1
|
Ma Y, Chen T, Sun T, Dilimulati D, Xiao Y. The oncomicrobiome: New insights into microorganisms in cancer. Microb Pathog 2024; 197:107091. [PMID: 39481695 DOI: 10.1016/j.micpath.2024.107091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The discoveries of the oncomicrobiome (intratumoral microbiome) and oncomicrobiota (intratumoral microbiota) represent significant advances in tumor research and have rapidly become of key interest to the field. Within tumors, microorganisms such as bacteria, fungi, viruses, and archaea form the oncomicrobiota and are primarily found within tumor cells, immunocytes, and the intercellular matrix. The oncomicrobiome exhibits marked heterogeneity and is associated with tumor initiation, progression, metastasis, and treatment response. Interactions between the oncomicrobiome and the immune system can modulate host antitumor immunity, influencing the efficacy of immunotherapies. Oncomicrobiome research also faces numerous challenges, including overcoming methodological issues such as low target abundance, susceptibility to contamination, and biases in sample handling and analysis methods across different studies. Furthermore, studies of the oncomicrobiome may be confounded by baseline differences in microbiomes among populations driven by both environmental and genetic factors. Most studies to date have revealed associations between the oncomicrobiome and tumors, but very few have established mechanistic links between the two. This review introduces the relevant concepts, detection methods, sources, and characteristics of the oncomicrobiome. We then describe the composition of the oncomicrobiome in common tumors and its role in shaping the tumor microenvironment. We also discuss the current problems and challenges to be overcome in this rapidly progressing field.
Collapse
Affiliation(s)
- Yingying Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingting Sun
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China; Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Dilinuer Dilimulati
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China; Peking Union Medical College & Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Li C, Qian X, Zhang Z, Jiang Z. Effects of Helicobacter pylori and Helicobacter pylori eradication on the microbiota of tongue coating. BMC Microbiol 2024; 24:416. [PMID: 39425053 PMCID: PMC11487991 DOI: 10.1186/s12866-024-03584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Eradicating Helicobacter pylori (H. pylori) can cause an imbalance in the microbiota. Dysbiosis of the gut microbiome may produce multiple diseases and bacterial infections. The objective of this study was to investigate the influence of Helicobacter pylori (H. pylori) infection and its eradication on the composition of the oral tongue coating microbiota. A cohort of 35 participants was recruited and categorized into two groups: the H. pylori negative group (N group) consisting of 12 individuals and the H. pylori positive group (23 individuals). Within the H. pylori positive group, subjects were further stratified into the H. pylori pre-eradicated group (HPQ group) and the H. pylori eradicated group (HPH group). H. pylori positive individuals were treated with a quadruple regimen containing bismuth, and tongue coating samples were collected both prior to and following treatment. Concurrently, tongue coating samples were collected from H. pylori negative individuals. High-throughput 16S rRNA sequencing technology was employed to assess the microbial composition of the tongue coating in the N group, HPQ group, and HPH group. Pertinent clinical data were documented.Microbial diversity was found to significantly differ among the N group, HPQ group, and HPH group, as evidenced by variations in Chao1 index, Shannon index, and Partial Least Squares Discriminant Analysis (PLS-DA). The dominant bacterial phyla identified across all groups included Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, Actinobacteria, and Saccharibacteria. At the phylum level, Firmicutes exhibited higher relative abundance in the HPQ group in comparison to both the N group and HPH group. Conversely, Bacteroidetes displayed greater prevalence in the N group and HPH group. Linear Discriminant Analysis Effect Size (LEfSe) analysis indicated a higher abundance of Romboutsia, Rothia, and Turiciactor in the HPQ group. Our study revealed significant disparities in microbial diversity and richness among the three groups. Furthermore, our findings suggest a potential association between the presence of Streptococcus, Rothia and H. pylori positive individuals.
Collapse
Affiliation(s)
- Chao Li
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, China
| | - Xuetian Qian
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, China
| | - Zhenyu Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, China.
| | - Zongdan Jiang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, China.
| |
Collapse
|
3
|
Wu J, Li J, Yan M, Xiang Z. Gut and oral microbiota in gynecological cancers: interaction, mechanism, and therapeutic value. NPJ Biofilms Microbiomes 2024; 10:104. [PMID: 39389989 PMCID: PMC11467339 DOI: 10.1038/s41522-024-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024] Open
Abstract
Gynecologic cancers develop from the female reproductive organs. Microbial dysbiosis in the gut and oral cavity can communicate with each other through various ways, leading to mucosal destruction, inflammatory response, genomic instability, and ultimately inducing cancer and worsening. Here, we introduce the mechanisms of interactions between gut and oral microbiota and their changes in the development of gynecologic tumors. In addition, new therapeutic approaches based on microbiota modulation are discussed.
Collapse
Affiliation(s)
- Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Jiarui Li
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Xia R, Jiang Z, Zhou Y, Pan L, Wang Y, Ma Y, Fan L, Yuan L, Cheng X. Oral microbiota and gastric cancer: recent highlights and knowledge gaps. J Oral Microbiol 2024; 16:2391640. [PMID: 39161727 PMCID: PMC11332296 DOI: 10.1080/20002297.2024.2391640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
Gastric cancer is one of the most common malignant tumors worldwide and has a high mortality rate. However, tests for the early screening and diagnosis of gastric cancer are limited and invasive. Certain oral microorganisms are over-expressed in gastric cancer, but there is heterogeneity among different studies. Notably, each oral ecological niche harbors specific microorganisms. Among them, tongue coating, saliva, and dental plaque are important and unique ecological niches in the oral cavity. The colonization environment in different oral niches may be a source of heterogeneity. In this paper, we systematically discuss the latest developments in the field of the oral microbiota and gastric cancer and elucidate the enrichment of microorganisms in the oral ecological niches of the tongue coatings, saliva, and dental plaque in gastric cancer patients. The various potential mechanisms by which the oral microbiota induces gastric cancer (activation of an excessive inflammatory response; promotion of proliferation, migration, invasion, and metastasis; and secretion of carcinogens, leading to imbalance in gastric microbial communities) are explored. In this paper, we also highlight the applications of the rapeutics targeting the oral microbiota in gastric cancer and suggests future research directions related to the relationship between the oral microbiota and gastric cancer.
Collapse
Affiliation(s)
- Ruihong Xia
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengchen Jiang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ying Zhou
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Libin Pan
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yanan Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yubo Ma
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lili Fan
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
5
|
Liang Y, Zhang Q, Yu J, Hu W, Xu S, Xiao Y, Ding H, Zhou J, Chen H. Tumour-associated and non-tumour-associated bacteria co-abundance groups in colorectal cancer. BMC Microbiol 2024; 24:242. [PMID: 38961349 PMCID: PMC11223424 DOI: 10.1186/s12866-024-03402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND & AIMS Gut microbiota is closely related to the occurrence and development of colorectal cancer (CRC). However, the differences in bacterial co-abundance groups (CAGs) between tumor tissue (TT) and normal tissue (NT), as well as their associations with clinical features, are needed to be clarified. METHODS Bacterial 16 S rRNA sequencing was performed by using TT samples and NT samples of 251 patients with colorectal cancer. Microbial diversity, taxonomic characteristics, microbial composition, and functional pathways were compared between TT and NT. Hierarchical clustering was used to construct CAGs. RESULTS Four CAGs were grouped in the hierarchical cluster analysis. CAG 2, which was mainly comprised of pathogenic bacteria, was significantly enriched in TT samples (2.27% in TT vs. 0.78% in NT, p < 0.0001). CAG 4, which was mainly comprised of non-pathogenic bacteria, was significantly enriched in NT samples (0.62% in TT vs. 0.79% in NT, p = 0.0004). In addition, CAG 2 was also significantly associated with tumor microsatellite instability (13.2% in unstable vs. 2.0% in stable, p = 0.016), and CAG 4 was positively correlated with the level of CA199 (r = 0.17, p = 0.009). CONCLUSIONS Our research will deepen our understanding of the interactions among multiple bacteria and offer insights into the potential mechanism of NT to TT transition.
Collapse
Affiliation(s)
- Yuxuan Liang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Qingrong Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jing Yu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenyan Hu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Sihua Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yiyuan Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Hui Ding
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Jiaming Zhou
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Haitao Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China.
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
6
|
Li Y, Qiao X, Feng Y, Zhou R, Zhang K, Pan Y, Yan T, Yan L, Yang S, Wei X, Li P, Xu C, Lv Z, Tian Z. Characterization of the gut microbiota and fecal metabolome in the osteosarcoma mouse model. Aging (Albany NY) 2024; 16:10841-10859. [PMID: 38967635 PMCID: PMC11272122 DOI: 10.18632/aging.205951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/21/2024] [Indexed: 07/06/2024]
Abstract
Previous studies have reported the correlation between gut microbiota (GM), GM-derived metabolites, and various intestinal and extra-intestinal cancers. However, limited studies have investigated the correlation between GM, GM-derived metabolites, and osteosarcoma (OS). This study successfully established a female BALB/c nude mouse model of OS. Mice (n = 14) were divided into the following two groups (n = 7/group): OS group named OG, injected with Saos-2 OS cells; normal control group named NCG, injected with Matrigel. The GM composition and metabolites were characterized using 16S rDNA sequencing and untargeted metabolomics, respectively. Bioinformatics analysis revealed that amino acid metabolism was dysregulated in OS. The abundances of bone metabolism-related genera Alloprevotella, Rikenellaceae_RC9_gut_group, and Muribaculum were correlated with amino acid metabolism, especially histidine metabolism. These findings suggest the correlation between GM, GM-derived metabolites, and OS pathogenesis. Clinical significance: The currently used standard therapeutic strategies for OS, including surgery, chemotherapy, and radiation, are not efficacious. The findings of this study provided novel insights for developing therapeutic, diagnostic, and prognostic strategies for OS.
Collapse
Affiliation(s)
- Yuan Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Xiaochen Qiao
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Yi Feng
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Ruhao Zhou
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Kun Zhang
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Yongchun Pan
- Department of Orthopedics, Third People's Hospital of Datong City, Datong 037006, Shanxi, P.R. China
| | - Ting Yan
- Translational Medicine Center, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Lei Yan
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Sen Yang
- Department of Orthopedics, The Second People's Hospital of Changzhi, Changzhi 046000, Shanxi, P.R. China
| | - Xiaochun Wei
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Pengcui Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Chaojian Xu
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Zhi Lv
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| | - Zhi Tian
- Second Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Taiyuan 030001, Shanxi, P.R. China
| |
Collapse
|
7
|
Senthil Kumar S, Johnson MDL, Wilson JE. Insights into the enigma of oral streptococci in carcinogenesis. Microbiol Mol Biol Rev 2024; 88:e0009523. [PMID: 38506551 PMCID: PMC11338076 DOI: 10.1128/mmbr.00095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
SUMMARYThe genus Streptococcus consists of a taxonomically diverse group of Gram-positive bacteria that have earned significant scientific interest due to their physiological and pathogenic characteristics. Within the genus Streptococcus, viridans group streptococci (VGS) play a significant role in the oral ecosystem, constituting approximately 80% of the oral biofilm. Their primary role as pioneering colonizers in the oral cavity with multifaceted interactions like adherence, metabolic signaling, and quorum sensing contributes significantly to the complex dynamics of the oral biofilm, thus shaping oral health and disease outcomes. Perturbations in oral streptococci composition drive oral dysbiosis and therefore impact host-pathogen interactions, resulting in oral inflammation and representing VGS as an opportunistic pathogen. The association of oral streptococci in tumors across distant organs, spanning the esophagus, stomach, pancreas, and colon, illuminates a potential association between oral streptococci, inflammation, and tumorigenesis. This finding emphasizes the need for further investigations into the role of oral streptococci in mucosal homeostasis and their involvement in carcinogenesis. Hence, here, we review the significance of oral streptococci in biofilm dynamics and how the perturbation may impact mucosal immunopathogenesis in the context of cancer, with a vision of exploiting oral streptococci for cancer intervention and for the development of non-invasive cancer diagnosis.
