invasive activity in vitro and constrained in vivo GC xenograft tumor growth. Mechanistically, SNHG3 was found to bind and sequester miR-139-5p, thereby indirectly promoting the upregulation of the miR-139-5p target gene MYB. These data demonstrated that SNHG3 functions in an oncogenic manner to drive GC proliferation, migration, and invasion by regulating the miR-139-5p/MYB axis.
Collapse
Affiliation(s)
- Yan Xie
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China.,Qinggang Senior Care Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Rong
- Department of Gastroenterology, Bishan Hospital of Chongqing, Chongqing 402760, China
| | - Min He
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Yuyou Jiang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Haiyu Li
- Chongqing Public Health Medical Center, Chongqing 400036, China
| | - Li Mai
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Fangzhou Song
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
13
|
Hu D, Shao W, Liu L, Wang Y, Yuan S, Liu Z, Liu J, Zhang J. Intricate crosstalk between MYB and noncoding RNAs in cancer. Cancer Cell Int 2021; 21:653. [PMID: 34876130 PMCID: PMC8650324 DOI: 10.1186/s12935-021-02362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
MYB is often overexpressed in malignant tumors and plays a carcinogenic role in the initiation and development of cancer. Deletion of the MYB regulatory C-terminal domain may be a driving mutation leading to tumorigenesis, therefore, different tumor mechanisms produce similar MYB proteins. As MYB is a transcription factor, priority has been given to identifying the genes that it regulates. All previous attention has been focused on protein-coding genes. However, an increasing number of studies have suggested that MYB can affect the complexity of cancer progression by regulating tumor-associated noncoding RNAs (ncRNAs), such as microRNAs, long-non-coding RNAs and circular RNAs. ncRNAs can regulate the expression of numerous downstream genes at the transcription, RNA processing and translation levels, thereby having various biological functions. Additionally, ncRNAs play important roles in regulating MYB expression. This review focuses on the intricate crosstalk between oncogenic MYB and ncRNAs, which play a pivotal role in tumorigenesis, including proliferation, apoptosis, angiogenesis, metastasis, senescence and drug resistance. In addition, we discuss therapeutic strategies for crosstalk between MYB and ncRNAs to prevent the occurrence and development of cancer.
Collapse
Affiliation(s)
- Dingyu Hu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wenjun Shao
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Li Liu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yanyan Wang
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shunling Yuan
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaoping Liu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jing Liu
- Hunan Province Key Laboratory of Basic and Applied Hematology, Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ji Zhang
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China. .,Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
14
|
Joy ST, Henley MJ, De Salle SN, Beyersdorf MS, Vock IW, Huldin AJL, Mapp AK. A Dual-Site Inhibitor of CBP/p300 KIX is a Selective and Effective Modulator of Myb. J Am Chem Soc 2021; 143:15056-15062. [PMID: 34491719 DOI: 10.1021/jacs.1c04432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protein-protein interaction between the KIX motif of the transcriptional coactivator CBP/p300 and the transcriptional activator Myb is a high-value target due to its established role in certain acute myeloid leukemias (AML) and potential contributions to other cancers. However, the CBP/p300 KIX domain has multiple binding sites, several structural homologues, many binding partners, and substantial conformational plasticity, making it challenging to specifically target using small-molecule inhibitors. Here, we report a picomolar dual-site inhibitor (MybLL-tide) of the Myb-CBP/p300 KIX interaction. MybLL-tide has higher affinity for CBP/p300 KIX than any previously reported compounds while also possessing 5600-fold selectivity for the CBP/p300 KIX domain over other coactivator domains. MybLL-tide blocks the association of CBP and p300 with Myb in the context of the proteome, leading to inhibition of key Myb·KIX-dependent genes in AML cells. These results show that MybLL-tide is an effective, modifiable tool to selectively target the KIX domain and assess transcriptional effects in AML cells and potentially other cancers featuring aberrant Myb behavior. Additionally, the dual-site design has applicability to the other challenging coactivators that bear multiple binding surfaces.
Collapse
Affiliation(s)
- Stephen T Joy
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Madeleine J Henley
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Samantha N De Salle
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Matthew S Beyersdorf
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Isaac W Vock
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Interdisciplinary Research Experiences for Undergraduates Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Allison J L Huldin
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Sakuma K, Sasaki E, Hosoda W, Komori K, Shimizu Y, Yatabe Y, Aoki M. MYB mediates downregulation of the colorectal cancer metastasis suppressor heterogeneous nuclear ribonucleoprotein L-like during epithelial-mesenchymal transition. Cancer Sci 2021; 112:3846-3855. [PMID: 34286904 PMCID: PMC8409424 DOI: 10.1111/cas.15069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/29/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein L-like (HNRNPLL), a suppressor of colorectal cancer (CRC) metastasis, is transcriptionally downregulated when CRC cells undergo epithelial-mesenchymal transition (EMT). Here we show that decrease of MYB mediates the downregulation of HNRNPLL during EMT. The promoter activity was attributed to a region from -273 to -10 base pairs upstream of the transcription start site identified by 5'-RACE analysis, and the region contained potential binding sites for MYB and SP1. Luciferase reporter gene assays and knockdown or knockout experiments for genes encoding the MYB family proteins, MYB, MYBL1, and MYBL2, revealed that MYB was responsible for approximately half of the promoter activity. On the other hand, treatment with mithramycin A, an inhibitor for SP1 and SP3, suppressed the promoter activity and their additive contribution was confirmed by knockout experiments. The expression level of MYB was reduced on EMT while that of SP1 and SP3 was unchanged, suggesting that the downregulation of HNRNPLL during EMT was mediated by the decrease of MYB expression while SP1 and SP3 determine the basal transcription level of HNRNPLL. Histopathological analysis confirmed the accumulation of MYB-downregulated cancer cells at the invasion front of clinical CRC tissues. These results provide an insight into the molecular mechanism underlying CRC progression.