Collapse
Affiliation(s)
- Sangeetha Senthil Kumar
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| | - Michael D. L. Johnson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- Valley Fever Center
for Excellence, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
- BIO5 Institute, The
University of Arizona College of
Medicine, Tucson,
Arizona, USA
- Asthma and Airway
Disease Research Center, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
| | - Justin E. Wilson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| |
Collapse
|
8
|
Liu S, Wang S, Zhang N, Li P. The oral microbiome and oral and upper gastrointestinal diseases. J Oral Microbiol 2024; 16:2355823. [PMID: 38835339 PMCID: PMC11149586 DOI: 10.1080/20002297.2024.2355823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
Background Microbiomes are essential components of the human body, and their populations are substantial. Under normal circumstances, microbiomes coexist harmoniously with the human body, but disturbances in this equilibrium can lead to various diseases. The oral microbiome is involved in the occurrence and development of many oral and gastrointestinal diseases. This review focuses on the relationship between oral microbiomes and oral and upper gastrointestinal diseases, and therapeutic strategies aiming to provide valuable insights for clinical prevention and treatment. Methods To identify relevant studies, we conducted searches in PubMed, Google Scholar, and Web of Science using keywords such as "oral microbiome," "oral flora, " "gastrointestinal disease, " without any date restrictions. Subsequently, the retrieved publications were subject to a narrative review. Results In this review, we found that oral microbiomes are closely related to oral and gastrointestinal diseases such as periodontitis, dental caries, reflux esophagitis, gastritis, and upper gastrointestinal tumors (mainly the malignant ones). Oral samples like saliva and buccal mucosa are not only easy to collect, but also display superior sample stability compared to gastrointestinal tissues. Consequently, analysis of the oral microbiome could potentially serve as an efficient preliminary screening method for high-risk groups before undergoing endoscopic examination. Besides, treatments based on the oral microbiomes could aid early diagnosis and treatment of these diseases. Conclusions Oral microbiomes are essential to oral and gastrointestinal diseases. Therapies centered on the oral microbiomes could facilitate the early detection and management of these conditions.
Collapse
Affiliation(s)
- Sifan Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; State Key Laboratory for Digestive Health; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Shidong Wang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nan Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; State Key Laboratory for Digestive Health; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; State Key Laboratory for Digestive Health; National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
9
|
Lei C, Xu Y, Zhang S, Huang C, Qin J. The role of microbiota in gastric cancer: A comprehensive review. Helicobacter 2024; 29:e13071. [PMID: 38643366 DOI: 10.1111/hel.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Gastric cancer (GC) continues to pose a significant global threat in terms of cancer-related fatalities. Despite notable advancements in medical research and therapies, further investigation is warranted to elucidate its underlying etiology and risk factors. Recent times have witnessed an escalated emphasis on comprehending the role of the microbiota in cancer development. METHODS This review briefly delves into recent developments in microbiome-related research pertaining to gastric cancer. RESULTS According to studies, the microbiota can influence GC growth by inciting inflammation, disrupting immunological processes, and generating harmful microbial metabolites. Furthermore, there is ongoing research into how the microbiome can impact a patient's response to chemotherapy and immunotherapy. CONCLUSION The utilization of the microbiome for detecting, preventing, and managing stomach cancer remains an active area of exploration.
Collapse
Affiliation(s)
- Changzhen Lei
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yitian Xu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaopeng Zhang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Qin
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Raoul P, Maccauro V, Cintoni M, Scarpellini E, Ianiro G, Gasbarrini A, Mele MC, Rinninella E. Microbiota-Gastric Cancer Interactions and the Potential Influence of Nutritional Therapies. Int J Mol Sci 2024; 25:1679. [PMID: 38338956 PMCID: PMC10855965 DOI: 10.3390/ijms25031679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Gastric cancer (GC) is one of the most common causes of cancer deaths, and GC treatments represent a large area of research. Although initially regarded as a sterile organ and unsuitable for microbial communities, the discovery of Helicobacter pylori made us realize that some microbes can colonize the stomach. In recent years, growing interest in gastric bacteria has expanded to the gut microbiota and, more recently, to the oral microbiota. Indeed, the oral-gastric-gut microbiota axis may play a crucial role in maintaining homeostasis, while changes in microbiota composition in GC patients can influence clinical outcomes. On the one hand, the microbiota and its metabolites may significantly influence the progression of GC, while anti-GC treatments such as gastrectomy and chemotherapy may significantly impact the oral-gastric-gut microbiota axis of GC patients. In this context, the role of nutritional therapies, including diet, prebiotics, and probiotics, in treating GC should not be underestimated. Wit this review, we aim to highlight the main role of the gastric, oral, and gut microbiota in GC onset and progression, representing potential future biomarkers for early GC detection and a target for efficient nutritional therapies during the course of GC.
Collapse
Affiliation(s)
- Pauline Raoul
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.M.)
| | - Valeria Maccauro
- School of Specialization in Internal Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Marco Cintoni
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Emidio Scarpellini
- Translationeel Onderzoek van Gastro-Enterologische Aandoeningen (T.A.R.G.I.D.), Gasthuisberg University 11 Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
| | - Gianluca Ianiro
- Digestive Disease Center (CEMAD), Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Digestive Disease Center (CEMAD), Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Maria Cristina Mele
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Emanuele Rinninella
- Clinical Nutrition Unit, Department of Medical and Abdominal Surgery and Endocrine-Metabolic Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (P.R.); (M.C.); (M.C.M.)
- Research and Training Center in Human Nutrition, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
11
|
Wang Y, Li J, Hu H, Wu Y, Chen S, Feng X, Wang T, Wang Y, Wu S, Luo H. Distinct microbiome of tongue coating and gut in type 2 diabetes with yellow tongue coating. Heliyon 2024; 10:e22615. [PMID: 38163136 PMCID: PMC10756968 DOI: 10.1016/j.heliyon.2023.e22615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
The gut microbiome plays a critical role in the pathogenesis of type 2 diabetes mellitus (T2DM). However, the inconvenience of obtaining fecal samples hinders the clinical application of gut microbiome analysis. In this study, we hypothesized that tongue coating color is associated with the severity of T2DM. Therefore, we aimed to compare tongue coating, gut microbiomes, and various clinical parameters between patients with T2DM with yellow (YC) and non-yellow tongue coatings (NYC). Tongue coating and gut microbiomes of 27 patients with T2DM (13 with YC and 14 with NYC) were analyzed using 16S rDNA gene sequencing technology. Additionally, we measured glycated hemoglobin (HbA1c), random blood glucose (RBG), fasting blood glucose (FBG), postprandial blood glucose (PBG), insulin (INS), glucagon (GC), body mass index (BMI), and homeostasis model assessment of β-cell function (HOMA-β) levels for each patient. The correlation between tongue coating and the gut microbiomes was also analyzed. Our findings provide evidence that the levels of Lactobacillus spp. are significantly higher in both the tongue coating and the gut microbiomes of patients with YC. Additionally, we observed that elevated INS and GC levels, along with decreased BMI and HOMA-β levels, were indicative of a more severe condition in patients with T2DM with YC. Moreover, our results suggest that the composition of the tongue coating may reflect the presence of Lactobacillus spp. in the gut. These results provide insights regarding the potential relationship between tongue coating color, the gut microbiome, and T2DM.
Collapse
Affiliation(s)
- Yao Wang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jiqing Li
- Department of Endocrinology, Hainan Provincial Hospital of Traditional Chinese Medicine , Haikou, Hainan Province, China
| | - Haiying Hu
- West China Hospital Sichuan University, Chengdu, Sichuan Province, China
| | - Yalan Wu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Song Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xiangrong Feng
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Ting Wang
- Department of Emergency and Critical Care, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan Province, China
| | - Yinrong Wang
- Department of Endocrinology, Hainan Provincial Hospital of Traditional Chinese Medicine , Haikou, Hainan Province, China
| | - Su Wu
- Department of Endocrinology, Hainan Provincial Hospital of Traditional Chinese Medicine , Haikou, Hainan Province, China
| | - Huanhuan Luo
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
12
|
Chen J, Sun Y, Li J, Lyu M, Yuan L, Sun J, Chen S, Hu C, Wei Q, Xu Z, Guo T, Cheng X. In-depth metaproteomics analysis of tongue coating for gastric cancer: a multicenter diagnostic research study. MICROBIOME 2024; 12:6. [PMID: 38191439 PMCID: PMC10773145 DOI: 10.1186/s40168-023-01730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/21/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Our previous study revealed marked differences in tongue images between individuals with gastric cancer and those without gastric cancer. However, the biological mechanism of tongue images as a disease indicator remains unclear. Tongue coating, a major factor in tongue appearance, is the visible layer on the tongue dorsum that provides a vital environment for oral microorganisms. While oral microorganisms are associated with gastric and intestinal diseases, the comprehensive function profiles of oral microbiota remain incompletely understood. Metaproteomics has unique strength in revealing functional profiles of microbiota that aid in comprehending the mechanism behind specific tongue coating formation and its role as an indicator of gastric cancer. METHODS We employed pressure cycling technology and data-independent acquisition (PCT-DIA) mass spectrometry to extract and identify tongue-coating proteins from 180 gastric cancer patients and 185 non-gastric cancer patients across 5 independent research centers in China. Additionally, we investigated the temporal stability of tongue-coating proteins based on a time-series cohort. Finally, we constructed a machine learning model using the stochastic gradient boosting algorithm to identify individuals at high risk of gastric cancer based on tongue-coating microbial proteins. RESULTS We measured 1432 human-derived proteins and 13,780 microbial proteins from 345 tongue-coating samples. The abundance of tongue-coating proteins exhibited high temporal stability within an individual. Notably, we observed the downregulation of human keratins KRT2 and KRT9 on the tongue surface, as well as the downregulation of ABC transporter COG1136 in microbiota, in gastric cancer patients. This suggests a decline in the defense capacity of the lingual mucosa. Finally, we established a machine learning model that employs 50 microbial proteins of tongue coating to identify individuals at a high risk of gastric cancer, achieving an area under the curve (AUC) of 0.91 in the independent validation cohort. CONCLUSIONS We characterized the alterations in tongue-coating proteins among gastric cancer patients and constructed a gastric cancer screening model based on microbial-derived tongue-coating proteins. Tongue-coating proteins are shown as a promising indicator for identifying high-risk groups for gastric cancer. Video Abstract.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| | - Yingying Sun
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Jie Li
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| | - Mengge Lyu
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Li Yuan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| | - Jiancheng Sun
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shangqi Chen
- Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| | - Qing Wei
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
| | - Zhiyuan Xu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, China.
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
13
|
Aghili S, Rahimi H, Hakim LK, Karami S, Soufdoost RS, Oskouei AB, Alam M, Badkoobeh A, Golkar M, Abbasi K, Heboyan A, Hosseini ZS. Interactions Between Oral Microbiota and Cancers in the Aging Community: A Narrative Review. Cancer Control 2024; 31:10732748241270553. [PMID: 39092988 PMCID: PMC11378226 DOI: 10.1177/10732748241270553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The oral microbiome potentially wields significant influence in the development of cancer. Within the human oral cavity, an impressive diversity of more than 700 bacterial species resides, making it the second most varied microbiome in the body. This finely balanced oral microbiome ecosystem is vital for sustaining oral health. However, disruptions in this equilibrium, often brought about by dietary habits and inadequate oral hygiene, can result in various oral ailments like periodontitis, cavities, gingivitis, and even oral cancer. There is compelling evidence that the oral microbiome is linked to several types of cancer, including oral, pancreatic, colorectal, lung, gastric, and head and neck cancers. This review discussed the critical connections between cancer and members of the human oral microbiota. Extensive searches were conducted across the Web of Science, Scopus, and PubMed databases to provide an up-to-date overview of our understanding of the oral microbiota's role in various human cancers. By understanding the possible microbial origins of carcinogenesis, healthcare professionals can diagnose neoplastic diseases earlier and design treatments accordingly.
Collapse
Affiliation(s)
- Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hussein Rahimi
- Student Research Committee, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | | | | | - Asal Bagherzadeh Oskouei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | | |
Collapse
|
14
|
Ling Z, Cheng Y, Liu X, Yan X, Wu L, Shao L, Gao J, Lei W, Song Q, Zhao L, Jin G. Altered oral microbiota and immune dysfunction in Chinese elderly patients with schizophrenia: a cross-sectional study. Transl Psychiatry 2023; 13:383. [PMID: 38071192 PMCID: PMC10710460 DOI: 10.1038/s41398-023-02682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Schizophrenia (SZ) is a complex psychiatric neurodevelopmental disorder with uncertain etiology and pathogenesis. Increasing evidence has recognized the key role of the gut microbiota in SZ. However, few studies have investigated the potential link between oral microbiota and SZ. We studied the tongue coating microbiota and inflammatory profiles of 118 elderly SZ patients and 97 age-matched healthy controls using Illumina MiSeq sequencing and multiplex immunoassays, respectively. Reduced α-diversity, along with a significant difference in β-diversity, were observed in patients with SZ. We have identified SZ-associated oral dysbiosis, characterized by increased Streptococcus and Fusobacterium, as well as decreased Prevotella and Veillonella. These differential genera could potentially serve as biomarkers for SZ, either alone or in combination. Additionally, an elevated Streptococcus/Prevotella ratio could indicate oral dysbiosis. These differential genera formed two distinct clusters: Streptococcus-dominated and Prevotella-dominated, which exhibited different correlations with the altered immunological profiles. Furthermore, we also observed disruptions in the inferred microbiota functions in SZ-associated microbiota, particularly in lipid and amino acid metabolism. Our study provides novel insights into the characteristics of tongue coating microbiota and its associations with immunological disturbances in elderly SZ patients, which offer new targets for the diagnosis and treatment of SZ in the elderly.
Collapse
Affiliation(s)
- Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, 250000, Jinan, Shandong, China.
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, 250000, Jinan, Shandong, China
| | - Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
| | - Xiumei Yan
- Department of Laboratory Medicine, Lishui Second People's Hospital, 323000, Lishui, Zhejiang, China
| | - Lingbin Wu
- Department of Laboratory Medicine, Lishui Second People's Hospital, 323000, Lishui, Zhejiang, China
| | - Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, 310015, Hangzhou, Zhejiang, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, 250000, Jinan, Shandong, China
- School of Basic Medicine, Shandong First Medical University, 250000, Jinan, Shandong, China
| | - Qinghai Song
- Department of Psychiatry, Lishui Second People's Hospital, 323000, Lishui, Zhejiang, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People's Hospital, 323000, Lishui, Zhejiang, China.
| | - Guolin Jin
- Department of Psychiatry, Lishui Second People's Hospital, 323000, Lishui, Zhejiang, China.
| |
Collapse
|
15
|
Asili P, Mirahmad M, Rezaei P, Mahdavi M, Larijani B, Tavangar SM. The Association of Oral Microbiome Dysbiosis with Gastrointestinal Cancers and Its Diagnostic Efficacy. J Gastrointest Cancer 2023; 54:1082-1101. [PMID: 36600023 DOI: 10.1007/s12029-022-00901-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND The second leading mortality cause in the world is cancer, making it a critical issue that impacts human health. As a result, scientists are looking for novel biomarkers for cancer detection. The oral microbiome, made up of approximately 700 species-level taxa, is a significant source for discovering novel biomarkers. In this review, we aimed to prepare a summary of research that has investigated the association between the oral microbiome and gastrointestinal cancers. METHODS We searched online scientific datasets including Web of Science, PubMed, Scopus, and Google Scholar. Eligibility criteria included human studies that reported abundances of the oral microbiome, or its diagnostic/prognostic performance in patients with gastrointestinal cancers. RESULTS Some phyla of the oral microbiome have a relationship with cancers. Some particular phyla of the oral microbiome that may be related to gastrointestinal cancers consist of Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria, and Fusobacteria. Changes in the abundances of Porphyromonas, Fusobacterium, Prevotella, and Veillonella are correlated with carcinogenesis, and may be used for distinguishing cancer patients from healthy subjects. Oral, colorectal, pancreatic, and esophageal cancers are the most important cancers related to the oral microbiome. CONCLUSION The results of this study may help future research to select bacteria as an early diagnostic or prognostic biomarker of gastrointestinal cancer. Given the current state of our knowledge, additional research is required to comprehend the multiplex processes underlying the role of bacterial microbiota upon cancer progression and to characterize the complex microbiota-host interaction network.
Collapse
Affiliation(s)
- Pooria Asili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Rezaei
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Zeng X, Jin H, Wang C, Li M, Wang R, Li W, Lin F, Chen Y, Chen W, Huang X, Liu J, Zheng M, Jiang X, Chen Q. Establishment of a Standard Tongue Coating Collection Method for Microbiome Studies. Biopreserv Biobank 2023; 21:599-609. [PMID: 36730760 DOI: 10.1089/bio.2022.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Objective: Recently, researchers have been focusing on characterizing the tongue coating microbiome from patients with digestive tract disease. However, to the best of our knowledge, the tongue coating collection methods have not been standardized until now. This article focuses on bridging this gap by exploring and validating the conditions suitable for the collection of tongue coating samples. Methods: One hundred forty-one healthy subjects were involved in the standardization of the tongue coating collection method. We conducted our standardization experiment by comparing different sampling tools, different preservation solutions, different scraping times, and different storage days with preservation at room temperature. The tongue coating samples from 59 normal individuals were analyzed using 16S ribosomal RNA (rRNA) gene-sequencing technology. The assessment of the quality of extracted DNA was used to verify our established method. We separated the 59 subjects into two groups (aged and younger), and the sequencing results were used to explore the age-related changes in microbiome. Results: Sterile oral swab B is suitable for the collection of tongue coating samples. To obtain a sufficient amount of DNA from a tongue coating sample, we recommend 30 times of tongue coating scraping. Normal saline, phosphate-buffered saline, and commercial preservation solution are all suitable for short-term sample storage (<1 hour). The commercial long-term preservation solution, which stores samples at room temperature (0 hour to 7 days) and can provide for fast commercial transportation, ensures the integrity of the sample DNA as well as the stability of the DNA quality. By using the established method, extracted DNA from all the 59 normal individuals' tongue coating samples passed an appropriate quality bar for microbiome studies. The average value of OD 260/280 is 1.72 ± 0.10; the average total DNA amount is 334.92 ng (±183.81 ng). The bacterial diversity of the tongue coating is increased and the bacterial community composition changes greatly in the NC group (aged normal subjects). Fusobacteriota is found as the dominant bacteria phyla in aged normal subjects with the 16S rRNA gene-sequencing technology. At the genus level, the relative abundance of Fusobacterium, Haemophilus, and Leptotrichia are significantly higher in aged individuals (all p < 0.05), and Neisseria, Streptococcus, and Porphyromonas are significantly higher in younger individuals (all p < 0.05). Conclusion: A participant-friendly tongue coating collection method for microbiome analyses can be established with good reliability and reproducibility. By taking advantage of our established method and 16S rRNA gene sequencing, significant differences were found in diversity and composition of tongue coating microbiota between aged and younger individuals, which contributes to a better understanding of the age-related composition of tongue coating microbiota.
Collapse
Affiliation(s)
- Xuan Zeng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huihui Jin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuyang Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Man Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruohan Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanhua Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengye Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weicheng Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoting Huang
- Medical Research Center, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Jun Liu
- Scientific Research Department, The First Affiliated Hospital of Shaoyang University, Shaoyang, China
| | - Mingzhu Zheng
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Xuanting Jiang
- Department of Scientific Research, Kangmeihuada GeneTech Co., Ltd., (KMHD), Shenzhen, China
| | - Qubo Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Ikbal SKA, Yadav SK, Mehrotra R, Fatima T, Sharda A, Gupta S. Oral Microbiota as a Diagnostic Biomarker of Digestive Cancer: A Systematic Review. J Contemp Dent Pract 2023; 24:902-911. [PMID: 38238280 DOI: 10.5005/jp-journals-10024-3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
AIM This article aimed to review the association of oral microbiota with digestive cancer (DC). BACKGROUND Oral microbiota is one of the most complex ecosystems in our body. The mouth, from which the digestive system starts, may be a source of an abundant taxonomic group of microbiotas that travel to the digestive system followed by growth, reproduction, and settlement, forming a complex microecological environment causing systemic and gastrointestinal (GI) disease. REVIEW RESULTS A total of 14 articles were chosen for review. Most studies were case-control. Both positive and negative associations were seen between oral microbiome and DC. CONCLUSION Digestive cancer may be associated with distinctive oral microbial character. CLINICAL SIGNIFICANCE The present systematic review enlightens the risk of digestive carcinoma with oral microbiota that may act as a biomarker for early diagnosis of DC in a more comfortable, acceptable, and noninvasive way. How to cite this article: Ikbal SKA, Yadav SK, Mehrotra R, et al. Oral Microbiota as a Diagnostic Biomarker of Digestive Cancer: A Systematic Review. J Contemp Dent Pract 2023;24(11):902-911.
Collapse
Affiliation(s)
- S K Aziz Ikbal
- Career Post Graduate Institute of Dental Sciences & Hospital, Lucknow, Uttar Pradesh, India, Orcid: https://orcid.org/0000-0002-8014-2417
| | - Surendra Kumar Yadav
- Career Post Graduate Institute of Dental Sciences & Hospital, Lucknow, Uttar Pradesh, India
| | - Roopanshi Mehrotra
- Career Post Graduate Institute of Dental Sciences & Hospital, Lucknow, Uttar Pradesh, India, Phone: +91 7275305475, e-mail: , Orcid: https://orcid.org/0000-0001-5356-7826
| | - Tasneem Fatima
- Career Post Graduate Institute of Dental Sciences & Hospital, Lucknow, Uttar Pradesh, India
| | - Anjusha Sharda
- Sudha Rustagi College of Dental Sciences & Research, Faridabad, Haryana, India
| | - Srashti Gupta
- Career Post Graduate Institute of Dental Sciences & Hospital, Lucknow, Uttar Pradesh, India
| |
Collapse
|
18
|
Nagakubo D, Kaibori Y. Oral Microbiota: The Influences and Interactions of Saliva, IgA, and Dietary Factors in Health and Disease. Microorganisms 2023; 11:2307. [PMID: 37764151 PMCID: PMC10535076 DOI: 10.3390/microorganisms11092307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Recent advances in metagenomic analyses have made it easier to analyze microbiota. The microbiota, a symbiotic community of microorganisms including bacteria, archaea, fungi, and viruses within a specific environment in tissues such as the digestive tract and skin, has a complex relationship with the host. Recent studies have revealed that microbiota composition and balance particularly affect the health of the host and the onset of disease. Influences such as diet, food preferences, and sanitation play crucial roles in microbiota composition. The oral cavity is where the digestive tract directly communicates with the outside. Stable temperature and humidity provide optimal growth environments for many bacteria. However, the oral cavity is a unique environment that is susceptible to pH changes, salinity, food nutrients, and external pathogens. Recent studies have emphasized the importance of the oral microbiota, as changes in bacterial composition and balance could contribute to the development of systemic diseases. This review focuses on saliva, IgA, and fermented foods because they play critical roles in maintaining the oral bacterial environment by regulating its composition and balance. More attention should be paid to the oral microbiota and its regulatory factors in oral and systemic health.