Collapse
Affiliation(s)
- Keiichiro Sakuma
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Eiichi Sasaki
- Department of Pathology and Molecular DiagnosticsAichi Cancer Center HospitalNagoyaJapan
| | - Waki Hosoda
- Department of Pathology and Molecular DiagnosticsAichi Cancer Center HospitalNagoyaJapan
| | - Koji Komori
- Department of Gastroenterological SurgeryAichi Cancer Center HospitalNagoyaJapan
| | - Yasuhiro Shimizu
- Department of Gastroenterological SurgeryAichi Cancer Center HospitalNagoyaJapan
| | - Yasushi Yatabe
- Department of Diagnostic PathologyNational Cancer Center HospitalTokyoJapan
| | - Masahiro Aoki
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
- Department of Cancer PhysiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
16
|
Guo Q, Zhang X, Shen T, Wang X. Identification of Autophagy- and Ferroptosis-Related lncRNAs Functioned through Immune-Related Pathways in Head and Neck Squamous Carcinoma. Life (Basel) 2021; 11:life11080835. [PMID: 34440579 PMCID: PMC8399325 DOI: 10.3390/life11080835] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
The interplay between autophagy and ferroptosis has been highlighted as an important event to decide cancer cell fate. However, the underlying mechanisms remain largely unclear. In this study, we systematically explored the expression, prognostic value and functional roles of lncRNA in autophagy and ferroptosis. By a set of bioinformatics analyses, we identified 363 autophagy- and ferroptosis-related lncRNAs (AF-lncRNAs) and found 17 of them are dramatically related to the prognosis of head and neck squamous cell carcinoma (HNSC) patients, named as prognosis-related AF-lncRNAs (PAF-lncRNAs). Based on six key PAF-lncRNAs, a risk score model was developed and used to categorize the TCGA-retrieved HNSC patients into two groups (high-risk vs. low-risk). Functional analysis showed the differentially expressed genes (DEGs) between the two groups were mainly enriched in immune-related pathways and regulated by a PAF-lncRNA-directed ceRNA (competitive endogenous RNA) network. Combined with a variety of immune infiltration analyses, we also found a decreased landscape of immune cell infiltration in high-risk groups. Together, by revealing PAF-lncRNAs with tumor prognostic features functioned through immune-related pathways, our work would contribute to show the pathogenesis of a lncRNA-directed interplay among autophagy, ferroptosis and tumor immunity in HNSC and to develop potential prognostic biomarkers and targets for tumor immunotherapy.
Collapse
Affiliation(s)
- Qi Guo
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.G.); (X.Z.)
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230026, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xuehan Zhang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.G.); (X.Z.)
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230026, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Tao Shen
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.G.); (X.Z.)
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230026, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Correspondence: (T.S.); (X.W.); Tel./Fax: +86-551-63600080 (T.S. & X.W.)
| | - Xiangting Wang
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; (Q.G.); (X.Z.)
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230026, China
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- Correspondence: (T.S.); (X.W.); Tel./Fax: +86-551-63600080 (T.S. & X.W.)
| |
Collapse
|
17
|
Wang J, Wu Y, Uddin MN, Chen R, Hao JP. Identification of Potential Key Genes and Regulatory Markers in Essential Thrombocythemia Through Integrated Bioinformatics Analysis and Clinical Validation. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:767-784. [PMID: 34267539 PMCID: PMC8275175 DOI: 10.2147/pgpm.s309166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Introduction Essential thrombocytosis (ET) is a group of myeloproliferative neoplasms characterized by abnormal proliferation of platelet and megakaryocytes. Research on potential key genes and novel regulatory markers in essential thrombocythemia (ET) is still limited. Methods Downloading array profiles from the Gene Expression Omnibus database, we identified the differentially expressed genes (DEGs) through comprehensive bioinformatic analysis. GO, and REACTOME pathway enrichment analysis was used to predict the potential functions of DEGs. Besides, constructing a protein–protein interaction (PPI) network through the STRING database, we validated the expression level of hub genes in an independent cohort of ET, and the transcription factors (TFs) were detected in the regulatory networks of TFs and DEGs. And the candidate drugs that are targeting hub genes were identified using the DGIdb database. Results We identified 63 overlap DEGs that included 21 common up-regulated and 42 common down-regulated genes from two datasets. Functional enrichment analysis shows that the DEGs are mainly enriched in the immune system and inflammatory processes. Through PPI network analysis, ACTB, PTPRC, ACTR2, FYB, STAT1, ETS1, IL7R, IKZF1, FGL2, and CTSS were selected as hub genes. Interestingly, we found that the dysregulated hub genes are also aberrantly expressed in a bone marrow cohort of ET. Moreover, we found that the expression of CTSS, FGL2, IKZF1, STAT1, FYB, ACTR2, PTPRC, and ACTB genes were significantly under-expressed in ET (P<0.05), which is consistent with our bioinformatics analysis. The ROC curve analysis also shows that these hub genes have good diagnostic value. Besides, we identified 4 TFs (SPI1, IRF4, SRF, and AR) as master transcriptional regulators that were associated with regulating the DEGs in ET. Cyclophosphamide, prednisone, fluorouracil, ruxolitinib, and lenalidomide were predicted as potential candidate drugs for the treatment of ET. Discussion These dysregulated genes and predicted key regulators had a significant relationship with the occurrence of ET with affecting the immune system and inflammation of the processes. Some of the immunomodulatory drugs have potential value by targeting ACTB, PTPRC, IL7R, and IKZF1 genes in the treatment of ET.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yun Wu
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| | - Md Nazim Uddin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.,Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Rong Chen
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| | - Jian-Ping Hao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| |
Collapse
|
18
|
Bhattacharya P, Patel TN. A study of deregulated MMR pathways and anticancer potential of curcuma derivatives using computational approach. Sci Rep 2021; 11:10110. [PMID: 33980898 PMCID: PMC8115291 DOI: 10.1038/s41598-021-89282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
Plant derived products have steadily gained momentum in treatment of cancer over the past decades. Curcuma and its derivatives, in particular, have diverse medicinal properties including anticancer potential with proven safety as supported by numerous in vivo and in vitro studies. A defective Mis-Match Repair (MMR) is implicated in solid tumors but its role in haematologic malignancies is not keenly studied and the current literature suggests that it is limited. Nonetheless, there are multiple pathways interjecting the mismatch repair proteins in haematologic cancers that may have a direct or indirect implication in progression of the disease. Here, through computational analysis, we target proteins that are involved in rewiring of multiple signaling cascades via altered expression in cancer using various curcuma derivatives (Curcuma longa L. and Curcuma caesia Roxb.) which in turn, profoundly controls MMR protein function. These biomolecules were screened to identify their efficacy on selected targets (in blood-related cancers); aberrations of which adversely impacted mismatch repair machinery. The study revealed that of the 536 compounds screened, six of them may have the potential to regulate the expression of identified targets and thus revive the MMR function preventing genomic instability. These results reveal that there may be potential plant derived biomolecules that may have anticancer properties against the tumors driven by deregulated MMR-pathways.
Collapse
Affiliation(s)
| | - Trupti N Patel
- Department of Integrative Biology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
19
|
Panagopoulos I, Heim S. Interstitial Deletions Generating Fusion Genes. Cancer Genomics Proteomics 2021; 18:167-196. [PMID: 33893073 DOI: 10.21873/cgp.20251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
A fusion gene is the physical juxtaposition of two different genes resulting in a structure consisting of the head of one gene and the tail of the other. Gene fusion is often a primary neoplasia-inducing event in leukemias, lymphomas, solid malignancies as well as benign tumors. Knowledge about fusion genes is crucial not only for our understanding of tumorigenesis, but also for the diagnosis, prognostication, and treatment of cancer. Balanced chromosomal rearrangements, in particular translocations and inversions, are the most frequent genetic events leading to the generation of fusion genes. In the present review, we summarize the existing knowledge on chromosome deletions as a mechanism for fusion gene formation. Such deletions are mostly submicroscopic and, hence, not detected by cytogenetic analyses but by array comparative genome hybridization (aCGH) and/or high throughput sequencing (HTS). They are found across the genome in a variety of neoplasias. As tumors are increasingly analyzed using aCGH and HTS, it is likely that more interstitial deletions giving rise to fusion genes will be found, significantly impacting our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Zhang S, Chen A, Chen X. A Feedback Loop Involving MicroRNA-150 and MYB Regulates VEGF Expression in Brain Microvascular Endothelial Cells After Oxygen Glucose Deprivation. Front Physiol 2021; 12:619904. [PMID: 33815136 PMCID: PMC8010145 DOI: 10.3389/fphys.2021.619904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a pivotal role in regulating cerebral angiogenesis after stroke. Meanwhile, excessive VEGF expression induces increased microvascular permeability in brain, probably leading to neurological deterioration. Therefore, the appropriate level of VEGF expression is significant to the recovery of brain exposed to stroke. In this work, we demonstrate that microRNA-150 (miR-150) and its predicted target MYB form a negative feedback loop to control the level of post-stroke VEGF expression. Repression of MYB leads to decreased expression of miR-150 in brain microvascular endothelial cells (BMVECs) exposed to oxygen glucose deprivation (OGD), thus miR-150 was predicted to be down-regulated by MYB. Moreover, MYB was confirmed to be a direct target of miR-150 by using dual luciferase reporter assay. In our previous work, we have validated VEGF as another direct target of miR-150. Therefore, MYB participates in regulation of VEGF via miR-150 under OGD, forming a feedback loop with miR-150. We also find that high levels of miR-150 inhibitors combined with MYB silence contribute to further enhancement of VEGF expression in BMVECs in response to OGD. These observations suggest that the feedback loop comprised of miR-150 and MYB, which is a pivotal endogenous epigenetic regulation to control the expression levels of VEGF in BMVECs subjected to OGD.