Collapse
Affiliation(s)
- Daisuke Nagakubo
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Hyogo, Japan
| | - Yuichiro Kaibori
- Division of Health and Hygienic Sciences, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Hyogo, Japan
- Laboratory of Analytics for Biomolecules, Faculty of Pharmaceutical Science, Setsunan University, 45-1 Nagaotoge-cho, Hirakata-shi 573-0101, Osaka, Japan;
| |
Collapse
|
19
|
Zhang Q, Zhou J, Zhang X, Mao R, Zhang C. Mendelian randomization supports causality between gut microbiota and chronic hepatitis B. Front Microbiol 2023; 14:1243811. [PMID: 37655340 PMCID: PMC10467284 DOI: 10.3389/fmicb.2023.1243811] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Background Observational studies have provided evidence of a close association between gut microbiota and the progression of chronic hepatitis B (CHB). However, establishing a causal relationship between gut microbiota and CHB remains a subject of investigation. Methods Genome-wide association study (GWAS) summary data of gut microbiota came from the MiBioGen consortium, while the GWAS summary data of CHB came from the Medical Research Council Integrative Epidemiology Unit (IEU) Open GWAS project. Based on the maximum likelihood (ML), Mendelian randomization (MR)-Egger regression, inverse variance weighted (IVW), MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO), and weighted-mode and weighted-median methods, we conducted a bidirectional, two-sample, MR analysis to explore the causal relationship between the gut microbiota and CHB. Additionally, we evaluated the genetic associations between individual gut microbes and CHB using the Linkage disequilibrium score regression (LDSC) program. Results According to the IVW method estimates, genetically predicted class Alphaproteobacteria (odds ratio [OR] = 0.57; 95% confidence interval [CI], 0.34-0.96; false discovery rate [FDR] = 0.046), genus Family XIII AD3011 group (OR = 0.60; 95% CI, 0.39-0.91; FDR = 0.026), genus Prevotella 7 (OR = 0.73; 95% CI, 0.56-0.94; FDR = 0.022) exhibited a protective effect against CHB. On the other hand, family Family XIII (OR = 1.79; 95% CI, 1.03-3.12; FDR = 0.061), genus Eggerthella group (OR = 1.34; 95% CI, 1.04-1.74; FDR = 0.043), genus Eubacterium ventriosum group (OR = 1.59; 95% CI, 1.01-2.51; FDR = 0.056), genus Holdemania (OR = 1.35; 95% CI, 1.00-1.82; FDR = 0.049), and genus Ruminococcus gauvreauii group (OR = 1.69; 95% CI, 1.10-2.61; FDR = 0.076) were associated with an increased risk of CHB. The results from LDSC also indicated a significant genetic correlation between most of the aforementioned gut microbiota and CHB. Our reverse MR analysis demonstrated no causal relationship between genetically predicted CHB and gut microbiota, and we observed no significant horizontal pleiotropy or heterogeneity of instrumental variables (IVs). Conclusion In this study, we identified three types of gut microbiota with a protective effect on CHB and five types with an adverse impact on CHB. We postulate that this information will facilitate the clinical prevention and treatment of CHB through fecal microbiota transplantation.
Collapse
Affiliation(s)
- Quanzheng Zhang
- Department of Critical Care Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jinhua Zhou
- Department of Critical Care Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xiaoxiao Zhang
- West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Chuan Zhang
- Department of Critical Care Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Wu S, Cheng L, Pennhag AAL, Seifert M, Guðnadóttir U, Engstrand L, Mints M, Andersson S, Du J. The salivary microbiota is altered in cervical dysplasia patients and influenced by conization. IMETA 2023; 2:e108. [PMID: 38867925 PMCID: PMC10989756 DOI: 10.1002/imt2.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 06/14/2024]
Abstract
This study supports the correlation between the salivary microbiota and cervical dysplasia and suggests that smoking influences the salivary microbiota.
Collapse
Affiliation(s)
- Shengru Wu
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
- College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Liqin Cheng
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Alexandra A. L. Pennhag
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Maike Seifert
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Unnur Guðnadóttir
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
- Science for Life LaboratoryKarolinska InstituteStockholmSweden
| | - Miriam Mints
- Department of Women's and Children's HealthKarolinska InstituteStockholmSweden
| | - Sonia Andersson
- Department of Women's and Children's HealthKarolinska InstituteStockholmSweden
| | - Juan Du
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome ResearchKarolinska InstituteStockholmSweden
| |
Collapse
|
21
|
Heng D, Zhang M, Yuan Y, Qiu X. Alteration of Colonic Bacterial and Fungal Composition and Their Inter- and Intra-Kingdom Interaction in Patients with Adenomas with Low-Grade Dysplasia. Microorganisms 2023; 11:1327. [PMID: 37317301 DOI: 10.3390/microorganisms11051327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Colorectal cancer (CRC) develops from pre-cancerous cellular lesions in the gut epithelium and mainly originates from specific types of colonic adenomas with dysplasia. However, gut microbiota signatures among sampling sites in patients with colorectal adenomas with low-grade dysplasia (ALGD) and normal control (NC) remain uncharacterized. To characterize gut microbial and fungal profiles in ALGD and normal colorectal mucosa tissues. We used 16S and ITS1-2 rRNA gene sequencing and bioinformatics analysis on the microbiota of ALGD and normal colorectal mucosa from 40 subjects. Bacterial sequences in the ALGD group showed an increase in Rhodobacterales, Thermales, Thermaceae, Rhodobacteraceae, and several genera, including Thermus, Paracoccus, Sphingobium, and Pseudomonas, compared to the NC group. Fungal sequences in the ALGD group showed an increase in Helotiales, Leotiomycetes, and Basidiomycota, while several orders, families, and genera, including Verrucariales, Russulales, and Trichosporonales, were decreased. The study found various interactions between intestinal bacteria and fungi. The bacterial functional analysis showed increased glycogen and vanillin degradation pathways in the ALGD group. Meanwhile, the fungal functional analysis showed a decrease in pathways related to the biosynthesis of gondoate and stearate, as well as degradation of glucose, starch, glycogen, sucrose, L-tryptophan, and pantothenate, and an increase in the octane oxidation pathway in the ALGD group. The mucosal microbiota in ALGD exhibits altered fungal and microbial composition compared to the NC mucosa, potentially contributing to the development of intestinal cancer by regulating specific metabolic pathways. Therefore, these changes in microbiota and metabolic pathways may be potential markers for diagnosing and treating colorectal adenoma and carcinoma.
Collapse
Affiliation(s)
- Ding Heng
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing 210029, China
| | - Min Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing 210029, China
| | - Yuhan Yuan
- Department of Endoscopic Center, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing 210029, China
| | - Xinyun Qiu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing 210029, China
- F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
22
|
Vadhwana B, Tarazi M, Boshier PR, Hanna GB. Evaluation of the Oesophagogastric Cancer-Associated Microbiome: A Systematic Review and Quality Assessment. Cancers (Basel) 2023; 15:2668. [PMID: 37345006 PMCID: PMC10216300 DOI: 10.3390/cancers15102668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 06/23/2023] Open
Abstract
OBJECTIVE Oesophagogastric cancer is the fifth most common cancer worldwide, with poor survival outcomes. The role of bacteria in the pathogenesis of oesophagogastric cancer remains poorly understood. DESIGN A systematic search identified studies assessing the oesophagogastric cancer microbiome. The primary outcome was to identify bacterial enrichment specific to oesophagogastric cancer. Secondary outcomes included appraisal of the methodology, diagnostic performance of cancer bacteria and the relationship between oral and tissue microbiome. RESULTS A total of 9295 articles were identified, and 87 studies were selected for analysis. Five genera were enriched in gastric cancer: Lactobacillus, Streptococcus, Prevotella, Fusobacterium and Veillonella. No clear trends were observed in oesophageal adenocarcinoma. Streptococcus, Prevotella and Fusobacterium were abundant in oesophageal squamous cell carcinoma. Functional analysis supports the role of immune cells, localised inflammation and cancer-specific pathways mediating carcinogenesis. STORMS reporting assessment identified experimental deficiencies, considering batch effects and sources of contamination prevalent in low-biomass samples. CONCLUSIONS Functional analysis of cancer pathways can infer tumorigenesis within the cancer-microbe-immune axis. There is evidence that study design, experimental protocols and analytical techniques could be improved to achieve more accurate and representative results. Whole-genome sequencing is recommended to identify key metabolic and functional capabilities of candidate bacteria biomarkers.
Collapse
Affiliation(s)
- Bhamini Vadhwana
- Department of Surgery and Cancer, Imperial College London, 7th floor Commonwealth building, Hammersmith Hospital, London W12 0HS, UK
| | - Munir Tarazi
- Department of Surgery and Cancer, Imperial College London, 7th floor Commonwealth building, Hammersmith Hospital, London W12 0HS, UK
| | - Piers R Boshier
- Department of Surgery and Cancer, Imperial College London, 7th floor Commonwealth building, Hammersmith Hospital, London W12 0HS, UK
| | - George B Hanna
- Department of Surgery and Cancer, Imperial College London, 7th floor Commonwealth building, Hammersmith Hospital, London W12 0HS, UK
| |
Collapse
|
23
|
Zhou S, Li C, Liu L, Yuan Q, Miao J, Wang H, Ding C, Guan W. Gastric microbiota: an emerging player in gastric cancer. Front Microbiol 2023; 14:1130001. [PMID: 37180252 PMCID: PMC10172576 DOI: 10.3389/fmicb.2023.1130001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Gastric cancer (GC) is a common cancer worldwide with a high mortality rate. Many microbial factors influence GC, of which the most widely accepted one is Helicobacter pylori (H. pylori) infection. H. pylori causes inflammation, immune reactions and activation of multiple signaling pathways, leading to acid deficiency, epithelial atrophy, dysplasia and ultimately GC. It has been proved that complex microbial populations exist in the human stomach. H. pylori can affect the abundance and diversity of other bacteria. The interactions among gastric microbiota are collectively implicated in the onset of GC. Certain intervention strategies may regulate gastric homeostasis and mitigate gastric disorders. Probiotics, dietary fiber, and microbiota transplantation can potentially restore healthy microbiota. In this review, we elucidate the specific role of the gastric microbiota in GC and hope these data can facilitate the development of effective prevention and therapeutic approaches for GC.
Collapse
Affiliation(s)
- Shizhen Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chenxi Li
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lixiang Liu
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qinggang Yuan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Ji Miao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hao Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
24
|
Mendes-Rocha M, Pereira-Marques J, Ferreira RM, Figueiredo C. Gastric Cancer: The Microbiome Beyond Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:157-184. [PMID: 38231218 DOI: 10.1007/978-3-031-47331-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Gastric cancer remains an important global health burden. Helicobacter pylori is the major etiological factor in gastric cancer, infecting the stomach of almost half of the population worldwide. Recent progress in microbiome research offered a new perspective on the complexity of the microbial communities of the stomach. Still, the role of the microbiome of the stomach beyond H. pylori in gastric carcinogenesis is not well understood and requires deeper investigation. The gastric bacterial communities of gastric cancer patients are distinct from those of patients without cancer, but the microbial alterations that occur along the process of gastric carcinogenesis, and the mechanisms through which microorganisms influence cancer progression still need to be clarified. Except for Epstein-Barr virus, the potential significance of the virome and of the mycobiome in gastric cancer have received less attention. This chapter updates the current knowledge regarding the gastric microbiome, including bacteria, viruses, and fungi, within the context of H. pylori-mediated carcinogenesis. It also reviews the possible roles of the local gastric microbiota, as well as the microbial communities of the oral and gut ecosystems, as biomarkers for gastric cancer detection. Finally, it discusses future perspectives and acknowledges limitations in the area of microbiome research in the gastric cancer setting, to which further research efforts should be directed. These will be fundamental not only to increase our current understanding of host-microbial interactions but also to facilitate translation of the findings into innovative preventive, diagnostic, and therapeutic strategies to decrease the global burden of gastric cancer.
Collapse
Affiliation(s)
- Melissa Mendes-Rocha
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Joana Pereira-Marques
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Rui M Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
| | - Ceu Figueiredo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal.