Collapse
Affiliation(s)
- Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anqi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolu Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Bardelli V, Arniani S, Pierini V, Pierini T, Di Giacomo D, Gorello P, Moretti M, Pellanera F, Elia L, Vitale A, Storlazzi CT, Tolomeo D, Mastrodicasa E, Caniglia M, Chiaretti S, Ruggeri L, Roti G, Schwab C, Harrison CJ, Almeida A, Pieters T, Van Vlierberghe P, Mecucci C, La Starza R. MYB rearrangements and over-expression in T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 2021; 60:482-488. [PMID: 33611795 DOI: 10.1002/gcc.22943] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
We investigated MYB rearrangements (MYB-R) and the levels of MYB expression, in 331 pediatric and adult patients with T-cell acute lymphoblastic leukemia (T-ALL). MYB-R were detected in 17 cases and consisted of MYB tandem duplication (tdup) (= 14) or T cell receptor beta locus (TRB)-MYB (= 3). As previously reported, TRB-MYB was found only in children (1.6%) while MYB tdup occurred in both age groups, although it was slightly more frequent in children (5.2% vs 2.8%). Shared features of MYB-R T-ALL were a non-early T-cell precursor (ETP) phenotype, a high incidence of NOTCH1/FBXW7 mutations (81%) and CDKN2AB deletions (70.5%). Moreover, they mainly belonged to HOXA (=8), NKX2-1/2-2/TLX1 (=4), and TLX3 (=3) homeobox-related subgroups. Overall, MYB-R cases had significantly higher levels of MYB expression than MYB wild type (MYB-wt) cases, although high levels of MYB were detected in ~ 30% of MYB-wt T-ALL. Consistent with the transcriptional regulatory networks, cases with high MYB expression were significantly enriched within the TAL/LMO subgroup (P = .017). Interestingly, analysis of paired diagnosis/remission samples demonstrated that a high MYB expression was restricted to the leukemic clone. Our study has indicated that different mechanisms underlie MYB deregulation in 30%-40% of T-ALL and highlighted that, MYB has potential as predictive/prognostic marker and/or target for tailored therapy.
Collapse
Affiliation(s)
- Valentina Bardelli
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Silvia Arniani
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Valentina Pierini
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Tiziana Pierini
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Danika Di Giacomo
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Paolo Gorello
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Martina Moretti
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Fabrizia Pellanera
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Loredana Elia
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Antonella Vitale
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | | | - Doron Tolomeo
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - Elena Mastrodicasa
- Department of pediatric and gynecology, Pediatric Onco-hematology, Perugia Regional hospital, Perugia, Italy
| | - Maurizio Caniglia
- Department of pediatric and gynecology, Pediatric Onco-hematology, Perugia Regional hospital, Perugia, Italy
| | - Sabina Chiaretti
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Loredana Ruggeri
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Giovanni Roti
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Claire Schwab
- Leukaemia Research Cytogenetic Group, Newcastle University Centre for Cancer, Newcastle-upon-Tyne, UK
| | - Christine J Harrison
- Leukaemia Research Cytogenetic Group, Newcastle University Centre for Cancer, Newcastle-upon-Tyne, UK
| | - André Almeida
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Tim Pieters
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Cristina Mecucci
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Roberta La Starza
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| |
Collapse
|
22
|
Molecular Pathology of Salivary Gland Neoplasms: Diagnostic, Prognostic, and Predictive Perspective. Adv Anat Pathol 2021; 28:81-93. [PMID: 33405400 DOI: 10.1097/pap.0000000000000291] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Salivary gland neoplasms are an uncommon and widely heterogeneous group of tumors. In recent years, there has been considerable progress in efforts to reveal the molecular landscape of these tumors, although it is still limited and appears to be only the tip of the iceberg. Genomic aberrations, especially specific chromosomal rearrangements including CRTC1-MAML2 and CRTC3-MAML2 in mucoepidermoid carcinoma, MYB-NFIB and MYBL1-NFIB fusions in adenoid cystic carcinoma, PLAG1 and HMGA2 alterations in pleomorphic adenoma and carcinoma ex pleomorphic adenoma, ETV6-NTRK3 and ETV6-RET in secretory carcinoma, EWSR1-ATF1 and EWSR1-CREM in clear cell carcinoma, provide new insights into the molecular pathogenesis of various salivary gland neoplasms and help to better classify them. These genetic aberrations primarily serve as diagnostic tools in salivary gland tumor diagnosis; however, some also have promise as prognostic or predictive biomarkers. This review summarizes the latest developments in molecular pathology of salivary gland tumors with a focus on distinctive molecular characteristics.
Collapse
|
23
|
Overexpression of aberrant Wnt5a and its effect on acquisition of malignant phenotypes in adult T-cell leukemia/lymphoma (ATL) cells. Sci Rep 2021; 11:4114. [PMID: 33603066 PMCID: PMC7892546 DOI: 10.1038/s41598-021-83613-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Wnt5a is a ligand of the non-canonical Wnt signaling pathway involved in cell differentiation, motility, and inflammatory response. Adult T-cell leukemia/lymphoma (ATL) is one of the most aggressive T-cell malignancies caused by infection of human T-cell leukemia virus type1 (HTLV-1). Among subtypes of ATL, acute-type ATL cells are particularly resistant to current multidrug chemotherapies and show remarkably high cell-proliferative and invasive phenotypes. Here we show a dramatic increase of WNT5A gene expression in acute-type ATL cells compared with those of indolent-type ATL cells. Treatment with IWP-2 or Wnt5a-specific knockdown significantly suppressed cell growth of ATL-derived T-cell lines. We demonstrated that the overexpression of c-Myb and FoxM1 was responsible for the synergistic activation of the WNT5A promoter. Also, a WNT5A transcript variant without the exon4 (the ΔE4-WNT5A mRNA), encoding ΔC-Wnt5 (1-136aa of 380aa), is overexpressed in acute-type ATL cells. The ΔC-Wnt5a is secreted extracellularly and enhances cellular migration/invasion to a greater extent compared with wildtype (WT)-Wnt5a. Moreover, the ΔC-Wnt5a secretion was not suppressed by IWP-2, indicating that this mutant Wnt5a is secreted via a different pathway from the WT-Wnt5a. Taken together, synergistic overexpression of the ΔC-Wnt5a by c-Myb and FoxM1 may be responsible for the malignant phenotype of acute-type ATL cells.
Collapse
|
24
|
Mitra P. Targeting transcription factors in cancer drug discovery. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:401-412. [PMID: 36046384 PMCID: PMC9402400 DOI: 10.37349/etat.2020.00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer drug discovery is currently dominated by clinical trials or clinical research. Several potential drug candidates have been brought into the pipeline of drug discovery after showing very promising results at the pre-clinical level and are waiting to be tested in human clinical trials. Interestingly, among the potential drug candidates, a few of them have targeted transcription factors highlighting the fundamental undruggable nature of these molecules. However, using advanced technologies, researchers were recently successful in partly unlocking this undruggable nature, which was considered as a ‘grey area’ in the early days of drug discovery, and as a result, several potential candidates have emerged recently. The purpose of the review is to highlight some of the recently reported studies of targeting transcription factors in cancer and their promising outcomes.
Collapse
Affiliation(s)
- Partha Mitra
- Institute of Health and Biomedical Innovation, the Queensland University of Technology, Brisbane 4059, Australia
| |
Collapse
|
25
|
Porcheri C, Meisel CT, Mitsiadis TA. Molecular and Cellular Modelling of Salivary Gland Tumors Open New Landscapes in Diagnosis and Treatment. Cancers (Basel) 2020; 12:E3107. [PMID: 33114321 PMCID: PMC7690880 DOI: 10.3390/cancers12113107] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Salivary gland tumors are neoplasms affecting the major and minor salivary glands of the oral cavity. Their complex pathological appearance and overlapping morphological features between subtypes, pose major challenges in the identification, classification, and staging of the tumor. Recently developed techniques of three-dimensional culture and organotypic modelling provide useful platforms for the clinical and biological characterization of these malignancies. Additionally, new advances in genetic and molecular screenings allow precise diagnosis and monitoring of tumor progression. Finally, novel therapeutic tools with increased efficiency and accuracy are emerging. In this review, we summarize the most common salivary gland neoplasms and provide an overview of the state-of-the-art tools to model, diagnose, and treat salivary gland tumors.
Collapse
Affiliation(s)
- Cristina Porcheri
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (C.T.M.); (T.A.M.)
| | | | | |
Collapse
|
26
|
Arora R, Choi JE, Harms PW, Chandrani P. Merkel Cell Polyomavirus in Merkel Cell Carcinoma: Integration Sites and Involvement of the KMT2D Tumor Suppressor Gene. Viruses 2020; 12:v12090966. [PMID: 32878339 PMCID: PMC7552051 DOI: 10.3390/v12090966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
Merkel cell carcinoma (MCC) is an uncommon, lethal cancer of the skin caused by either Merkel cell polyomavirus (MCPyV) or UV-linked mutations. MCPyV is found integrated into MCC tumor genomes, accompanied by truncation mutations that render the MCPyV large T antigen replication incompetent. We used the open access HPV Detector/Cancer-virus Detector tool to determine MCPyV integration sites in whole-exome sequencing data from five MCC cases, thereby adding to the limited published MCPyV integration site junction data. We also systematically reviewed published data on integration for MCPyV in the human genome, presenting a collation of 123 MCC cases and their linked chromosomal sites. We confirmed that there were no highly recurrent specific sites of integration. We found that chromosome 5 was most frequently involved in MCPyV integration and that integration sites were significantly enriched for genes with binding sites for oncogenic transcription factors such as LEF1 and ZEB1, suggesting the possibility of increased open chromatin in these gene sets. Additionally, in one case we found, for the first time, integration involving the tumor suppressor gene KMT2D, adding to previous reports of rare MCPyV integration into host tumor suppressor genes in MCC.