- Department of Pathology, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
25
|
Hua Z, Shen R, Lu B, Li M, Zhou P, Wu J, Dong W, Zhou Q, Zhang J. Weifuchun alters tongue flora and decreases serum trefoil factor I levels in gastric intestinal metaplasia: A CONSORT-compliant article. Medicine (Baltimore) 2022; 101:e31407. [PMID: 36397419 PMCID: PMC9666156 DOI: 10.1097/md.0000000000031407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To explore the molecular mechanisms of Weifuchun in the treatment of gastric intestinal metaplasia (GIM), we designed a preclinical pilot study to examine potential markers of disease progression based on alterations in the tongue flora. METHODS Total 27 patients with GIM were treated with Weifuchun for 4 weeks and 26 volunteers as controls. Tongue coating bacteria were profiled using 16S rDNA high-throughput sequencing. Serum pepsinogen I and II levels were detected using the latex immunoturbidimetric assay. The levels of serum trefoil factor I was detected by ELISA. Microplate-based quantification was used to detect serum total bile acid (TBA). RESULTS After treatment, the relative abundance of 4 dominant tongue coating genera (Granulicatella, Gemella, Lachnoanaerobaculum, and Neisseria) increased significantly wheras Alloprevotella, [Eubacterium] nodatum group, Prevotell, and Ruminococcaceae UCG-014 decreased (P < .05). The results showed that Alloprevotella and 3 rare tongue coating genera (Lautropia, Treponema 2, and Aliihoeflea) might be potential markers or target flora for the treatment of GIM. Kyoto encyclopedia of genes and genomes (KEGG) function prediction analysis showed that Weifuchun may regulate bile secretion and folate biosynthesis in patients with GIM. The level of serum trefoil factor I decreased significantly in response to Weifuchun treatment, which was consistent with the decrease in folate biosynthesis predicted by KEGG. CONCLUSION Weifuchun may restore the balance of tongue flora by decreasing the levels of serum trefoil factor I, thereby providing a new way to measuring the underlying effectiveness and potential mechanisms of action of this traditional Chinese medicinal compound in the treatment of GIM.
Collapse
Affiliation(s)
- Zhaolai Hua
- Institute of Tumor Prevention and Control, People’s Hospital of Yangzhong City, Yangzhong, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Rui Shen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| | - Bin Lu
- Department of Oncology, People’s Hospital of Yangzhong City, Yangzhong, China
| | - Meifeng Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| | - Ping Zhou
- Institute of Tumor Prevention and Control, People’s Hospital of Yangzhong City, Yangzhong, China
| | - Juan Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| | - Wei Dong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| | - Qihai Zhou
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Junfeng Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medical, Nanjing, China
| |
Collapse
|
26
|
Li S, He M, Lei Y, Liu Y, Li X, Xiang X, Wu Q, Wang Q. Oral Microbiota and Tumor-A New Perspective of Tumor Pathogenesis. Microorganisms 2022; 10:2206. [PMID: 36363799 PMCID: PMC9692822 DOI: 10.3390/microorganisms10112206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 09/11/2023] Open
Abstract
Microorganisms have long been known to play key roles in the initiation and development of tumors. The oral microbiota and tumorigenesis have been linked in epidemiological research relating to molecular pathology. Notably, some bacteria can impact distal tumors by their gastrointestinal or blood-borne transmission under pathological circumstances. Certain bacteria drive tumorigenesis and progression through direct or indirect immune system actions. This review systemically discusses the recent advances in the field of oral microecology and tumor, including the oncogenic role of oral microbial abnormalities and various potential carcinogenesis mechanisms (excessive inflammatory response, host immunosuppression, anti-apoptotic activity, and carcinogen secretion) to introduce future directions for effective tumor prevention.
Collapse
Affiliation(s)
- Simin Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Mingxin He
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yang Liu
- Wuhan Asia General Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xinquan Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
27
|
Stasiewicz M, Karpiński TM. The oral microbiota and its role in carcinogenesis. Semin Cancer Biol 2022; 86:633-642. [PMID: 34743032 DOI: 10.1016/j.semcancer.2021.11.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/27/2023]
Abstract
Despite decades of research, cancer continues to be a major global health concern. In recent years, the role played by microorganisms in the development and progression of cancer has come under increased scrutiny. The aim of the present review is to highlight the main associations between members of the human oral microbiota and various cancers. The PubMed database was searched for available literature to outline the current state of understanding regarding the role of the oral microbiota and a variety of human cancers. Oral squamous cell carcinoma (OSCC) is associated with carriage of a number of oral bacteria (e.g., Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus sp.), certain viruses (e.g., human papilloma virus, human herpes virus 8, herpes simplex virus 1 and Epstein-Barr virus) and yeast (Candida albicans). Moreover, members of the oral microbiota are associated with cancers of the esophagus, stomach, pancreas, colon/rectum and lung. Furthermore, the present review outlines a number of the carcinogenic mechanisms underlying the presented microbial associations with cancer. Such information may one day help clinicians to diagnose neoplastic diseases at earlier stages and prescribe treatments that take into account the possible microbial nature of carcinogenesis.
Collapse
Affiliation(s)
- Mark Stasiewicz
- Research Group of Medical Microbiology, Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| |
Collapse
|
28
|
Zi M, Zhang Y, Hu C, Zhang S, Chen J, Yuan L, Cheng X. A literature review on the potential clinical implications of streptococci in gastric cancer. Front Microbiol 2022; 13:1010465. [PMID: 36386672 PMCID: PMC9643750 DOI: 10.3389/fmicb.2022.1010465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 10/29/2023] Open
Abstract
Streptococcus is widely found in nature and the human body, and most species are not pathogenic. In recent years, studies have found that Streptococcus is associated with gastric cancer. Streptococcus was found to be enriched in the oral cavity, stomach and intestine of gastric cancer patients and found to be increased in gastric cancer tissues, suggesting that Streptococcus may be the pathogenic bacteria underlying gastric cancer. This review discusses the discovery of Streptococcus, the relationship between Streptococcus and gastric cancer, and the possible carcinogenic mechanism of Streptococcus and summarizes the progress of the research on the role of Streptococcus in gastric cancer to provide new ideas for the early detection, diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Mengli Zi
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yanqiang Zhang
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Can Hu
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shengjie Zhang
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jinxia Chen
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
29
|
Nocini R, Muzio LL, Gibellini D, Malerba G, Milella M, Chirumbolo S, Zerman N. Oral microbiota in oropharyngeal cancers: Friend or foe? Front Oncol 2022; 12:948068. [PMID: 36176398 PMCID: PMC9513351 DOI: 10.3389/fonc.2022.948068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Oral microbiome is a complex population of micro-organisms, which by cross-talking with the local immune system, plays a major role in the immune homeostasis of the oral cavity, further contributing in the physiology of the gastro-intestinal microbiota. Understanding their involvement in the onset and pathogenesis of oropharyngeal cancers is paramount, despite very few reports deal with the fundamental role exerted by oral microbiota disorders, such as dysbiosis and impairment in the oral microbiome composition as causative factors in the development of oropharyngeal tumors. Current research, via metabolomic or meta-transcriptomic analyses, is wondering how this complex microbial population regulates the immune homeostasis in oral and pharyngeal mucosa and whether changes in bacterial composition may give insights on the role of oral microbiome in the development of oropharyngeal tumors, so to prevent their occurrence.
Collapse
Affiliation(s)
- Riccardo Nocini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Davide Gibellini
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicoletta Zerman
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
- *Correspondence: Nicoletta Zerman,
| |
Collapse
|
30
|
Li Y, Huang X, Tong D, Jiang C, Zhu X, Wei Z, Gong T, Jin C. Relationships among microbiota, gastric cancer, and immunotherapy. Front Microbiol 2022; 13:987763. [PMID: 36171746 PMCID: PMC9511979 DOI: 10.3389/fmicb.2022.987763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 12/07/2022] Open
Abstract
Currently, conventional neoadjuvant therapy or postoperative adjuvant therapy, such as chemotherapy and radiation therapy, can only bring limited survival benefits to gastric cancer (GC). Median survival after palliative chemotherapy is also low, at about 8–10 months. Immunotargeting is a new option for the treatment of GC, but has not been widely replicated. The highly immunosuppressed tumor microenvironment (TME) discounts the efficacy of immunotherapy for GC. Therefore, new strategies are needed to enhance the immune response of the TME. This paper reviewed the relationship between microorganisms and GC, potential links between microorganisms and immunotherapy and research of microorganisms combined immunotherapy.
Collapse
Affiliation(s)
- Yuzhen Li
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Xiaona Huang
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Desheng Tong
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Chenyu Jiang
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Xiaodan Zhu
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Zhipeng Wei
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Tingjie Gong
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Chunhui Jin
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
- *Correspondence: Chunhui Jin,
| |
Collapse
|
31
|
Fakharian F, Asgari B, Nabavi-Rad A, Sadeghi A, Soleimani N, Yadegar A, Zali MR. The interplay between Helicobacter pylori and the gut microbiota: An emerging driver influencing the immune system homeostasis and gastric carcinogenesis. Front Cell Infect Microbiol 2022; 12:953718. [PMID: 36046747 PMCID: PMC9423097 DOI: 10.3389/fcimb.2022.953718] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
The human gut microbiota are critical for preserving the health status because they are required for digestion and nutrient acquisition, the development of the immune system, and energy metabolism. The gut microbial composition is greatly influenced by the colonization of the recalcitrant pathogen Helicobacter pylori (H. pylori) and the conventional antibiotic regimens that follow. H. pylori is considered to be the main microorganism in gastric carcinogenesis, and it appears to be required for the early stages of the process. However, a non-H. pylori microbiota profile is also suggested, primarily in the later stages of tumorigenesis. On the other hand, specific groups of gut microbes may produce beneficial byproducts such as short-chain fatty acids (acetate, butyrate, and propionate) that can modulate inflammation and tumorigenesis pathways. In this review, we aim to present how H. pylori influences the population of the gut microbiota to modify the host immunity and trigger the development of gastric carcinogenesis. We will also highlight the effect of the gut microbiota on immunotherapeutic approaches such as immune checkpoint blockade in cancer treatment to present a perspective for further development of innovative therapeutic paradigms to prevent the progression of H. pylori-induced stomach cancer.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnoush Asgari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Soleimani
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Abbas Yadegar, ;
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Jiao J, Zheng Y, Zhang Q, Xia D, Zhang L, Ma N. Saliva microbiome changes in thyroid cancer and thyroid nodules patients. Front Cell Infect Microbiol 2022; 12:989188. [PMID: 36034695 PMCID: PMC9403763 DOI: 10.3389/fcimb.2022.989188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Thyroid disease has been reported to associate with gut microbiota, but the effects of thyroid cancer and thyroid nodules on the oral microbiota are still largely unknown. This study aimed to identify the variation in salivary microbiota and their potential association with thyroid cancer and thyroid nodules. Methods We used 16S rRNA high-throughput sequencing to examine the salivary microbiota of thyroid cancer patients (n = 14), thyroid nodules patients (n = 9), and healthy controls (n = 15). Results The alpha-diversity indices Chao1 and ACE were found to be relatively higher in patients with thyroid cancer and thyroid nodules compared to healthy controls. The beta diversity in both the thyroid cancer and thyroid nodules groups was divergent from the healthy control group. The genera Alloprevotella, Anaeroglobus, Acinetobacter, unclassified Bacteroidales, and unclassified Cyanobacteriales were significantly enriched in the thyroid cancer group compared with the healthy control group. In contrast, the microbiome of the healthy controls was mainly composed of the genera Haemophilus, Lautropia, Allorhizobium Neorhizobium Pararhizobium Rhizobium, Escherichia Shigella, and unclassified Rhodobacteraceae. The thyroid nodules group was dominated by genre uncultured Candidatus Saccharibacteria bacterium, unclassified Clostridiales bacterium feline oral taxon 148, Treponema, unclassified Prevotellaceae, Mobiluncus, and Acholeplasma. In contrast, the genera unclassified Rhodobacteraceae and Aggregatibacter dominated the healthy control group. The study also found that clinical indicators were correlated with the saliva microbiome. Conclusion The salivary microbiota variation may be connected with thyroid cancer and thyroid nodules.
Collapse
Affiliation(s)
- Junjun Jiao
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Youli Zheng
- The School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Qingyu Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Degeng Xia
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Li Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Ning Ma, ; Li Zhang,
| | - Ning Ma
- Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Ning Ma, ; Li Zhang,
| |
Collapse
|
33
|
The role of non-Helicobacter pylori bacteria in the pathogenesis of gastroduodenal diseases. Gut Pathog 2022; 14:19. [PMID: 35606878 PMCID: PMC9125830 DOI: 10.1186/s13099-022-00494-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the development of next-generation sequencing for human microbiota has led to remarkable discoveries. The characterization of gastric microbiota has enabled the examination of genera associated with several diseases, including gastritis, precancerous lesions, and gastric cancer. Helicobacter pylori (H. pylori) is well known to cause gastric dysbiosis by reducing diversity, because this bacterium is the predominant bacterium. However, as the diseases developed into more severe stages, such as atrophic gastritis, premalignant lesion, and gastric adenocarcinoma, the dominance of H. pylori began to be displaced by other bacteria, including Streptococcus, Prevotella, Achromobacter, Citrobacter, Clostridium, Rhodococcus, Lactobacillus, and Phyllobacterium. Moreover, a massive reduction in H. pylori in cancer sites was observed as compared with noncancer tissue in the same individual. In addition, several cases of H. pylori-negative gastritis were found. Among these individuals, there was an enrichment of Paludibacter, Dialister, Streptococcus, Haemophilus parainfluenzae, and Treponema. These remarkable findings suggest the major role of gastric microbiota in the development of gastroduodenal diseases and led us to the hypothesis that H. pylori might not be the only gastric pathogen. The gastric microbiota point of view of disease development should lead to a more comprehensive consideration of this relationship.
Collapse
|
34
|
Shu J, Yu H, Ren X, Wang Y, Zhang K, Tang Z, Dang L, Chen W, Li B, Xie H, Li Z. Role of salivary glycopatterns for oral microbiota associated with gastric cancer. Int J Biol Macromol 2022; 209:1368-1378. [PMID: 35461868 DOI: 10.1016/j.ijbiomac.2022.04.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 11/25/2022]
Abstract
Microbiota in the oral cavity plays an important role in maintaining human health. Our previous studies have revealed significant alterations of salivary glycopatterns in gastric cancer (GC) patients, but it is unclear whether these altered salivary glycopatterns can cause the dysbiosis of oral microbiota. In this study, the oral microbiome of healthy volunteers (HVs) and GC patients were detected. The neoglycoproteins were then synthesized according to the altered glycopatterns in GC patients and used to explore the effects of specific salivary glycopattern against oral microbiota. The results showed that five species were significantly increased (p < 0.05) while two species were significantly decreased (p < 0.01) in the saliva of GC patients compared with that of HVs. And the fucose-neoglycoproteins (30-100 μg/mL) could reduce the adhesion and toxicity of Aggregatibacter segnis (A. segnis) to oral cells (HOEC and CAL-27), change the glycan structures of lipopolysaccharide on the surface of A. segnis, and enhance the capacity of A. segnis to trigger innate immune responses. This study revealed that the changes of salivary protein glycopatterns in GC patients might contribute to the dysbiosis of oral microbiota, and had important implications in developing new carbohydrate drugs to maintain a balanced microbiota in the oral.
Collapse
Affiliation(s)
- Jian Shu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Hanjie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiameng Ren
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Yan Wang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Kun Zhang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhen Tang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Liuyi Dang
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Wentian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China
| | - Baozhen Li
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University Health Science Center, 277 Yanta Xilu, Xi'an 710061, China
| | - Hailong Xie
- Institute of Cancer Research, University of South China, Hengyang, China
| | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
35
|
Microbial Characteristics of Common Tongue Coatings in Patients with Precancerous Lesions of the Upper Gastrointestinal Tract. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7598427. [PMID: 35480154 PMCID: PMC9038387 DOI: 10.1155/2022/7598427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022]
Abstract
The tongue coating (TC) microbiota, a crucial component of the tongue coating, illustrates a huge microbial percentage of the body that mostly includes actinobacteria, bacteroides, firmicutes, and fusobacteria. The TC microbiota is closely related to the development of upper gastrointestinal malignancies, such as oral, gastric, and esophageal cancer. Nonetheless, the microbiological characteristics of common TCs in individuals with precancerous lesions of the upper gastrointestinal tract are still unclear. Herein, we designed a case-control study, recruiting 153 PLUGT patients with four different types of TCs, including 47 white-thin, 19 white-thick, 47 yellow-thin, and 40 yellow-thick, as well as 47 volunteers as controls. To analyze microbial characteristics, 16S rRNA microbiome approaches were used. An enzyme-linked immunosorbent assay (ELISA) was employed to assess serum IL-17A and total bile acid (TBA). According to the obtained results, Leptotrichia was found to be a promising biomarker for thin as well as thick yellow coatings. In comparison to the control TC microbiota, 39 different genera developed commensal networks in common TCs. Lachnoanaerobaculum and pseudonocardia were the most striking core bacteria. Lachnoanaerobaculum positively correlated with Leptotrichia in W-thin and Y-thick coatings, with actinomyces and methylobacterium in Y-thin coatings, with Campylobacter in Y-thick coatings, and with Bradyrhizobium in W-thick and Y-thick coatings. Serum IL-17A levels were greater in cases with W-thin coating than in controls, and serum IL-17A was positively linked with Parvimonas in patients with W-thick or Y-thin coating. In Y-thin coating, the oral dominating bacteria Streptococcus was negatively linked with serum TBA. Taken together, the promoted bacteria were found to be synergistically proliferative in the TCs of PLUGT patients. The diverse TCs had distinct bacterial commensal networks, whereas the common TCs were linked by specific bacteria to serum IL-17A and TBA.
Collapse
|
36
|
Cui J, Hou S, Liu B, Yang M, Wei L, Du S, Li S. Species composition and overall diversity are significantly correlated between the tongue coating and gastric fluid microbiomes in gastritis patients. BMC Med Genomics 2022; 15:60. [PMID: 35300688 PMCID: PMC8932003 DOI: 10.1186/s12920-022-01209-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/01/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND In traditional Chinese medicine, it is believed that the "tongue coating is produced by fumigation of stomach gas", and that tongue coating can reflect the health status of humans, especially stomach health. Therefore, studying the relationship between the microbiome of the tongue coating and the gastric fluid is of great significance for understanding the biological basis of tongue diagnosis. METHODS This paper detected the microbiomes of the tongue coating and the gastric fluid in 35 gastritis patients using metagenomic sequencing technology, systematically constructed the microbial atlas of tongue coating and gastric juice, and first described the similar characteristics between the two sites. RESULTS There was a significant correlation between tongue coating and gastric juice in terms of microbial species composition and overall diversity. In terms of species composition, it was found that the two sites were dominated by five phyla, namely, Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria, and that most of the gastric microbial species could be detected from the patient's own tongue coating. In terms of overall diversity, a significant correlation was found between the alpha diversity of the tongue coating microbiome and the gastric juice microbiome. Furthermore, in terms of abundance, 4 classes, 2 orders, 4 families, 18 genera and 46 species were found to significantly correlate between the tongue coating and the gastric fluid. CONCLUSIONS The results provide microbiome-based scientific evidence for tongue diagnosis, and offer a new perspective for understanding the biological basis of tongue diagnosis.
Collapse
Affiliation(s)
- Jiaxing Cui
- Institute of TCM-X, MOE Key Laboratory of Bioinformatics / Bioinformatics Division, BNRist / Department of Automation, Tsinghua University, Beijing, 100084, China.,China Industrial Control Systems Cyber Emergency Response Team, Beijing, 100040, China
| | - Siyu Hou
- Institute of TCM-X, MOE Key Laboratory of Bioinformatics / Bioinformatics Division, BNRist / Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Bing Liu
- Beijing Lotus BioMedical Technology Co., Ltd., Beijing, 102206, China
| | - Mingran Yang
- Institute of TCM-X, MOE Key Laboratory of Bioinformatics / Bioinformatics Division, BNRist / Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Shiyu Du
- China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Shao Li
- Institute of TCM-X, MOE Key Laboratory of Bioinformatics / Bioinformatics Division, BNRist / Department of Automation, Tsinghua University, Beijing, 100084, China. .,School of Life Sciences and Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
37
|
Mougeot JLC, Beckman MF, Langdon HC, Lalla RV, Brennan MT, Bahrani Mougeot FK. Haemophilus pittmaniae and Leptotrichia spp. Constitute a Multi-Marker Signature in a Cohort of Human Papillomavirus-Positive Head and Neck Cancer Patients. Front Microbiol 2022; 12:794546. [PMID: 35116012 PMCID: PMC8803733 DOI: 10.3389/fmicb.2021.794546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
ObjectivesHuman papillomavirus (HPV) is a known etiological factor of oropharyngeal head and neck cancer (HNC). HPV positivity and periodontal disease have been associated with higher HNC risk, suggesting a role for oral bacterial species. Our objective was to determine oral microbiome profiles in HNC patients (HPV-positive and HPV-negative) and in healthy controls (HC).MethodsSaliva samples and swabs of buccal mucosa, supragingival plaque, and tongue were collected from HNC patients (N = 23 patients, n = 92 samples) before cancer therapy. Next-generation sequencing (16S-rRNA gene V3–V4 region) was used to determine bacterial taxa relative abundance (RA). β-Diversities of HNC HPV+ (N = 16 patients, n = 64 samples) and HNC HPV– (N = 7 patients, n = 28 samples) groups were compared using PERMANOVA (pMonte Carlo < 0.05). LEfSe discriminant analysis was performed to identify differentiating taxa (Log LDA > 2.0). RA differences were analyzed by Mann–Whitney U-test (α = 0.05). CombiROC program was used to determine multi-marker bacterial signatures. The Microbial Interaction Network Database (MIND) and LitSuggest online tools were used for complementary analyses.ResultsHNC vs. HC and HNC HPV+ vs. HNC HPV– β-diversities differed significantly (pMonte Carlo < 0.05). Streptococcus was the most abundant genus for HNC and HC groups, while Rothia mucilaginosa and Haemophilus parainfluenzae were the most abundant species in HNC and HC patients, respectively, regardless of antibiotics treatment. LEfSe analysis identified 43 and 44 distinctive species for HNC HPV+ and HNC HPV– groups, respectively. In HNC HPV+ group, 26 periodontal disease-associated species identified by LefSe had a higher average RA compared to HNC HPV– group. The significant species included Alloprevotella tannerae, Fusobacterium periodonticum, Haemophilus pittmaniae, Lachnoanaerobaulum orale, and Leptotrichia spp. (Mann–Whitney U-test, p < 0.05). Of 43 LEfSe-identified species in HPV+ group, 31 had a higher RA compared to HPV– group (Mann–Whitney U-test, p < 0.05). MIND analysis confirmed interactions between Haemophilus and Leptotrichia spp., representing a multi-marker signature per CombiROC analysis [area under the curve (AUC) > 0.9]. LitSuggest correctly classified 15 articles relevant to oral microbiome and HPV status.ConclusionOral microbiome profiles of HNC HPV+ and HNC HPV– patients differed significantly regarding periodontal-associated species. Our results suggest that oral bacterial species (e.g., Leptotrichia spp.), possessing unique niches and invasive properties, coexist with HPV within HPV-induced oral lesions in HNC patients. Further investigation into host–microbe interactions in HPV-positive HNC patients may shed light into cancer development.
Collapse
Affiliation(s)
- Jean-Luc C. Mougeot
- Carolinas Medical Center—Atrium Health, Charlotte, NC, United States
- *Correspondence: Jean-Luc C. Mougeot,
| | | | - Holden C. Langdon
- Carolinas Medical Center—Atrium Health, Charlotte, NC, United States
| | - Rajesh V. Lalla
- Section of Oral Medicine–University of Connecticut Health, Farmington, CT, United States
| | | | | |
Collapse
|
38
|
Xiao P, Hua Z, Kang X, Lu B, Li M, Wu J, Dong W, Zhang J, Cheng C. Influence of Oral Intaking Habit on Tongue Coating Microbiota in Patients with Esophageal Precancerous Lesions. J Cancer 2022; 13:1168-1180. [PMID: 35281875 PMCID: PMC8899384 DOI: 10.7150/jca.67068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/25/2021] [Indexed: 11/05/2022] Open
Abstract
Background: Esophageal cancer (EC) is a common digestive tract tumor in China, and oral intaking habit has a great influence on the development of EC. The present study explored the correlation between oral intaking habit and tongue coating (TC) microbiota in patients with esophageal precancerous lesions (EPL) to provide a reasonable interpretation of the influence of oral intaking habit on microbial alterations in the EPL. Methods: A case-control study was designed with 123 EPL patients and 176 volunteers with mild esophagitis, and they were well matched using sex, age, and body mass index. The TC microbiota was profiled using high-throughput sequencing of the V3-V4 region of the 16S rRNA gene, and the serum levels of total bile acid (TBA) and interleukin-17α (IL-17α) were measured using enzyme-linked immunosorbent assay. Alpha diversity, community structure, and linear discriminant analysis were conducted, and Spearman correlation analysis was used to build the symbiotic network. Results: No significant differences were observed in the diversity and richness of the TC microbiota between the cases and controls (P > 0.05). TC Peptostreptococcus and Capnocytophaga were enriched in EPL patients. Stratified analysis showed that TC microbial composition was affected by both EPL and oral intaking habit; for example, Atopobium and Actinomyces were positively related to oral intaking habit scores in both the cases and controls, while Simonsiella was negatively correlated with oral intaking habit status in cases but positively correlated with oral intaking habit status in controls. Although serum TBA and IL-17α were not associated with EPL (P > 0.05), the daily-drinking cases had a higher level of serum TBA than the nondrinking cases (P < 0.05), and Helicobacter pylori (Hp) negative controls had a higher level of serum TBA than the Hp-positive controls (P < 0.05). The symbiotic networks were comprised of 71 significant correlations in the controls and 52 significant correlations in the cases. Conclusions: The development of EPL changed the TC microbiota and decreased the symbiotic complexity of the TC bacteria, which were also influenced by the cancer-related oral intaking habit. Bile acid may be a key factor mediating changes in TC microbiota.