Collapse
MESH Headings
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/metabolism
- Carcinoma, Merkel Cell/virology
- Cell Line, Tumor
- Chromosomes, Human, Pair 5/genetics
- Chromosomes, Human, Pair 5/metabolism
- Chromosomes, Human, Pair 5/virology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Genes, Tumor Suppressor
- Humans
- Merkel cell polyomavirus/genetics
- Merkel cell polyomavirus/physiology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Polyomavirus Infections/genetics
- Polyomavirus Infections/metabolism
- Polyomavirus Infections/virology
- Tumor Virus Infections/genetics
- Tumor Virus Infections/metabolism
- Tumor Virus Infections/virology
- Virus Integration
- Zinc Finger E-box-Binding Homeobox 1/genetics
- Zinc Finger E-box-Binding Homeobox 1/metabolism
Collapse
Affiliation(s)
- Reety Arora
- Cellular Organization and Signalling Group, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
- Correspondence:
| | - Jae Eun Choi
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (J.E.C.); (P.W.H.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- School of Medicine, University of San Diego, San Diego, CA 92093, USA
| | - Paul W. Harms
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (J.E.C.); (P.W.H.)
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pratik Chandrani
- Medical Oncology Molecular Laboratory, Medical Oncology Department, Tata Memorial Hospital, Mumbai 400012, India;
- Centre for Computational Biology, Bioinformatics and Crosstalk Laboratory, ACTREC–Tata Memorial Centre, Navi Mumbai 410210, India
| |
Collapse
|
27
|
Yang R, Shui Y, Hu S, Zhang K, Wang Y, Peng Y. Silenced Myeloblastosis Protein Suppresses Oral Tongue Squamous Cell Carcinoma via the microRNA-130a/Cylindromatosis Axis. Cancer Manag Res 2020; 12:6935-6946. [PMID: 32821162 PMCID: PMC7425089 DOI: 10.2147/cmar.s252340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/29/2020] [Indexed: 02/05/2023] Open
Abstract
Background Oral tongue squamous cell carcinoma (OTSCC) represents oral epithelial cell damage. Myeloblastosis (MYB) is involved in OTSCC. This study tried to probe roles of MYB in OSCC with potential axis. Methods Expression of MYB and miR-130a in OTSCC was detected. Western blot analysis was utilized to determine epithelial-mesenchymal transition-related protein levels. Dual-luciferase reporter gene assay certified the target relation between miR-130a and CYLD. Moreover, xenograft tumors in nude mice were applied to confirm the in vitro experiments. Results Both MYB and miR-130a were highly expressed in OTSCC, which promoted cell growth. Meanwhile, silenced miR-130a discouraged cell development enhanced by overexpressed MYB. CYLD was poorly expressed in OTSCC and targeted by miR-130a. Additionally, MYB knockdown activated CYLD to suppress OTSCC by downregulating miR-130a. Conclusion Our experiment supported that silenced MYB suppressed OTSCC malignancy by inhibiting miR-130a and activating CYLD. This investigation may provide novel insights for OTSCC treatment.
Collapse
Affiliation(s)
- Ran Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, Sichuan, People's Republic of China
| | - Yusen Shui
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Shoushan Hu
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Kun Zhang
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Yuru Wang
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Yiran Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, Sichuan, People's Republic of China
| |
Collapse
|
28
|
Huang FL, Liao EC, Li CL, Yen CY, Yu SJ. Pathogenesis of pediatric B-cell acute lymphoblastic leukemia: Molecular pathways and disease treatments. Oncol Lett 2020; 20:448-454. [PMID: 32565969 PMCID: PMC7285861 DOI: 10.3892/ol.2020.11583] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 04/03/2020] [Indexed: 01/12/2023] Open
Abstract
B-cell acute lymphoblastic lymphoma (B-ALL) is a disease found mainly in children and in young adults. B-ALL is characterized by the rapid proliferation of poorly differentiated lymphoid progenitor cells inside the bone marrow. In the United States, ~4,000 of these patients are diagnosed each year, accounting for ~30% of childhood cancer types. The tumorigenesis of the disease involves a number of abnormal gene expressions (including TEL-AML1, BCR-ABL-1, RAS and PI3K) leading to dysregulated cell cycle. Risk factors of B-ALL are the history of parvovirus B 19 infection, high birth weight and exposure to environmental toxins. These risk factors can induce abnormal DNA methylation and DNA damages. Treatment procedures are divided into three phases: Induction, consolidation and maintenance. The goal of treatment is complete remission without relapses. Apart from traditional treatments, newly developed approaches include gene targeting therapy, with the aim of wiping out leukemic cells through the inhibition of mitogen-activated protein kinases and via c-Myb inhibition enhancing sensitivity to chemotherapy. To evaluate the efficacy of ongoing treatments, several indicators are currently used. The indicators include the expression levels of microRNAs (miRs) miR-146a, miR-155, miR-181a and miR-195, and soluble interleukin 2 receptor. Multiple drug resistance and levels of glutathione reductase can affect treatment efficacy through the increased efflux of anti-cancer drugs and weakening the effect of chemotherapy through the reduction of intracellular reactive oxygen species. The present review appraised recent studies on B-ALL regarding its pathogenesis, risk factors, treatments, treatment evaluation and causes of disease relapse. Understanding the mechanisms of B-ALL initiation and causes of treatment failure can help physicians improve disease management and reduce relapses.