Collapse
Affiliation(s)
- Pan Xiao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Zhaolai Hua
- Yangzhong Cancer Institute, Yangzhong People's Hospital, Jiangsu Yangzhong 212200, China
| | - Xiaoyu Kang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Bin Lu
- Department of Oncology, Yangzhong People's Hospital, Yangzhong 212200, Jiangsu, China
| | - Meifeng Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Juan Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Wei Dong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Junfeng Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Chun Cheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| |
Collapse
|
39
|
Retnakumar R, Nath AN, Nair GB, Chattopadhyay S. Gastrointestinal microbiome in the context of Helicobacter pylori infection in stomach and gastroduodenal diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:53-95. [DOI: 10.1016/bs.pmbts.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Reitano E, de’Angelis N, Gavriilidis P, Gaiani F, Memeo R, Inchingolo R, Bianchi G, de’Angelis GL, Carra MC. Oral Bacterial Microbiota in Digestive Cancer Patients: A Systematic Review. Microorganisms 2021; 9:2585. [PMID: 34946186 PMCID: PMC8707512 DOI: 10.3390/microorganisms9122585] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023] Open
Abstract
The relation between the gut microbiota and human health is increasingly recognized. Recently, some evidence suggested that dysbiosis of the oral microbiota may be involved in the development of digestive cancers. A systematic review was conducted according to the PRISMA guidelines to investigate the association between the oral microbiota and digestive cancers. Several databases including Medline, Scopus, and Embase were searched by three independent reviewers, without date restriction. Over a total of 1654 records initially identified, 28 studies (2 prospective cohort studies and 26 case-controls) were selected. They investigated oral microbiota composition in patients with esophageal squamous cell carcinoma (n = 5), gastric cancer (n = 5), colorectal cancer (n = 9), liver carcinoma (n = 2), and pancreatic cancer (n = 7). In most of the studies, oral microbiota composition was found to be different between digestive cancer patients and controls. Particularly, oral microbiota dysbiosis and specific bacteria, such as Fusobacterium nucleatum and Porphyromonas gingivalis, appeared to be associated with colorectal cancers. Current evidence suggests that differences exist in oral microbiota composition between patients with and without digestive cancers. Further studies are required to investigate and validate oral-gut microbial transmission patterns and their role in digestive cancer carcinogenesis.
Collapse
Affiliation(s)
- Elisa Reitano
- Division of General Surgery, Department of Translational Medicine, Maggiore della Carità Hospital, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Nicola de’Angelis
- Unit of Digestive and HPB Surgery, CARE Department, Henri Mondor Hospital, AP-HP, 94010 Créteil, France; (N.d.); (G.B.)
- Faculté de Santé, Université Paris Est, UPEC, 94010 Créteil, France
| | - Paschalis Gavriilidis
- Department of HBP Surgery, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK;
| | - Federica Gaiani
- Gastroenterology and Endoscopy Unit, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy;
- Microbiome Research Hub, University of Parma, 43126 Parma, Italy
| | - Riccardo Memeo
- Unit of HPB Surgery, General Regional University Hospital F. Miulli, Acquaviva delle Fonti, 72021 Bari, Italy;
| | - Riccardo Inchingolo
- Unit of Interventional Radiology, General Regional Hospital F. Miulli, Acquaviva delle Fonti, 72021 Bari, Italy;
| | - Giorgio Bianchi
- Unit of Digestive and HPB Surgery, CARE Department, Henri Mondor Hospital, AP-HP, 94010 Créteil, France; (N.d.); (G.B.)
| | - Gian Luigi de’Angelis
- Gastroenterology and Endoscopy Unit, Department of Medicine and Surgery, University Hospital of Parma, 43126 Parma, Italy;
| | - Maria Clotilde Carra
- Service of Odontology, Department of Periodontology, Rothschild Hospital, AP-HP, Université de Paris, U.F.R. of Odontology-Garanciere, 75006 Paris, France;
| |
Collapse
|
41
|
Wang Y, Du J, Wu X, Abdelrehem A, Ren Y, Liu C, Zhou X, Wang S. Crosstalk between autophagy and microbiota in cancer progression. Mol Cancer 2021; 20:163. [PMID: 34895252 PMCID: PMC8665582 DOI: 10.1186/s12943-021-01461-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a highly conserved catabolic process seen in eukaryotes and is essentially a lysosome-dependent protein degradation pathway. The dysregulation of autophagy is often associated with the pathogenesis of numerous types of cancers, and can not only promote the survival of cancer but also trigger the tumor cell death. During cancer development, the microbial community might predispose cells to tumorigenesis by promoting mucosal inflammation, causing systemic disorders, and may also regulate the immune response to cancer. The complex relationship between autophagy and microorganisms can protect the body by activating the immune system. In addition, autophagy and microorganisms can crosstalk with each other in multifaceted ways to influence various physiological and pathological responses involved in cancer progression. Various molecular mechanisms, correlating the microbiota disorders and autophagy activation, control the outcomes of protumor or antitumor responses, which depend on the cancer type, tumor microenvironment and disease stage. In this review, we mainly emphasize the leading role of autophagy during the interaction between pathogenic microorganisms and human cancers and investigate the various molecular mechanisms by which autophagy modulates such complicated biological processes. Moreover, we also highlight the possibility of curing cancers with multiple molecular agents targeting the microbiota/autophagy axis. Finally, we summarize the emerging clinical trials investigating the therapeutic potential of targeting either autophagy or microbiota as anticancer strategies, although the crosstalk between them has not been explored thoroughly.
Collapse
Affiliation(s)
- Yu Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Jiang Du
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Xuemei Wu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Gastroenterology and Hepatology Institute, Tianjin Medical University, Tianjin, 300052 China
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Ministry of Education, Tianjin, 300070 China
| | - Ahmed Abdelrehem
- Department of Craniomaxillofacial and Plastic Surgery, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Yu Ren
- Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin, 300070 China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, Tianjin, 300060 China
- National Clinical Research Center of Cancer, Tianjin, 300060 China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Gastroenterology and Hepatology Institute, Tianjin Medical University, Tianjin, 300052 China
- Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Ministry of Education, Tianjin, 300070 China
| |
Collapse
|
42
|
The uninvited guests of our microbiome: Helicobacter pylori and Epstein-Barr virus and their role in gastric cancerogenesis. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
It is well established that human body is an ecosystem for numerous microorganisms: bacteria, fungi, eukaryotic parasites, and viruses. They form a “microbiome” that under conditions of homeostasis remains in a friendly mutual relationship with the host. However, the composition and diversity of this microbe community is dynamic and can be changed under the influence of environmental factors, such as diet, antibiotic therapy, lifestyle, and the host’s genotype and immunity. The result of gut microbiome dysbiosis can lead even to cancer. The aim of this review is the description of the healthy gastrointestinal microbiome and the role of two infectious agents: Gram-negative bacteria Helicobacter pylori and Epstein-Barr virus in the development of gastric cancer in terms of gut dysbiosis. H. pylori is the most important pathogen of gastric microbiome with clear impact on its diversity. Coinfection with Epstein-Barr virus causes chronic gastritis, and the inflammatory process is significantly increased. The process of carcinogenesis begins with chronic inflammation that causes atrophic gastritis, intestinal metaplasia, dysplasia, and finally cancer. It has been proven that chronic inflammatory infection caused by infectious agents increases the risk of stomach cancer. Molecular methods that are progressively used to explore the human microbiome provide hope that this knowledge will be used for future diagnoses and therapy in the state of its dysbiosis and in cases of gastric cancer.
Collapse
|
43
|
Yang Y, Long J, Wang C, Blot WJ, Pei Z, Shu X, Wu F, Rothman N, Wu J, Lan Q, Cai Q, Zheng W, Chen Y, Shu XO. Prospective study of oral microbiome and gastric cancer risk among Asian, African American and European American populations. Int J Cancer 2021; 150:916-927. [PMID: 34664266 DOI: 10.1002/ijc.33847] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Colonization of specific bacteria in the human mouth was reported to be associated with gastric cancer risk. However, previous studies were limited by retrospective study designs and low taxonomic resolutions. We performed a prospective case-control study nested within three cohorts to investigate the relationship between oral microbiome and gastric cancer risk. Shotgun metagenomic sequencing was employed to characterize the microbiome in prediagnostic buccal samples from 165 cases and 323 matched controls. Associations of overall microbial richness and abundance of microbial taxa, gene families and metabolic pathways with gastric cancer risk were evaluated via conditional logistic regression. Analyses were performed within each cohort, and results were combined by meta-analyses. We found that overall microbial richness was associated with decreased gastric cancer risk, with an odds ratio (OR) per standard deviation (SD) increase in Simpson's reciprocal index of 0.77 (95% confidence interval [CI] = 0.61-0.99). Nine taxa, 38 gene families and six pathways also showed associations with gastric cancer risk at P < .05. Neisseria mucosa and Prevotella pleuritidis were enriched, while Mycoplasma orale and Eubacterium yurii were depleted among cases with ORs and 95% CIs per SD increase in centered log-ratio transformed taxa abundance of 1.31 (1.03-1.67), 1.26 (1.00-1.57), 0.74 (0.59-0.94) and 0.80 (0.65-0.98), respectively. The top two gene families (P = 3.75 × 10-4 and 3.91 × 10-4 ) and pathways (P = 1.75 × 10-3 and 1.53 × 10-3 ) associated with gastric cancer were related to the decreased risk and are involved in hexitol metabolism. Our study supports the hypothesis that oral microbiota may play a role in gastric cancer etiology.
Collapse
Affiliation(s)
- Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cong Wang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zhiheng Pei
- Department of Medicine, New York University School of Medicine, New York, New York, USA.,Department of Pathology, New York University School of Medicine, New York, New York, USA.,Department of Pathology and Lab Service (113), Veterans Affairs New York Harbor Healthcare System, New York, New York, USA
| | - Xiang Shu
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Fen Wu
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | | | - Jie Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qing Lan
- National Cancer Institute, Bethesda, Maryland, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, New York, USA.,Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
44
|
Ali Mohammed MM, Al Kawas S, Al-Qadhi G. Tongue-coating microbiome as a cancer predictor: A scoping review. Arch Oral Biol 2021; 132:105271. [PMID: 34610507 DOI: 10.1016/j.archoralbio.2021.105271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The tongue microbiome has emerged as a non-invasive diagnostic and tracking prognostic tool in the detection of diseases mainly cancer. This scoping review aimed to identify the association between tongue microbiome and pre-cancer or cancer lesions. DESIGN A comprehensive electronic database search including PubMed, Web of Science, and Scopus was undertaken up to March 2021, without language or date restrictions. This review was conducted following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guideline. All observational studies that compared microbial community on the dorsal surface of the tongue between cancer or precancerous cases and healthy controls using NGS techniques were included. RESULTS Of 274 records identified, nine studies were eligible to be included. Despite the inconsistent observations in terms of diversity and richness, most studies reported alteration in bacterial communities between pre-cancer or cancer cases and control groups. The bacterial profile among cases was so far correlated at the phylum level with a noticeable diverse degree at the genus level. The majority of included studies reported a higher abundance of certain kinds of microorganisms as compared to healthy participants including Firmicutes, Fusobacteria and Actinobacteria at phyla level as well as Streptococcus, Actinomyces, Leptotrichia, Campylobacter, and Fusobacterium at the genus level. CONCLUSION The alteration of the tongue microbial community has been associated with several diseases mainly cancer. So, the tongue microbiome may serve as a promising diagnostic tool or as a long-term monitor in precancerous or cancer cases.