Collapse
Affiliation(s)
- Fang-Liang Huang
- Children's Medical Center, Taichung Veterans General Hospital, Xitun, Taichung 40705, Taiwan, R.O.C.,Department of Physical Therapy, Hungkuang University, Shalu, Taichung 433, Taiwan, R.O.C
| | - En-Chih Liao
- Department of Medicine, Mackay Medical College, Sanzhi, New Taipei 252, Taiwan, R.O.C
| | - Chia-Ling Li
- Children's Medical Center, Taichung Veterans General Hospital, Xitun, Taichung 40705, Taiwan, R.O.C
| | - Chung-Yang Yen
- Department of Dermatology, Taichung Veterans General Hospital, Xitun, Taichung 40705, Taiwan, R.O.C
| | - Sheng-Jie Yu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Zuoying, Kaohsiung 813, Taiwan, R.O.C
| |
Collapse
|
29
|
Chen A, Koehler AN. Transcription Factor Inhibition: Lessons Learned and Emerging Targets. Trends Mol Med 2020; 26:508-518. [PMID: 32359481 DOI: 10.1016/j.molmed.2020.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022]
Abstract
Transcription factors have roles at focal points in signaling pathways, controlling many normal cellular processes, such as cell growth and proliferation, metabolism, apoptosis, immune responses, and differentiation. Their activity is frequently deregulated in disease and targeting this class of proteins is a major focus of interest. However, the structural disorder and lack of binding pockets have made design of small molecules for transcription factors challenging. Here, we review some of the most recent developments for small molecule inhibitors of transcription factors emphasized in James Darnell's vision 17 years ago. We also discuss the progress so far on transcription factors recently nominated by genome-scale loss-of-function screens from the cancer dependency map project.
Collapse
Affiliation(s)
- Andrew Chen
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02142, USA
| | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02139, USA; MIT Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, MA 02142, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, MA 02142, USA.
| |
Collapse
|
30
|
Locati LD, Galbiati D, Calareso G, Alfieri S, Singer S, Cavalieri S, Bergamini C, Bossi P, Orlandi E, Resteghini C, Platini F, Granata R, Quattrone P, Mancinelli M, Mariani L, Lo Vullo S, Licitra LF. Patients with adenoid cystic carcinomas of the salivary glands treated with lenvatinib: Activity and quality of life. Cancer 2020; 126:1888-1894. [PMID: 32031693 DOI: 10.1002/cncr.32754] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND The treatment of patients with recurrent and/or metastatic (R/M) salivary gland adenoid cystic carcinoma (ACC) remains an unmet need. METHODS Patients with R/M disease with a history of clinical or symptomatic disease progression within 6 months and a maximum of 1 previous line of chemotherapy or a multiple kinase inhibitor received oral lenvatinib at a dose of 24 mg/day. The primary endpoint was the objective response rate; secondary endpoints included quality of life (QOL) (according to the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Core 30 Items [EORTC QLQ-C30] and the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Core Module Head and Neck Module [EORTC QLQ-H&N35]), progression-free survival and overall survival, duration of response, and toxicities. RESULTS Twenty-eight patients with R/M ACC were enrolled. Among 26 evaluable patients, 3 partial responses (11.5%) were reported. Target lesion reductions between 23% to 28% were observed in 4 of 20 patients with stable disease. Treatment-related adverse events were frequent (all grades, 96%; grade≥3 in 50% of cases according to version 4.03 of the National Cancer Institute Common Terminology Criteria for Adverse Events). The dose of lenvatinib was reduced in 24 patients, whereas in 21 patients the dose was reduced within the first 12 weeks and 4 patients maintained the full dose throughout treatment. The QOL deteriorated between baseline and 6 months with regard to Fatigue and Dry Mouth. There was no evidence of changes in Swallowing and Physical Functioning. At a median follow-up of 29 months, 2 patients remained on treatment, 10 patients were off protocol for disease progression and were alive with disease, and 14 patients had died of disease progression. The median overall survival, progression-free survival, and duration of response were 27 months, 9.1 months, and 3.1 months, respectively. CONCLUSIONS Lenvatinib appears to have modest activity in ACC. Toxicities are common but manageable and QOL was found to deteriorate in some domains.