Collapse
Affiliation(s)
- Marwan Mansoor Ali Mohammed
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, United Arab Emirates.
| | - Sausan Al Kawas
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, United Arab Emirates.
| | - Gamilah Al-Qadhi
- Department of Basic Dental Sciences, Faculty of Dentistry, University of Science and Technology, Yemen.
| |
Collapse
|
45
|
Zhang T, Yang X, Yin X, Yuan Z, Chen H, Jin L, Chen X, Lu M, Ye W. Poor oral hygiene behavior is associated with an increased risk of gastric cancer: A population-based case-control study in China. J Periodontol 2021; 93:988-1002. [PMID: 34599526 DOI: 10.1002/jper.21-0301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/19/2021] [Accepted: 09/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Poor oral health may be a significant risk factor for gastric cancer (GC); however, previous results are not consistent. Here, we investigated the effect of oral health on GC and effect modification by other factors. METHODS We conducted a population-based case-control study in Taixing, China. Participants aged between 40 and 85 years and who had lived in Taixing for at least 5 years were included. The GC cases were confirmed by endoscopy and pathological diagnosis, and the controls were randomly selected using the frequency-matching method. Unconditional logistic regression models were used to derive odds ratios (ORs) and 95% confidence intervals (CIs) of oral health for GC risk after adjusting for confounders and risk factors. RESULTS Overall, 901 GC cases and 1972 controls were included. Tooth loss was not significantly associated with an increased risk of GC (yes vs. no, OR = 1.08, 95% CI 0.88 to 1.33). Compared with toothbrushing at least twice per day, toothbrushing once per day or less was associated with an increased risk of GC (OR = 2.39, 95% CI 1.94 to 2.94), and was more pronounced in esophagogastric junction cancer and intestinal-type GC. There was no significant interaction between the indicators of oral health and age, sex, tobacco smoking, alcohol drinking, and Helicobacter pylori seropositivity. CONCLUSION Poor oral hygiene behavior is associated with an increased risk of GC, and this positive association is consistent across all GC subgroups classified by anatomy and histology. Further studies are needed to explore the possible mechanisms behind this association.
Collapse
Affiliation(s)
- Tongchao Zhang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China.,Clinical Research Center of Shandong University, Jinan, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China.,Clinical Research Center of Shandong University, Jinan, China
| | - Xiaolin Yin
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China.,Clinical Research Center of Shandong University, Jinan, China.,Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ziyu Yuan
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Hui Chen
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China.,Clinical Research Center of Shandong University, Jinan, China
| | - Li Jin
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Xingdong Chen
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China.,Clinical Research Center of Shandong University, Jinan, China.,Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Weimin Ye
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden.,Department of Epidemiology and Health Statistics & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
46
|
Gunathilake M, Lee J, Choi IJ, Kim YI, Kim J. Association between bacteria other than Helicobacter pylori and the risk of gastric cancer. Helicobacter 2021; 26:e12836. [PMID: 34268831 DOI: 10.1111/hel.12836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The gastric microbiota, including Helicobacter pylori (HP), has a remarkable role in gastric cancer (GC) occurrence. Evidence for the role of non-HP bacteria in GC risk is limited. We aimed to observe the association between bacteria other than HP and risk of GC in a Korean population. METHODS In this study, 268 GC cases and 288 healthy controls were included. Demographic data and total energy intake data were collected using a general questionnaire and a semiquantitative food frequency questionnaire, respectively. 16S rRNA gene sequencing was performed using DNA extracted from gastric biopsy samples. RESULTS Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and non-HP Proteobacteria were the five main phyla in the gastric environment. The five phyla were negatively related to the relative abundance of Helicobacter species (all p < 0.001). The Shannon index, richness, and Pilou-evenness were negatively correlated with Helicobacter species (all p < 0.001), while the microbial dysbiosis index was positively correlated with Helicobacter species (p < 0.001). Participants with a higher relative abundance of Actinobacteria species showed a significantly increased risk of GC (OR: 3.16, 95% CI = 1.92-5.19, p-trend<0.001). The non-HP microbiota composition among the four groups (HP+cases, HP- cases, HP+controls, and HP- controls) was significantly different (ANOSIM R = 0.10, p = 0.001). CONCLUSION Other than HP, several bacterial species might be associated with GC risk. HP status and GC status could determine the differences in microbial compositions. Further large prospective studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Madhawa Gunathilake
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Goyang-si, South Korea
| | - Jeonghee Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Goyang-si, South Korea
| | - Il Ju Choi
- Center for Gastric Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, South Korea
| | - Young-Il Kim
- Center for Gastric Cancer, National Cancer Center Hospital, National Cancer Center, Goyang-si, South Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, Goyang-si, South Korea
| |
Collapse
|
47
|
Smet A, Kupcinskas J, Link A, Hold GL, Bornschein J. The Role of Microbiota in Gastrointestinal Cancer and Cancer Treatment: Chance or Curse? Cell Mol Gastroenterol Hepatol 2021; 13:857-874. [PMID: 34506954 PMCID: PMC8803618 DOI: 10.1016/j.jcmgh.2021.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
The gastrointestinal (GI) tract is home to a complex and dynamic community of microorganisms, comprising bacteria, archaea, viruses, yeast, and fungi. It is widely accepted that human health is shaped by these microbes and their collective microbial genome. This so-called second genome plays an important role in normal functioning of the host, contributing to processes involved in metabolism and immune modulation. Furthermore, the gut microbiota also is capable of generating energy and nutrients (eg, short-chain fatty acids and vitamins) that are otherwise inaccessible to the host and are essential for mucosal barrier homeostasis. In recent years, numerous studies have pointed toward microbial dysbiosis as a key driver in many GI conditions, including cancers. However, comprehensive mechanistic insights on how collectively gut microbes influence carcinogenesis remain limited. In addition to their role in carcinogenesis, the gut microbiota now has been shown to play a key role in influencing clinical outcomes to cancer immunotherapy, making them valuable targets in the treatment of cancer. It also is becoming apparent that, besides the gut microbiota's impact on therapeutic outcomes, cancer treatment may in turn influence GI microbiota composition. This review provides a comprehensive overview of microbial dysbiosis in GI cancers, specifically esophageal, gastric, and colorectal cancers, potential mechanisms of microbiota in carcinogenesis, and their implications in diagnostics and cancer treatment.
Collapse
Affiliation(s)
- Annemieke Smet
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences,Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Juozas Kupcinskas
- Institute for Digestive Research, Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Georgina L. Hold
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Jan Bornschein
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Correspondence Address correspondence to: Jan Bornschein, MD, Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, United Kingdom.
| |
Collapse
|
48
|
Li Y, Cui J, Liu Y, Chen K, Huang L, Liu Y. Oral, Tongue-Coating Microbiota, and Metabolic Disorders: A Novel Area of Interactive Research. Front Cardiovasc Med 2021; 8:730203. [PMID: 34490384 PMCID: PMC8417575 DOI: 10.3389/fcvm.2021.730203] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Interactions between colonizing microbiota and the host have been fully confirmed, among which the tongue-coating microbiota have a moderate rate of renewal and disease sensitivity and are easily obtained, making them an ideal research subject. Oral microbiota disorders are related to diabetes, obesity, cardiovascular disease, cancer, and other systemic diseases. As an important part of the oral cavity, tongue-coating microbiota can promote gastritis and digestive system tumors, affecting the occurrence and development of multiple chronic diseases. Common risk factors include diet, age, and immune status, among others. Metabolic regulatory mechanisms may be similar between the tongue and gut microbiota. Tongue-coating microbiota can be transferred to the respiratory or digestive tract and create a new balance with local microorganisms, together with the host epithelial cells forming a biological barrier. This barrier is involved in the production and circulation of nitric oxide (NO) and the function of taste receptors, forming the oral-gut-brain axis (similar to the gut-brain axis). At present, the disease model and mechanism of tongue-coating microbiota affecting metabolism have not been widely studied, but they have tremendous potential.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Traditional Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Cui
- National Clinical Research Center for Traditional Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- The Second Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keji Chen
- National Clinical Research Center for Traditional Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Center for Traditional Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
49
|
Xu S, Xiang C, Wu J, Teng Y, Wu Z, Wang R, Lu B, Zhan Z, Wu H, Zhang J. Tongue Coating Bacteria as a Potential Stable Biomarker for Gastric Cancer Independent of Lifestyle. Dig Dis Sci 2021; 66:2964-2980. [PMID: 33044677 DOI: 10.1007/s10620-020-06637-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common cancers, and the noninvasive diagnostic methods for monitoring GC are still lacking. Growing evidence shows that human microbiota has potential value for identifying digestive diseases. AIMS The present study aimed to explore the association of the tongue coating microbiota with the serum metabolic features and inflammatory cytokines in GC patients and seek a potential, noninvasive biomarker for diagnosing GC. METHODS The tongue coating microbiota was profiled by 16S rRNA and 18S rRNA genes sequencing technology in the original population with 181 GC patients and 112 healthy controls (HCs). Propensity score matching method was used to eliminate potential confounders including age, gender, and six lifestyle factors and a matching population with 66 GC patients and 66 HCs generated. Serum metabolomics profiling was performed by ultra-performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) in the matching population. Random forest model was constructed for the diagnosis of GC. RESULTS Linear discriminant analysis effect size (LEfSe) revealed that the differential bacterial taxa between GC patients and HCs in the matching population were similar to that in the original population, while the differential fungal taxa between GC patients and HCs dramatically changed before and after PSM. By random forest analysis, the combination of six bacterial genera (Peptostreptococcus, Peptococcus, Porphyromonas, Megamonas, Rothia, and Fusobacterium) was the optimal predictive model to distinguish GC patients from HCs effectively, with an area under the curve (AUC) value of 0.85. The model was verified with a high predictive potential (AUC = 0.76 to 0.96). In the matching population, eighteen specific HCs-enriched bacterial genera (Porphyromonas, Parvimonas, etc.) had negative correlations with lysophospholipids metabolites, and three of them had also negative correlations with serum IL-17α. CONCLUSIONS The alteration of tongue coating microbiota had a possible linkage with the inflammations and metabolome, and the tongue coating bacteria could be a potential noninvasive biomarker for diagnosing GC, which might be independent of lifestyle.
Collapse
Affiliation(s)
- Shuo Xu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Chunjie Xiang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Juan Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yuhao Teng
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Zhenfeng Wu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Ruiping Wang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Bin Lu
- Department of Oncology, Yangzhong People's Hospital, Yangzhong, 212200, Jiangsu, China
| | - Zhen Zhan
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Huangan Wu
- Shanghai Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110 Ganhe Road, Shanghai, 200000, China
| | - Junfeng Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing, 210000, China.
| |
Collapse
|
50
|
Huang K, Wu L, Yang Y. Gut microbiota: An emerging biological diagnostic and treatment approach for gastrointestinal diseases. JGH Open 2021; 5:973-975. [PMID: 34584963 PMCID: PMC8454480 DOI: 10.1002/jgh3.12659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kun Huang
- Department of Gastroenterology Civil Aviation General Hospital Beijing China
| | - Lili Wu
- Department of Gastroenterology, The Second Medical Center Chinese PLA General Hospital Beijing China
| | - Yunsheng Yang
- Microbiota Division, Department of Gastroenterology and Hepatology, The First Medical Center Chinese PLA General Hospital Beijing China
| |
Collapse
|