Collapse
Affiliation(s)
- Laura D Locati
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Donata Galbiati
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppina Calareso
- Radiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Alfieri
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Susanne Singer
- Division of Epidemiology and Health Services Research, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Centre of Johannes Gutenberg-University, Mainz, Germany
| | - Stefano Cavalieri
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cristiana Bergamini
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Bossi
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ester Orlandi
- Radiotherapy 1 and 2 Units, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carlo Resteghini
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Platini
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberta Granata
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Pasquale Quattrone
- Pathology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Moela Mancinelli
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luigi Mariani
- Unit of Clinical Epidemiology and Trial Organization, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Lo Vullo
- Unit of Clinical Epidemiology and Trial Organization, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lisa F Licitra
- Head and Neck Cancer Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Medical Oncology Department, University of Milan, Milan, Italy
| |
Collapse
|
31
|
Thierauf J, Ramamurthy N, Jo VY, Robinson H, Frazier RP, Gonzalez J, Pacula M, Dominguez Meneses E, Nose V, Nardi V, Dias-Santagata D, Le LP, Lin DT, Faquin WC, Wirth LJ, Hess J, Iafrate AJ, Lennerz JK. Clinically Integrated Molecular Diagnostics in Adenoid Cystic Carcinoma. Oncologist 2019; 24:1356-1367. [PMID: 30926674 PMCID: PMC6795155 DOI: 10.1634/theoncologist.2018-0515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/27/2019] [Indexed: 01/29/2023] Open
Abstract
Adenoid cystic carcinoma is a rare but aggressive type of salivary gland malignancy. This article addresses the need for more effective, biomarker‐informed therapies in rare cancers, focusing on clinical utility and financial sustainability of integrated next‐generation sequencing in routine practice. Background. Adenoid cystic carcinoma (ACC) is an aggressive salivary gland malignancy without effective systemic therapies. Delineation of molecular profiles in ACC has led to an increased number of biomarker‐stratified clinical trials; however, the clinical utility and U.S.‐centric financial sustainability of integrated next‐generation sequencing (NGS) in routine practice has, to our knowledge, not been assessed. Materials and Methods. In our practice, NGS genotyping was implemented at the discretion of the primary clinician. We combined NGS‐based mutation and fusion detection, with MYB break‐apart fluorescent in situ hybridization (FISH) and MYB immunohistochemistry. Utility was defined as the fraction of patients with tumors harboring alterations that are potentially amenable to targeted therapies. Financial sustainability was assessed using the fraction of global reimbursement. Results. Among 181 consecutive ACC cases (2011–2018), prospective genotyping was performed in 11% (n = 20/181; n = 8 nonresectable). Testing identified 5/20 (25%) NOTCH1 aberrations, 6/20 (30%) MYB‐NFIB fusions (all confirmed by FISH), and 2/20 (10%) MYBL1‐NFIB fusions. Overall, these three alterations (MYB/MYBL1/NOTCH1) made up 65% of patients, and this subset had a more aggressive course with significantly shorter progression‐free survival. In 75% (n = 6/8) of nonresectable patients, we detected potentially actionable alterations. Financial analysis of the global charges, including NGS codes, indicated 63% reimbursement, which is in line with national (U.S.‐based) and international levels of reimbursement. Conclusion. Prospective routine clinical genotyping in ACC can identify clinically relevant subsets of patients and is approaching financial sustainability. Demonstrating clinical utility and financial sustainability in an orphan disease (ACC) requires a multiyear and multidimensional program. Implications for Practice. Delineation of molecular profiles in adenoid cystic carcinoma (ACC) has been accomplished in the research setting; however, the ability to identify relevant patient subsets in clinical practice has not been assessed. This work presents an approach to perform integrated molecular genotyping of patients with ACC with nonresectable, recurrent, or systemic disease. It was determined that 75% of nonresectable patients harbor potentially actionable alterations and that 63% of charges are reimbursed. This report outlines that orphan diseases such as ACC require a multiyear, multidimensional program to demonstrate utility in clinical practice.
Collapse
Affiliation(s)
- Julia Thierauf
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Nisha Ramamurthy
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Vickie Y Jo
- Department of Pathology, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hayley Robinson
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ryan P Frazier
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Gonzalez
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Maciej Pacula
- Department of Pathology, Computational Pathology, Boston, Massachusetts, USA
| | | | - Vania Nose
- Department of Pathology, Head and Neck Pathology, Boston, Massachusetts, USA
- Department of Pathology, Surgical Pathology, Boston, Massachusetts, USA
| | - Valentina Nardi
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Dora Dias-Santagata
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Long P Le
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Computational Pathology, Boston, Massachusetts, USA
| | - Derrick T Lin
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - William C Faquin
- Department of Pathology, Surgical Pathology, Boston, Massachusetts, USA
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Lori J Wirth
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A John Iafrate
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Jochen K Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Tichý M, Knopfová L, Jarkovský J, Vlček P, Katolická J, Čapov I, Hermanová M, Šmarda J, Beneš P. High c-Myb Expression Associates with Good Prognosis in Colorectal Carcinoma. J Cancer 2019; 10:1393-1397. [PMID: 31031849 PMCID: PMC6485226 DOI: 10.7150/jca.29530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/05/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) represents a serious challenge for oncologists due to high incidence and large heterogeneity. Prognostic factors are needed to stratify patients according to risk of disease progression. In this study, we report that high expression of c-Myb protein, determined by immunohistochemistry (IHC), associates with better overall and disease-free survival (OS, DFS) in a cohort of 103 patients. Although MYB has been previously considered to act as oncogene in CRC, our further analysis of datasets deposited in PrognoScan and SurvExpress databases confirmed that high MYB expression largely associates with good prognosis in CRC. As therapies targeting c-Myb have been developed and tested in preclinical studies, we believe that further studies are needed for detailed understanding of c-Myb function in CRC, before the c-Myb-targeted therapy enters clinical trials.
Collapse
Affiliation(s)
- Michal Tichý
- First Department of Pathological Anatomy, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lucia Knopfová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Jiří Jarkovský
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Vlček
- 1st Department of Surgery, St. Anne's University Hospital Brno, Czech Republic
| | - Jana Katolická
- Department of Oncology, St. Anne's University Hospital Brno, Czech Republic
| | - Ivan Čapov
- 1st Department of Surgery, St. Anne's University Hospital Brno, Czech Republic
| | - Markéta Hermanová
- First Department of Pathological Anatomy, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|